metal-organic compounds
3,5-Diamino-4H-1,2,4-triazol-1-ium (6-carboxypyridine-2-carboxylato)(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate
aH.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Pure and Applied Chemistry, University of Calabar, Calabar, PMB 1115, Nigeria, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the complex anion of the title compound, (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O, the CuII atom is coordinated by tridentate 6-carboxypyridine-2-carboxylate and pyridine-2,6-dicarboxylate ligands and is surrounded by four O atoms in the equatorial plane and two N atoms in axial positions in a distorted octahedral geometry. In the crystal, the components are linked into a three dimensional network by O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds and a π–π interaction with a centroid–centroid distance of 3.6080 (8) Å.
Related literature
For general background to and applications of supramolecular arrangements, see: Lehn (1995); Aghajani et al. (2009); Tshuva & Lippard (2004); Kuzelka et al. (2003). For crystal structures of related complexes, see: Aghabozorg et al. (2007); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811011147/is2693sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011147/is2693Isup2.hkl
Pyridine-2,6-dicarboxylic acid (dipicolinic acid, H2dipic) and 3,5-diamino-1,2,4-triazole (datrz) were purchased from Merck and Molekula, respectively. Copper (II) sulfate pentahydrate (CuSO4.5H2O) and HPLC grade methanol were Uni- Chem and M TEDIA products, respectively. Deionized water was also used in the procedures when needed.
Synthesis of (Hdatrz)+[Cu(Hdipic)(dipic)]-.3H2O 1 mmol (0.099 g) of 3,5-diamino-1,2,4-triazole(datrz) and 1 mmol of dipicolinic acid (0.167 g) were dissolved in a mixture of methanol/water solution (1:10, 11 ml). The resulting solution was heated to 600 °C with stirring. An aqueous solution (1 ml) containing 0.5 mmol (0.125 g) of CuSO4.5H2O was added to the stirred solution. The greenish suspension was allowed to stir further for 1 hr, and then filtered while hot. The filtrate was kept at room temperature. Well shaped blue crystals of the title compound were formed by slow evaporation of the solution after 5 days. Percentage yield based on copper is 51.67%.
H atoms on C atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride, with Uiso(H) = 1.2Ueq(C). The H atoms on the oxygen and nitrogen atoms were located in a difference Fourier maps and refined isotropically; refined distances are O—H = 0.78 (3)–0.91 (3) Å and N—H = 0.76 (2)–0.92 (2) Å.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title crystal, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bonds are shown by dashed lines. | |
Fig. 2. The crystal packing of the title compound, showing a three-dimensional molecular network. Only hydrogen atoms involved in hydrogen bonding are shown. |
(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O | Dx = 1.754 Mg m−3 |
Mr = 548.92 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9982 reflections |
a = 11.3091 (2) Å | θ = 2.4–34.3° |
b = 14.9442 (3) Å | µ = 1.13 mm−1 |
c = 24.6045 (5) Å | T = 100 K |
V = 4158.29 (14) Å3 | Block, blue |
Z = 8 | 0.54 × 0.20 × 0.07 mm |
F(000) = 2248 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 9184 independent reflections |
Radiation source: fine-focus sealed tube | 6619 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 35.2°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −16→18 |
Tmin = 0.583, Tmax = 0.921 | k = −24→24 |
55434 measured reflections | l = −35→39 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0419P)2 + 1.6423P] where P = (Fo2 + 2Fc2)/3 |
9184 reflections | (Δ/σ)max = 0.001 |
368 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.62 e Å−3 |
(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O | V = 4158.29 (14) Å3 |
Mr = 548.92 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.3091 (2) Å | µ = 1.13 mm−1 |
b = 14.9442 (3) Å | T = 100 K |
c = 24.6045 (5) Å | 0.54 × 0.20 × 0.07 mm |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 9184 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 6619 reflections with I > 2σ(I) |
Tmin = 0.583, Tmax = 0.921 | Rint = 0.040 |
55434 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.098 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.61 e Å−3 |
9184 reflections | Δρmin = −0.62 e Å−3 |
368 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.215732 (15) | 0.157389 (11) | 0.147781 (7) | 0.00961 (5) | |
O1 | 0.08015 (9) | 0.08189 (7) | 0.18273 (4) | 0.0134 (2) | |
O2 | 0.36032 (9) | 0.18850 (7) | 0.10156 (4) | 0.01296 (19) | |
O3 | 0.07633 (9) | 0.24435 (7) | 0.10732 (4) | 0.01269 (19) | |
O4 | 0.35335 (9) | 0.12522 (7) | 0.21908 (4) | 0.0141 (2) | |
O5 | −0.02108 (10) | −0.04545 (7) | 0.16838 (5) | 0.0178 (2) | |
O6 | 0.49003 (10) | 0.12228 (8) | 0.04550 (5) | 0.0209 (2) | |
O7 | −0.02109 (9) | 0.37240 (7) | 0.12527 (4) | 0.0146 (2) | |
O8 | 0.43168 (10) | 0.20192 (7) | 0.28899 (4) | 0.0153 (2) | |
N1 | 0.22886 (10) | 0.04926 (8) | 0.10717 (5) | 0.0101 (2) | |
N2 | 0.21368 (10) | 0.26548 (8) | 0.19377 (5) | 0.0093 (2) | |
N3 | 0.74524 (12) | 0.52025 (8) | 0.08876 (5) | 0.0135 (2) | |
N4 | 0.57456 (11) | 0.54813 (8) | 0.04709 (5) | 0.0132 (2) | |
N5 | 0.61177 (11) | 0.45979 (8) | 0.03913 (5) | 0.0131 (2) | |
N6 | 0.66479 (13) | 0.66858 (9) | 0.09430 (6) | 0.0173 (3) | |
N7 | 0.77259 (13) | 0.36686 (10) | 0.06458 (7) | 0.0211 (3) | |
C1 | 0.06033 (13) | 0.00591 (9) | 0.15837 (6) | 0.0122 (2) | |
C2 | 0.14997 (12) | −0.01609 (9) | 0.11494 (6) | 0.0102 (2) | |
C3 | 0.15723 (12) | −0.09465 (9) | 0.08511 (6) | 0.0120 (2) | |
H3A | 0.1014 | −0.1397 | 0.0895 | 0.014* | |
C4 | 0.25034 (13) | −0.10441 (9) | 0.04841 (6) | 0.0126 (3) | |
H4A | 0.2568 | −0.1565 | 0.0280 | 0.015* | |
C5 | 0.33380 (12) | −0.03646 (9) | 0.04217 (6) | 0.0125 (3) | |
H5A | 0.3973 | −0.0430 | 0.0185 | 0.015* | |
C6 | 0.31922 (12) | 0.04136 (9) | 0.07243 (6) | 0.0110 (2) | |
C7 | 0.39802 (13) | 0.12317 (10) | 0.07216 (6) | 0.0128 (3) | |
C8 | 0.05761 (12) | 0.31610 (9) | 0.13374 (6) | 0.0109 (2) | |
C9 | 0.14039 (12) | 0.33297 (9) | 0.18110 (6) | 0.0096 (2) | |
C10 | 0.14068 (12) | 0.41254 (9) | 0.21033 (6) | 0.0121 (2) | |
H10A | 0.0887 | 0.4585 | 0.2013 | 0.015* | |
C11 | 0.21941 (12) | 0.42253 (9) | 0.25307 (6) | 0.0127 (2) | |
H11A | 0.2219 | 0.4757 | 0.2727 | 0.015* | |
C12 | 0.29478 (12) | 0.35219 (9) | 0.26639 (6) | 0.0122 (2) | |
H12A | 0.3481 | 0.3574 | 0.2950 | 0.015* | |
C13 | 0.28853 (12) | 0.27413 (9) | 0.23597 (6) | 0.0108 (2) | |
C14 | 0.36167 (12) | 0.19255 (9) | 0.24695 (6) | 0.0116 (2) | |
C15 | 0.65778 (12) | 0.58205 (9) | 0.07748 (6) | 0.0123 (3) | |
C16 | 0.71346 (12) | 0.44283 (10) | 0.06413 (6) | 0.0125 (2) | |
O1W | 0.54413 (15) | 0.26343 (9) | 0.16261 (7) | 0.0380 (4) | |
O2W | 0.64627 (12) | 0.10349 (10) | 0.18324 (6) | 0.0293 (3) | |
O3W | 0.08779 (10) | 0.22067 (8) | −0.00591 (5) | 0.0171 (2) | |
H1O8 | 0.467 (2) | 0.1503 (17) | 0.2979 (11) | 0.054 (8)* | |
H1N3 | 0.7969 (19) | 0.5288 (15) | 0.1077 (9) | 0.032 (6)* | |
H1N5 | 0.5722 (17) | 0.4258 (14) | 0.0218 (9) | 0.023 (5)* | |
H1N6 | 0.7083 (18) | 0.6739 (15) | 0.1215 (10) | 0.028 (6)* | |
H2N6 | 0.5929 (19) | 0.6983 (14) | 0.0952 (8) | 0.026 (5)* | |
H1N7 | 0.7412 (19) | 0.3244 (14) | 0.0499 (8) | 0.022 (5)* | |
H2N7 | 0.837 (2) | 0.3643 (15) | 0.0799 (9) | 0.033 (6)* | |
H1W1 | 0.491 (2) | 0.2500 (19) | 0.1436 (11) | 0.049 (8)* | |
H2W1 | 0.546 (2) | 0.3146 (17) | 0.1640 (10) | 0.031 (6)* | |
H1W2 | 0.611 (3) | 0.157 (2) | 0.1794 (14) | 0.076 (10)* | |
H2W2 | 0.618 (3) | 0.0882 (19) | 0.2141 (13) | 0.067 (9)* | |
H1W3 | 0.054 (2) | 0.2667 (17) | −0.0225 (10) | 0.044 (7)* | |
H2W3 | 0.082 (2) | 0.2265 (15) | 0.0251 (11) | 0.037 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01071 (8) | 0.00748 (8) | 0.01064 (8) | 0.00011 (6) | 0.00135 (6) | −0.00198 (6) |
O1 | 0.0145 (5) | 0.0100 (4) | 0.0157 (5) | −0.0004 (4) | 0.0043 (4) | −0.0022 (4) |
O2 | 0.0146 (5) | 0.0096 (4) | 0.0147 (5) | −0.0009 (4) | 0.0026 (4) | −0.0022 (4) |
O3 | 0.0147 (5) | 0.0113 (4) | 0.0122 (5) | −0.0003 (4) | −0.0010 (4) | −0.0022 (4) |
O4 | 0.0171 (5) | 0.0100 (4) | 0.0151 (5) | 0.0020 (4) | −0.0017 (4) | −0.0012 (4) |
O5 | 0.0169 (5) | 0.0141 (5) | 0.0223 (6) | −0.0037 (4) | 0.0070 (4) | −0.0014 (4) |
O6 | 0.0181 (5) | 0.0179 (5) | 0.0268 (6) | −0.0039 (4) | 0.0116 (5) | −0.0058 (5) |
O7 | 0.0134 (5) | 0.0142 (5) | 0.0163 (5) | 0.0027 (4) | −0.0024 (4) | 0.0013 (4) |
O8 | 0.0183 (5) | 0.0120 (5) | 0.0157 (5) | 0.0036 (4) | −0.0069 (4) | −0.0006 (4) |
N1 | 0.0104 (5) | 0.0095 (5) | 0.0104 (5) | 0.0004 (4) | 0.0003 (4) | −0.0007 (4) |
N2 | 0.0095 (5) | 0.0088 (5) | 0.0096 (5) | 0.0003 (4) | 0.0006 (4) | 0.0002 (4) |
N3 | 0.0120 (5) | 0.0125 (5) | 0.0160 (6) | −0.0003 (4) | −0.0038 (5) | −0.0010 (5) |
N4 | 0.0125 (5) | 0.0118 (5) | 0.0155 (6) | 0.0013 (4) | −0.0004 (4) | −0.0013 (4) |
N5 | 0.0123 (5) | 0.0108 (5) | 0.0161 (6) | 0.0001 (4) | −0.0026 (4) | −0.0020 (4) |
N6 | 0.0174 (6) | 0.0127 (6) | 0.0217 (7) | 0.0010 (5) | −0.0021 (5) | −0.0050 (5) |
N7 | 0.0168 (7) | 0.0120 (6) | 0.0346 (8) | 0.0021 (5) | −0.0115 (6) | −0.0028 (5) |
C1 | 0.0141 (6) | 0.0089 (6) | 0.0136 (6) | 0.0012 (5) | 0.0017 (5) | 0.0002 (5) |
C2 | 0.0099 (6) | 0.0090 (6) | 0.0118 (6) | 0.0008 (5) | 0.0003 (4) | −0.0003 (4) |
C3 | 0.0134 (6) | 0.0089 (6) | 0.0139 (6) | −0.0001 (5) | −0.0004 (5) | −0.0001 (5) |
C4 | 0.0142 (6) | 0.0109 (6) | 0.0127 (6) | 0.0019 (5) | −0.0017 (5) | −0.0017 (5) |
C5 | 0.0126 (6) | 0.0124 (6) | 0.0125 (6) | 0.0022 (5) | 0.0008 (5) | −0.0021 (5) |
C6 | 0.0115 (6) | 0.0101 (6) | 0.0113 (6) | 0.0013 (5) | 0.0009 (5) | −0.0005 (5) |
C7 | 0.0143 (6) | 0.0113 (6) | 0.0128 (6) | −0.0008 (5) | 0.0013 (5) | −0.0011 (5) |
C8 | 0.0112 (6) | 0.0110 (6) | 0.0105 (6) | −0.0016 (5) | 0.0007 (5) | 0.0023 (5) |
C9 | 0.0097 (5) | 0.0086 (6) | 0.0106 (6) | −0.0001 (4) | 0.0007 (4) | −0.0001 (4) |
C10 | 0.0122 (6) | 0.0087 (6) | 0.0155 (7) | 0.0017 (5) | 0.0005 (5) | −0.0010 (5) |
C11 | 0.0141 (6) | 0.0090 (6) | 0.0150 (6) | 0.0004 (5) | 0.0008 (5) | −0.0026 (5) |
C12 | 0.0134 (6) | 0.0111 (6) | 0.0122 (6) | −0.0001 (5) | −0.0018 (5) | −0.0018 (5) |
C13 | 0.0108 (6) | 0.0106 (6) | 0.0108 (6) | 0.0014 (5) | −0.0004 (5) | −0.0005 (4) |
C14 | 0.0118 (6) | 0.0116 (6) | 0.0114 (6) | −0.0001 (5) | 0.0003 (5) | 0.0019 (5) |
C15 | 0.0119 (6) | 0.0116 (6) | 0.0136 (6) | 0.0010 (5) | 0.0008 (5) | 0.0003 (5) |
C16 | 0.0116 (6) | 0.0112 (6) | 0.0146 (7) | −0.0005 (5) | −0.0020 (5) | 0.0000 (5) |
O1W | 0.0469 (9) | 0.0118 (6) | 0.0554 (10) | −0.0030 (6) | −0.0334 (8) | 0.0027 (6) |
O2W | 0.0308 (7) | 0.0313 (7) | 0.0256 (7) | 0.0163 (6) | 0.0061 (6) | 0.0020 (6) |
O3W | 0.0232 (6) | 0.0141 (5) | 0.0140 (6) | 0.0026 (4) | 0.0017 (4) | −0.0017 (4) |
Cu1—N1 | 1.9057 (12) | N6—H2N6 | 0.93 (2) |
Cu1—N2 | 1.9723 (12) | N7—C16 | 1.318 (2) |
Cu1—O2 | 2.0453 (10) | N7—H1N7 | 0.81 (2) |
Cu1—O1 | 2.0889 (10) | N7—H2N7 | 0.82 (2) |
Cu1—O3 | 2.2727 (10) | C1—C2 | 1.509 (2) |
Cu1—O4 | 2.3939 (10) | C2—C3 | 1.3870 (19) |
O1—C1 | 1.3034 (17) | C3—C4 | 1.395 (2) |
O2—C7 | 1.2877 (17) | C3—H3A | 0.9300 |
O3—C8 | 1.2716 (17) | C4—C5 | 1.395 (2) |
O4—C14 | 1.2213 (17) | C4—H4A | 0.9300 |
O5—C1 | 1.2237 (17) | C5—C6 | 1.3907 (19) |
O6—C7 | 1.2301 (17) | C5—H5A | 0.9300 |
O7—C8 | 1.2425 (17) | C6—C7 | 1.513 (2) |
O8—C14 | 1.3102 (17) | C8—C9 | 1.516 (2) |
O8—H1O8 | 0.90 (3) | C9—C10 | 1.3896 (19) |
N1—C2 | 1.3365 (17) | C10—C11 | 1.386 (2) |
N1—C6 | 1.3375 (18) | C10—H10A | 0.9300 |
N2—C9 | 1.3422 (17) | C11—C12 | 1.3925 (19) |
N2—C13 | 1.3459 (17) | C11—H11A | 0.9300 |
N3—C16 | 1.3547 (19) | C12—C13 | 1.3878 (19) |
N3—C15 | 1.3813 (19) | C12—H12A | 0.9300 |
N3—H1N3 | 0.76 (2) | C13—C14 | 1.4978 (19) |
N4—C15 | 1.3045 (18) | O1W—H1W1 | 0.78 (3) |
N4—N5 | 1.3994 (17) | O1W—H2W1 | 0.77 (2) |
N5—C16 | 1.3285 (18) | O2W—H1W2 | 0.90 (3) |
N5—H1N5 | 0.80 (2) | O2W—H2W2 | 0.85 (3) |
N6—C15 | 1.3602 (19) | O3W—H1W3 | 0.89 (3) |
N6—H1N6 | 0.83 (2) | O3W—H2W3 | 0.77 (3) |
N1—Cu1—N2 | 174.99 (5) | C2—C3—C4 | 118.42 (13) |
N1—Cu1—O2 | 80.73 (4) | C2—C3—H3A | 120.8 |
N2—Cu1—O2 | 98.17 (4) | C4—C3—H3A | 120.8 |
N1—Cu1—O1 | 79.34 (4) | C3—C4—C5 | 120.39 (13) |
N2—Cu1—O1 | 101.40 (4) | C3—C4—H4A | 119.8 |
O2—Cu1—O1 | 159.80 (4) | C5—C4—H4A | 119.8 |
N1—Cu1—O3 | 108.01 (4) | C6—C5—C4 | 118.01 (13) |
N2—Cu1—O3 | 76.99 (4) | C6—C5—H5A | 121.0 |
O2—Cu1—O3 | 100.43 (4) | C4—C5—H5A | 121.0 |
O1—Cu1—O3 | 88.85 (4) | N1—C6—C5 | 120.44 (13) |
N1—Cu1—O4 | 99.40 (4) | N1—C6—C7 | 112.42 (12) |
N2—Cu1—O4 | 75.63 (4) | C5—C6—C7 | 127.13 (13) |
O2—Cu1—O4 | 86.18 (4) | O6—C7—O2 | 126.01 (14) |
O1—Cu1—O4 | 93.85 (4) | O6—C7—C6 | 119.46 (13) |
O3—Cu1—O4 | 152.47 (4) | O2—C7—C6 | 114.53 (12) |
C1—O1—Cu1 | 114.05 (9) | O7—C8—O3 | 127.20 (13) |
C7—O2—Cu1 | 113.87 (9) | O7—C8—C9 | 117.30 (13) |
C8—O3—Cu1 | 111.94 (9) | O3—C8—C9 | 115.50 (12) |
C14—O4—Cu1 | 107.22 (9) | N2—C9—C10 | 121.43 (13) |
C14—O8—H1O8 | 111.8 (17) | N2—C9—C8 | 115.77 (12) |
C2—N1—C6 | 122.47 (12) | C10—C9—C8 | 122.80 (12) |
C2—N1—Cu1 | 119.51 (9) | C11—C10—C9 | 119.10 (13) |
C6—N1—Cu1 | 118.00 (9) | C11—C10—H10A | 120.4 |
C9—N2—C13 | 119.69 (12) | C9—C10—H10A | 120.4 |
C9—N2—Cu1 | 119.31 (9) | C10—C11—C12 | 119.38 (13) |
C13—N2—Cu1 | 120.92 (9) | C10—C11—H11A | 120.3 |
C16—N3—C15 | 106.92 (12) | C12—C11—H11A | 120.3 |
C16—N3—H1N3 | 128.6 (17) | C13—C12—C11 | 118.45 (13) |
C15—N3—H1N3 | 124.2 (17) | C13—C12—H12A | 120.8 |
C15—N4—N5 | 103.28 (11) | C11—C12—H12A | 120.8 |
C16—N5—N4 | 112.06 (12) | N2—C13—C12 | 121.93 (12) |
C16—N5—H1N5 | 127.6 (14) | N2—C13—C14 | 114.09 (12) |
N4—N5—H1N5 | 120.4 (14) | C12—C13—C14 | 123.97 (12) |
C15—N6—H1N6 | 111.6 (15) | O4—C14—O8 | 125.31 (13) |
C15—N6—H2N6 | 114.3 (13) | O4—C14—C13 | 121.79 (13) |
H1N6—N6—H2N6 | 117.0 (19) | O8—C14—C13 | 112.90 (12) |
C16—N7—H1N7 | 116.6 (15) | N4—C15—N6 | 125.87 (13) |
C16—N7—H2N7 | 119.6 (16) | N4—C15—N3 | 111.84 (13) |
H1N7—N7—H2N7 | 124 (2) | N6—C15—N3 | 122.19 (13) |
O5—C1—O1 | 125.68 (13) | N7—C16—N5 | 127.42 (14) |
O5—C1—C2 | 120.75 (13) | N7—C16—N3 | 126.69 (13) |
O1—C1—C2 | 113.57 (12) | N5—C16—N3 | 105.89 (13) |
N1—C2—C3 | 120.22 (12) | H1W1—O1W—H2W1 | 107 (3) |
N1—C2—C1 | 112.99 (12) | H1W2—O2W—H2W2 | 100 (3) |
C3—C2—C1 | 126.79 (12) | H1W3—O3W—H2W3 | 109 (2) |
N1—Cu1—O1—C1 | −6.84 (10) | N1—C2—C3—C4 | 1.9 (2) |
N2—Cu1—O1—C1 | 178.21 (10) | C1—C2—C3—C4 | −176.87 (13) |
O2—Cu1—O1—C1 | −16.30 (18) | C2—C3—C4—C5 | 0.1 (2) |
O3—Cu1—O1—C1 | 101.73 (10) | C3—C4—C5—C6 | −1.6 (2) |
O4—Cu1—O1—C1 | −105.69 (10) | C2—N1—C6—C5 | 0.6 (2) |
N1—Cu1—O2—C7 | −5.71 (10) | Cu1—N1—C6—C5 | 179.32 (10) |
N2—Cu1—O2—C7 | 169.34 (10) | C2—N1—C6—C7 | −178.28 (12) |
O1—Cu1—O2—C7 | 3.71 (18) | Cu1—N1—C6—C7 | 0.41 (15) |
O3—Cu1—O2—C7 | −112.48 (10) | C4—C5—C6—N1 | 1.3 (2) |
O4—Cu1—O2—C7 | 94.47 (10) | C4—C5—C6—C7 | −179.91 (14) |
N1—Cu1—O3—C8 | 176.48 (9) | Cu1—O2—C7—O6 | −171.91 (13) |
N2—Cu1—O3—C8 | −3.90 (9) | Cu1—O2—C7—C6 | 7.35 (15) |
O2—Cu1—O3—C8 | −99.97 (9) | N1—C6—C7—O6 | 173.99 (13) |
O1—Cu1—O3—C8 | 98.08 (9) | C5—C6—C7—O6 | −4.8 (2) |
O4—Cu1—O3—C8 | 1.95 (14) | N1—C6—C7—O2 | −5.33 (18) |
N1—Cu1—O4—C14 | 174.94 (10) | C5—C6—C7—O2 | 175.84 (14) |
N2—Cu1—O4—C14 | −4.45 (9) | Cu1—O3—C8—O7 | −172.04 (12) |
O2—Cu1—O4—C14 | 95.00 (10) | Cu1—O3—C8—C9 | 7.09 (14) |
O1—Cu1—O4—C14 | −105.24 (9) | C13—N2—C9—C10 | 0.7 (2) |
O3—Cu1—O4—C14 | −10.33 (14) | Cu1—N2—C9—C10 | −176.17 (10) |
N2—Cu1—N1—C2 | 103.6 (6) | C13—N2—C9—C8 | −178.69 (12) |
O2—Cu1—N1—C2 | −178.65 (11) | Cu1—N2—C9—C8 | 4.45 (16) |
O1—Cu1—N1—C2 | 4.64 (10) | O7—C8—C9—N2 | 171.23 (12) |
O3—Cu1—N1—C2 | −80.62 (11) | O3—C8—C9—N2 | −7.99 (18) |
O4—Cu1—N1—C2 | 96.82 (10) | O7—C8—C9—C10 | −8.1 (2) |
N2—Cu1—N1—C6 | −75.1 (6) | O3—C8—C9—C10 | 172.64 (13) |
O2—Cu1—N1—C6 | 2.62 (10) | N2—C9—C10—C11 | 0.7 (2) |
O1—Cu1—N1—C6 | −174.09 (11) | C8—C9—C10—C11 | −179.93 (13) |
O3—Cu1—N1—C6 | 100.66 (10) | C9—C10—C11—C12 | −1.2 (2) |
O4—Cu1—N1—C6 | −81.90 (10) | C10—C11—C12—C13 | 0.3 (2) |
N1—Cu1—N2—C9 | 175.3 (5) | C9—N2—C13—C12 | −1.7 (2) |
O2—Cu1—N2—C9 | 98.28 (10) | Cu1—N2—C13—C12 | 175.13 (10) |
O1—Cu1—N2—C9 | −86.74 (10) | C9—N2—C13—C14 | 177.65 (12) |
O3—Cu1—N2—C9 | −0.61 (10) | Cu1—N2—C13—C14 | −5.54 (16) |
O4—Cu1—N2—C9 | −177.83 (11) | C11—C12—C13—N2 | 1.2 (2) |
N1—Cu1—N2—C13 | −1.5 (6) | C11—C12—C13—C14 | −178.06 (13) |
O2—Cu1—N2—C13 | −78.54 (11) | Cu1—O4—C14—O8 | −177.73 (12) |
O1—Cu1—N2—C13 | 96.45 (11) | Cu1—O4—C14—C13 | 3.18 (16) |
O3—Cu1—N2—C13 | −177.43 (11) | N2—C13—C14—O4 | 0.74 (19) |
O4—Cu1—N2—C13 | 5.36 (10) | C12—C13—C14—O4 | −179.95 (14) |
C15—N4—N5—C16 | 0.02 (16) | N2—C13—C14—O8 | −178.46 (12) |
Cu1—O1—C1—O5 | −172.99 (12) | C12—C13—C14—O8 | 0.9 (2) |
Cu1—O1—C1—C2 | 7.53 (15) | N5—N4—C15—N6 | 176.70 (14) |
C6—N1—C2—C3 | −2.3 (2) | N5—N4—C15—N3 | 0.33 (16) |
Cu1—N1—C2—C3 | 179.01 (10) | C16—N3—C15—N4 | −0.57 (17) |
C6—N1—C2—C1 | 176.63 (12) | C16—N3—C15—N6 | −177.08 (14) |
Cu1—N1—C2—C1 | −2.03 (16) | N4—N5—C16—N7 | −179.65 (15) |
O5—C1—C2—N1 | 176.49 (13) | N4—N5—C16—N3 | −0.36 (16) |
O1—C1—C2—N1 | −4.00 (17) | C15—N3—C16—N7 | 179.84 (15) |
O5—C1—C2—C3 | −4.6 (2) | C15—N3—C16—N5 | 0.54 (16) |
O1—C1—C2—C3 | 174.87 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H1O8···O1i | 0.90 (3) | 1.71 (2) | 2.5536 (15) | 157 (2) |
N3—H1N3···O2Wii | 0.76 (2) | 2.26 (2) | 2.9081 (19) | 144 (2) |
N5—H1N5···O3Wiii | 0.80 (2) | 2.23 (2) | 2.8310 (17) | 132.3 (18) |
N5—H1N5···N4iv | 0.80 (2) | 2.40 (2) | 2.9925 (18) | 131.2 (19) |
N6—H1N6···O2Wii | 0.83 (2) | 2.47 (2) | 3.209 (2) | 147.6 (19) |
N6—H2N6···O3v | 0.93 (2) | 2.06 (2) | 2.9699 (17) | 168.7 (19) |
N7—H1N7···O3Wiii | 0.81 (2) | 2.15 (2) | 2.8570 (19) | 145 (2) |
N7—H2N7···O7vi | 0.82 (2) | 1.96 (2) | 2.7714 (18) | 170 (2) |
O1W—H1W1···O2 | 0.79 (2) | 2.03 (3) | 2.7985 (19) | 168 (3) |
O1W—H2W1···O5v | 0.77 (3) | 2.11 (3) | 2.8715 (17) | 171 (2) |
O2W—H1W2···O1W | 0.90 (3) | 1.81 (3) | 2.703 (2) | 173 (3) |
O2W—H2W2···O1i | 0.85 (3) | 2.58 (3) | 3.3968 (18) | 162 (3) |
O3W—H1W3···O6vii | 0.89 (3) | 1.90 (3) | 2.7712 (17) | 169 (2) |
O3W—H2W3···O3 | 0.77 (3) | 2.04 (3) | 2.8113 (16) | 177 (2) |
C5—H5A···O6viii | 0.93 | 2.35 | 3.2042 (18) | 153 |
C12—H12A···O7i | 0.93 | 2.47 | 3.3960 (17) | 176 |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+3/2, y+1/2, z; (iii) x+1/2, −y+1/2, −z; (iv) −x+1, −y+1, −z; (v) −x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, −z; (viii) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O |
Mr | 548.92 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 11.3091 (2), 14.9442 (3), 24.6045 (5) |
V (Å3) | 4158.29 (14) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.13 |
Crystal size (mm) | 0.54 × 0.20 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.583, 0.921 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 55434, 9184, 6619 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.811 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.098, 1.05 |
No. of reflections | 9184 |
No. of parameters | 368 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.62 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H1O8···O1i | 0.90 (3) | 1.71 (2) | 2.5536 (15) | 157 (2) |
N3—H1N3···O2Wii | 0.76 (2) | 2.26 (2) | 2.9081 (19) | 144 (2) |
N5—H1N5···O3Wiii | 0.80 (2) | 2.23 (2) | 2.8310 (17) | 132.3 (18) |
N5—H1N5···N4iv | 0.80 (2) | 2.40 (2) | 2.9925 (18) | 131.2 (19) |
N6—H1N6···O2Wii | 0.83 (2) | 2.47 (2) | 3.209 (2) | 147.6 (19) |
N6—H2N6···O3v | 0.93 (2) | 2.06 (2) | 2.9699 (17) | 168.7 (19) |
N7—H1N7···O3Wiii | 0.81 (2) | 2.15 (2) | 2.8570 (19) | 145 (2) |
N7—H2N7···O7vi | 0.82 (2) | 1.96 (2) | 2.7714 (18) | 170 (2) |
O1W—H1W1···O2 | 0.79 (2) | 2.03 (3) | 2.7985 (19) | 168 (3) |
O1W—H2W1···O5v | 0.77 (3) | 2.11 (3) | 2.8715 (17) | 171 (2) |
O2W—H1W2···O1W | 0.90 (3) | 1.81 (3) | 2.703 (2) | 173 (3) |
O2W—H2W2···O1i | 0.85 (3) | 2.58 (3) | 3.3968 (18) | 162 (3) |
O3W—H1W3···O6vii | 0.89 (3) | 1.90 (3) | 2.7712 (17) | 169 (2) |
O3W—H2W3···O3 | 0.77 (3) | 2.04 (3) | 2.8113 (16) | 177 (2) |
C5—H5A···O6viii | 0.93 | 2.35 | 3.2042 (18) | 153 |
C12—H12A···O7i | 0.93 | 2.47 | 3.3960 (17) | 176 |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+3/2, y+1/2, z; (iii) x+1/2, −y+1/2, −z; (iv) −x+1, −y+1, −z; (v) −x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, −z; (viii) −x+1, −y, −z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
AJ thanks The Academy of Sciences for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H·E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.
References
Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran Chem. Soc. 6, 373–385. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kuzelka, J., Farrll, J. R. & Lippard, S. J. (2003). Inorg. Chem. 42, 8652–8656. Web of Science CrossRef PubMed CAS Google Scholar
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perepectives, Weinheim: VCH. Google Scholar
MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203–1209. Web of Science CSD CrossRef Google Scholar
Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012. Web of Science CrossRef PubMed CAS Google Scholar
Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Non-covalent supramolecular arrangements due to the non-covalent interactions between two or more molecular sub-units are responsible for influencing different structural properties and the addition of metal in the coordination is considered to be an effective tool to study and control the connectivity and linkages (Lehn et al., 1995). The study of the construction of metal organic frameworks indicates that under suitable conditions, the transfer of the acidic protons to appropriate bases will result in increased intermolecular interactions and as a result enhanced stabilization of the resulting system (Aghajani et al., 2009). The study of metal carboxylates has always been fascinating for the researchers because they play important roles not only in synthetic chemistry, considering the vast array of coordination modes of the carboxylate group, but also in biological activities (Tshuva et al., 2004; Kuzelka et al., 2003) and physiological effects (Aghabozorg et al., 2007). In our ongoing research to study the packing features of molecules containing metal chelate and triazole rings, the title Cu complex (I) was prepared from 3,5-diamino-1,2,4-triazole and dipicolinic acid.
The title complex, (C2H6N5)+[Cu(C7H4NO4)(C7H3NO4)]-.3H2O, contains two tridentate dipicolinate ligands (one neutral and one protonated) coordinated with Cu(II) to reveal a distorted octahedral geometry, one independent protonated triazole and three water molecules (Fig. 1). The coordination environment around the Cu(II) ion is such that the two dipiconilate ligands are assembled perpendicular to each other with two axially oriented N atoms [Cu1—N1 = 1.9057 (12) Å, Cu1—N2 = 1.9723 (2) Å] and four O atoms on the basal positions [Cu1—O1 = 2.0889 (10) Å, Cu1—O2 = 2.0453 (10) Å, Cu1—O3 = 2.2727 (10) Å, Cu1—O4 = 2.3939 (10) Å]. Coordination of CuII ion with N1, O1, O2 and N2, O3, O4 of the two chelating dipicolinate ligands is responsible for the formation of four five-membered rings, A, (Cu1/O1/C1/C2/N1, with a maximum deviation of 0.049 (1) Å for atom O1), B (Cu1/N1/C6/C7/O2, with a maximum deviation of -0.042 (1) Å for atom O2), C (Cu1/O3/C8/C9/N2, with a maximum deviation of -0.043 (1) Å for atom C8) and D (Cu1/N2/C13/C14/O4, with a maximum deviation of -0.040 (1) Å for atom N2). The dihedral angles between them are 4.34 (6)° (A/B), 82.15 (6)° (A/C), 84.95 (6)° (A/D), 79.10 (6)° (B/C), 81.79 (6)° (B/D) and 3.58 (5)° (C/D). The independent triazole ring (N3/C15/N4/N5/C16) is essentially planar. All bond lengths are in agreement with another related structure (Ramos Silva et al., 2008). O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds play important roles in stabilizing the crystal structure by forming a two-dimensional-network, which is further extended to three-dimensional-network due to the intermolecular linkages made by water solvates (Table 2 and Fig. 2). The three-dimensional network is further strengthened by significant π–π interactions between (N1/C1–C5) pyridine (centroid Cg5) and triazole (N3/C15/N4/N5/C16) (centroid Cg7) rings [Cg5···Cg7vii distance = 3.6080 (8) Å; (vii) -1/2 + x, 1/2 - y, -z].