metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m509-m510

3,5-Di­amino-4H-1,2,4-triazol-1-ium (6-carb­­oxy­pyridine-2-carboxyl­ato)(pyridine-2,6-di­carboxyl­ato)cuprate(II) trihydrate

aH.E.J Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, bDepartment of Pure and Applied Chemistry, University of Calabar, Calabar, PMB 1115, Nigeria, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 21 March 2011; accepted 25 March 2011; online 31 March 2011)

In the complex anion of the title compound, (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O, the CuII atom is coordinated by tridentate 6-carb­oxy­pyridine-2-carboxyl­ate and pyridine-2,6-dicarboxyl­ate ligands and is surrounded by four O atoms in the equatorial plane and two N atoms in axial positions in a distorted octa­hedral geometry. In the crystal, the components are linked into a three dimensional network by O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds and a ππ inter­action with a centroid–centroid distance of 3.6080 (8) Å.

Related literature

For general background to and applications of supra­molecular arrangements, see: Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perepectives, Weinheim: VCH.]); Aghajani et al. (2009[Aghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran Chem. Soc. 6, 373-385.]); Tshuva & Lippard (2004[Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987-1012.]); Kuzelka et al. (2003[Kuzelka, J., Farrll, J. R. & Lippard, S. J. (2003). Inorg. Chem. 42, 8652-8656.]). For crystal structures of related complexes, see: Aghabozorg et al. (2007[Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.]); Ramos Silva et al. (2008[Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173-m1174.]); Wang et al. (2004[Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353-1359.]); MacDonald et al. (2004[MacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203-1209.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O

  • Mr = 548.92

  • Orthorhombic, P b c a

  • a = 11.3091 (2) Å

  • b = 14.9442 (3) Å

  • c = 24.6045 (5) Å

  • V = 4158.29 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 100 K

  • 0.54 × 0.20 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.583, Tmax = 0.921

  • 55434 measured reflections

  • 9184 independent reflections

  • 6619 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.098

  • S = 1.05

  • 9184 reflections

  • 368 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H1O8⋯O1i 0.90 (3) 1.71 (2) 2.5536 (15) 157 (2)
N3—H1N3⋯O2Wii 0.76 (2) 2.26 (2) 2.9081 (19) 144 (2)
N5—H1N5⋯O3Wiii 0.80 (2) 2.23 (2) 2.8310 (17) 132.3 (18)
N5—H1N5⋯N4iv 0.80 (2) 2.40 (2) 2.9925 (18) 131.2 (19)
N6—H1N6⋯O2Wii 0.83 (2) 2.47 (2) 3.209 (2) 147.6 (19)
N6—H2N6⋯O3v 0.93 (2) 2.06 (2) 2.9699 (17) 168.7 (19)
N7—H1N7⋯O3Wiii 0.81 (2) 2.15 (2) 2.8570 (19) 145 (2)
N7—H2N7⋯O7vi 0.82 (2) 1.96 (2) 2.7714 (18) 170 (2)
O1W—H1W1⋯O2 0.79 (2) 2.03 (3) 2.7985 (19) 168 (3)
O1W—H2W1⋯O5v 0.77 (3) 2.11 (3) 2.8715 (17) 171 (2)
O2W—H1W2⋯O1W 0.90 (3) 1.81 (3) 2.703 (2) 173 (3)
O2W—H2W2⋯O1i 0.85 (3) 2.58 (3) 3.3968 (18) 162 (3)
O3W—H1W3⋯O6vii 0.89 (3) 1.90 (3) 2.7712 (17) 169 (2)
O3W—H2W3⋯O3 0.77 (3) 2.04 (3) 2.8113 (16) 177 (2)
C5—H5A⋯O6viii 0.93 2.35 3.2042 (18) 153
C12—H12A⋯O7i 0.93 2.47 3.3960 (17) 176
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) -x+1, -y+1, -z; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) x+1, y, z; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (viii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-covalent supramolecular arrangements due to the non-covalent interactions between two or more molecular sub-units are responsible for influencing different structural properties and the addition of metal in the coordination is considered to be an effective tool to study and control the connectivity and linkages (Lehn et al., 1995). The study of the construction of metal organic frameworks indicates that under suitable conditions, the transfer of the acidic protons to appropriate bases will result in increased intermolecular interactions and as a result enhanced stabilization of the resulting system (Aghajani et al., 2009). The study of metal carboxylates has always been fascinating for the researchers because they play important roles not only in synthetic chemistry, considering the vast array of coordination modes of the carboxylate group, but also in biological activities (Tshuva et al., 2004; Kuzelka et al., 2003) and physiological effects (Aghabozorg et al., 2007). In our ongoing research to study the packing features of molecules containing metal chelate and triazole rings, the title Cu complex (I) was prepared from 3,5-diamino-1,2,4-triazole and dipicolinic acid.

The title complex, (C2H6N5)+[Cu(C7H4NO4)(C7H3NO4)]-.3H2O, contains two tridentate dipicolinate ligands (one neutral and one protonated) coordinated with Cu(II) to reveal a distorted octahedral geometry, one independent protonated triazole and three water molecules (Fig. 1). The coordination environment around the Cu(II) ion is such that the two dipiconilate ligands are assembled perpendicular to each other with two axially oriented N atoms [Cu1—N1 = 1.9057 (12) Å, Cu1—N2 = 1.9723 (2) Å] and four O atoms on the basal positions [Cu1—O1 = 2.0889 (10) Å, Cu1—O2 = 2.0453 (10) Å, Cu1—O3 = 2.2727 (10) Å, Cu1—O4 = 2.3939 (10) Å]. Coordination of CuII ion with N1, O1, O2 and N2, O3, O4 of the two chelating dipicolinate ligands is responsible for the formation of four five-membered rings, A, (Cu1/O1/C1/C2/N1, with a maximum deviation of 0.049 (1) Å for atom O1), B (Cu1/N1/C6/C7/O2, with a maximum deviation of -0.042 (1) Å for atom O2), C (Cu1/O3/C8/C9/N2, with a maximum deviation of -0.043 (1) Å for atom C8) and D (Cu1/N2/C13/C14/O4, with a maximum deviation of -0.040 (1) Å for atom N2). The dihedral angles between them are 4.34 (6)° (A/B), 82.15 (6)° (A/C), 84.95 (6)° (A/D), 79.10 (6)° (B/C), 81.79 (6)° (B/D) and 3.58 (5)° (C/D). The independent triazole ring (N3/C15/N4/N5/C16) is essentially planar. All bond lengths are in agreement with another related structure (Ramos Silva et al., 2008). O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds play important roles in stabilizing the crystal structure by forming a two-dimensional-network, which is further extended to three-dimensional-network due to the intermolecular linkages made by water solvates (Table 2 and Fig. 2). The three-dimensional network is further strengthened by significant ππ interactions between (N1/C1–C5) pyridine (centroid Cg5) and triazole (N3/C15/N4/N5/C16) (centroid Cg7) rings [Cg5···Cg7vii distance = 3.6080 (8) Å; (vii) -1/2 + x, 1/2 - y, -z].

Related literature top

For general background to and applications of supramolecular arrangements, see: Lehn (1995); Aghajani et al. (2009); Tshuva & Lippard (2004); Kuzelka et al. (2003). For crystal structures of related complexes, see: Aghabozorg et al. (2007); Ramos Silva et al. (2008); Wang et al. (2004); MacDonald et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid, H2dipic) and 3,5-diamino-1,2,4-triazole (datrz) were purchased from Merck and Molekula, respectively. Copper (II) sulfate pentahydrate (CuSO4.5H2O) and HPLC grade methanol were Uni- Chem and M TEDIA products, respectively. Deionized water was also used in the procedures when needed.

Synthesis of (Hdatrz)+[Cu(Hdipic)(dipic)]-.3H2O 1 mmol (0.099 g) of 3,5-diamino-1,2,4-triazole(datrz) and 1 mmol of dipicolinic acid (0.167 g) were dissolved in a mixture of methanol/water solution (1:10, 11 ml). The resulting solution was heated to 600 °C with stirring. An aqueous solution (1 ml) containing 0.5 mmol (0.125 g) of CuSO4.5H2O was added to the stirred solution. The greenish suspension was allowed to stir further for 1 hr, and then filtered while hot. The filtrate was kept at room temperature. Well shaped blue crystals of the title compound were formed by slow evaporation of the solution after 5 days. Percentage yield based on copper is 51.67%.

Refinement top

H atoms on C atoms were positioned geometrically, with C—H = 0.93 Å and constrained to ride, with Uiso(H) = 1.2Ueq(C). The H atoms on the oxygen and nitrogen atoms were located in a difference Fourier maps and refined isotropically; refined distances are O—H = 0.78 (3)–0.91 (3) Å and N—H = 0.76 (2)–0.92 (2) Å.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title crystal, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a three-dimensional molecular network. Only hydrogen atoms involved in hydrogen bonding are shown.
3,5-Diamino-4H-1,2,4-triazol-1-ium (6-carboxypyridine-2-carboxylato)(pyridine-2,6-dicarboxylato)cuprate(II) trihydrate top
Crystal data top
(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2ODx = 1.754 Mg m3
Mr = 548.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9982 reflections
a = 11.3091 (2) Åθ = 2.4–34.3°
b = 14.9442 (3) ŵ = 1.13 mm1
c = 24.6045 (5) ÅT = 100 K
V = 4158.29 (14) Å3Block, blue
Z = 80.54 × 0.20 × 0.07 mm
F(000) = 2248
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
9184 independent reflections
Radiation source: fine-focus sealed tube6619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 35.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1618
Tmin = 0.583, Tmax = 0.921k = 2424
55434 measured reflectionsl = 3539
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0419P)2 + 1.6423P]
where P = (Fo2 + 2Fc2)/3
9184 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2OV = 4158.29 (14) Å3
Mr = 548.92Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.3091 (2) ŵ = 1.13 mm1
b = 14.9442 (3) ÅT = 100 K
c = 24.6045 (5) Å0.54 × 0.20 × 0.07 mm
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
9184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6619 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.921Rint = 0.040
55434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
9184 reflectionsΔρmin = 0.62 e Å3
368 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.215732 (15)0.157389 (11)0.147781 (7)0.00961 (5)
O10.08015 (9)0.08189 (7)0.18273 (4)0.0134 (2)
O20.36032 (9)0.18850 (7)0.10156 (4)0.01296 (19)
O30.07633 (9)0.24435 (7)0.10732 (4)0.01269 (19)
O40.35335 (9)0.12522 (7)0.21908 (4)0.0141 (2)
O50.02108 (10)0.04545 (7)0.16838 (5)0.0178 (2)
O60.49003 (10)0.12228 (8)0.04550 (5)0.0209 (2)
O70.02109 (9)0.37240 (7)0.12527 (4)0.0146 (2)
O80.43168 (10)0.20192 (7)0.28899 (4)0.0153 (2)
N10.22886 (10)0.04926 (8)0.10717 (5)0.0101 (2)
N20.21368 (10)0.26548 (8)0.19377 (5)0.0093 (2)
N30.74524 (12)0.52025 (8)0.08876 (5)0.0135 (2)
N40.57456 (11)0.54813 (8)0.04709 (5)0.0132 (2)
N50.61177 (11)0.45979 (8)0.03913 (5)0.0131 (2)
N60.66479 (13)0.66858 (9)0.09430 (6)0.0173 (3)
N70.77259 (13)0.36686 (10)0.06458 (7)0.0211 (3)
C10.06033 (13)0.00591 (9)0.15837 (6)0.0122 (2)
C20.14997 (12)0.01609 (9)0.11494 (6)0.0102 (2)
C30.15723 (12)0.09465 (9)0.08511 (6)0.0120 (2)
H3A0.10140.13970.08950.014*
C40.25034 (13)0.10441 (9)0.04841 (6)0.0126 (3)
H4A0.25680.15650.02800.015*
C50.33380 (12)0.03646 (9)0.04217 (6)0.0125 (3)
H5A0.39730.04300.01850.015*
C60.31922 (12)0.04136 (9)0.07243 (6)0.0110 (2)
C70.39802 (13)0.12317 (10)0.07216 (6)0.0128 (3)
C80.05761 (12)0.31610 (9)0.13374 (6)0.0109 (2)
C90.14039 (12)0.33297 (9)0.18110 (6)0.0096 (2)
C100.14068 (12)0.41254 (9)0.21033 (6)0.0121 (2)
H10A0.08870.45850.20130.015*
C110.21941 (12)0.42253 (9)0.25307 (6)0.0127 (2)
H11A0.22190.47570.27270.015*
C120.29478 (12)0.35219 (9)0.26639 (6)0.0122 (2)
H12A0.34810.35740.29500.015*
C130.28853 (12)0.27413 (9)0.23597 (6)0.0108 (2)
C140.36167 (12)0.19255 (9)0.24695 (6)0.0116 (2)
C150.65778 (12)0.58205 (9)0.07748 (6)0.0123 (3)
C160.71346 (12)0.44283 (10)0.06413 (6)0.0125 (2)
O1W0.54413 (15)0.26343 (9)0.16261 (7)0.0380 (4)
O2W0.64627 (12)0.10349 (10)0.18324 (6)0.0293 (3)
O3W0.08779 (10)0.22067 (8)0.00591 (5)0.0171 (2)
H1O80.467 (2)0.1503 (17)0.2979 (11)0.054 (8)*
H1N30.7969 (19)0.5288 (15)0.1077 (9)0.032 (6)*
H1N50.5722 (17)0.4258 (14)0.0218 (9)0.023 (5)*
H1N60.7083 (18)0.6739 (15)0.1215 (10)0.028 (6)*
H2N60.5929 (19)0.6983 (14)0.0952 (8)0.026 (5)*
H1N70.7412 (19)0.3244 (14)0.0499 (8)0.022 (5)*
H2N70.837 (2)0.3643 (15)0.0799 (9)0.033 (6)*
H1W10.491 (2)0.2500 (19)0.1436 (11)0.049 (8)*
H2W10.546 (2)0.3146 (17)0.1640 (10)0.031 (6)*
H1W20.611 (3)0.157 (2)0.1794 (14)0.076 (10)*
H2W20.618 (3)0.0882 (19)0.2141 (13)0.067 (9)*
H1W30.054 (2)0.2667 (17)0.0225 (10)0.044 (7)*
H2W30.082 (2)0.2265 (15)0.0251 (11)0.037 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01071 (8)0.00748 (8)0.01064 (8)0.00011 (6)0.00135 (6)0.00198 (6)
O10.0145 (5)0.0100 (4)0.0157 (5)0.0004 (4)0.0043 (4)0.0022 (4)
O20.0146 (5)0.0096 (4)0.0147 (5)0.0009 (4)0.0026 (4)0.0022 (4)
O30.0147 (5)0.0113 (4)0.0122 (5)0.0003 (4)0.0010 (4)0.0022 (4)
O40.0171 (5)0.0100 (4)0.0151 (5)0.0020 (4)0.0017 (4)0.0012 (4)
O50.0169 (5)0.0141 (5)0.0223 (6)0.0037 (4)0.0070 (4)0.0014 (4)
O60.0181 (5)0.0179 (5)0.0268 (6)0.0039 (4)0.0116 (5)0.0058 (5)
O70.0134 (5)0.0142 (5)0.0163 (5)0.0027 (4)0.0024 (4)0.0013 (4)
O80.0183 (5)0.0120 (5)0.0157 (5)0.0036 (4)0.0069 (4)0.0006 (4)
N10.0104 (5)0.0095 (5)0.0104 (5)0.0004 (4)0.0003 (4)0.0007 (4)
N20.0095 (5)0.0088 (5)0.0096 (5)0.0003 (4)0.0006 (4)0.0002 (4)
N30.0120 (5)0.0125 (5)0.0160 (6)0.0003 (4)0.0038 (5)0.0010 (5)
N40.0125 (5)0.0118 (5)0.0155 (6)0.0013 (4)0.0004 (4)0.0013 (4)
N50.0123 (5)0.0108 (5)0.0161 (6)0.0001 (4)0.0026 (4)0.0020 (4)
N60.0174 (6)0.0127 (6)0.0217 (7)0.0010 (5)0.0021 (5)0.0050 (5)
N70.0168 (7)0.0120 (6)0.0346 (8)0.0021 (5)0.0115 (6)0.0028 (5)
C10.0141 (6)0.0089 (6)0.0136 (6)0.0012 (5)0.0017 (5)0.0002 (5)
C20.0099 (6)0.0090 (6)0.0118 (6)0.0008 (5)0.0003 (4)0.0003 (4)
C30.0134 (6)0.0089 (6)0.0139 (6)0.0001 (5)0.0004 (5)0.0001 (5)
C40.0142 (6)0.0109 (6)0.0127 (6)0.0019 (5)0.0017 (5)0.0017 (5)
C50.0126 (6)0.0124 (6)0.0125 (6)0.0022 (5)0.0008 (5)0.0021 (5)
C60.0115 (6)0.0101 (6)0.0113 (6)0.0013 (5)0.0009 (5)0.0005 (5)
C70.0143 (6)0.0113 (6)0.0128 (6)0.0008 (5)0.0013 (5)0.0011 (5)
C80.0112 (6)0.0110 (6)0.0105 (6)0.0016 (5)0.0007 (5)0.0023 (5)
C90.0097 (5)0.0086 (6)0.0106 (6)0.0001 (4)0.0007 (4)0.0001 (4)
C100.0122 (6)0.0087 (6)0.0155 (7)0.0017 (5)0.0005 (5)0.0010 (5)
C110.0141 (6)0.0090 (6)0.0150 (6)0.0004 (5)0.0008 (5)0.0026 (5)
C120.0134 (6)0.0111 (6)0.0122 (6)0.0001 (5)0.0018 (5)0.0018 (5)
C130.0108 (6)0.0106 (6)0.0108 (6)0.0014 (5)0.0004 (5)0.0005 (4)
C140.0118 (6)0.0116 (6)0.0114 (6)0.0001 (5)0.0003 (5)0.0019 (5)
C150.0119 (6)0.0116 (6)0.0136 (6)0.0010 (5)0.0008 (5)0.0003 (5)
C160.0116 (6)0.0112 (6)0.0146 (7)0.0005 (5)0.0020 (5)0.0000 (5)
O1W0.0469 (9)0.0118 (6)0.0554 (10)0.0030 (6)0.0334 (8)0.0027 (6)
O2W0.0308 (7)0.0313 (7)0.0256 (7)0.0163 (6)0.0061 (6)0.0020 (6)
O3W0.0232 (6)0.0141 (5)0.0140 (6)0.0026 (4)0.0017 (4)0.0017 (4)
Geometric parameters (Å, º) top
Cu1—N11.9057 (12)N6—H2N60.93 (2)
Cu1—N21.9723 (12)N7—C161.318 (2)
Cu1—O22.0453 (10)N7—H1N70.81 (2)
Cu1—O12.0889 (10)N7—H2N70.82 (2)
Cu1—O32.2727 (10)C1—C21.509 (2)
Cu1—O42.3939 (10)C2—C31.3870 (19)
O1—C11.3034 (17)C3—C41.395 (2)
O2—C71.2877 (17)C3—H3A0.9300
O3—C81.2716 (17)C4—C51.395 (2)
O4—C141.2213 (17)C4—H4A0.9300
O5—C11.2237 (17)C5—C61.3907 (19)
O6—C71.2301 (17)C5—H5A0.9300
O7—C81.2425 (17)C6—C71.513 (2)
O8—C141.3102 (17)C8—C91.516 (2)
O8—H1O80.90 (3)C9—C101.3896 (19)
N1—C21.3365 (17)C10—C111.386 (2)
N1—C61.3375 (18)C10—H10A0.9300
N2—C91.3422 (17)C11—C121.3925 (19)
N2—C131.3459 (17)C11—H11A0.9300
N3—C161.3547 (19)C12—C131.3878 (19)
N3—C151.3813 (19)C12—H12A0.9300
N3—H1N30.76 (2)C13—C141.4978 (19)
N4—C151.3045 (18)O1W—H1W10.78 (3)
N4—N51.3994 (17)O1W—H2W10.77 (2)
N5—C161.3285 (18)O2W—H1W20.90 (3)
N5—H1N50.80 (2)O2W—H2W20.85 (3)
N6—C151.3602 (19)O3W—H1W30.89 (3)
N6—H1N60.83 (2)O3W—H2W30.77 (3)
N1—Cu1—N2174.99 (5)C2—C3—C4118.42 (13)
N1—Cu1—O280.73 (4)C2—C3—H3A120.8
N2—Cu1—O298.17 (4)C4—C3—H3A120.8
N1—Cu1—O179.34 (4)C3—C4—C5120.39 (13)
N2—Cu1—O1101.40 (4)C3—C4—H4A119.8
O2—Cu1—O1159.80 (4)C5—C4—H4A119.8
N1—Cu1—O3108.01 (4)C6—C5—C4118.01 (13)
N2—Cu1—O376.99 (4)C6—C5—H5A121.0
O2—Cu1—O3100.43 (4)C4—C5—H5A121.0
O1—Cu1—O388.85 (4)N1—C6—C5120.44 (13)
N1—Cu1—O499.40 (4)N1—C6—C7112.42 (12)
N2—Cu1—O475.63 (4)C5—C6—C7127.13 (13)
O2—Cu1—O486.18 (4)O6—C7—O2126.01 (14)
O1—Cu1—O493.85 (4)O6—C7—C6119.46 (13)
O3—Cu1—O4152.47 (4)O2—C7—C6114.53 (12)
C1—O1—Cu1114.05 (9)O7—C8—O3127.20 (13)
C7—O2—Cu1113.87 (9)O7—C8—C9117.30 (13)
C8—O3—Cu1111.94 (9)O3—C8—C9115.50 (12)
C14—O4—Cu1107.22 (9)N2—C9—C10121.43 (13)
C14—O8—H1O8111.8 (17)N2—C9—C8115.77 (12)
C2—N1—C6122.47 (12)C10—C9—C8122.80 (12)
C2—N1—Cu1119.51 (9)C11—C10—C9119.10 (13)
C6—N1—Cu1118.00 (9)C11—C10—H10A120.4
C9—N2—C13119.69 (12)C9—C10—H10A120.4
C9—N2—Cu1119.31 (9)C10—C11—C12119.38 (13)
C13—N2—Cu1120.92 (9)C10—C11—H11A120.3
C16—N3—C15106.92 (12)C12—C11—H11A120.3
C16—N3—H1N3128.6 (17)C13—C12—C11118.45 (13)
C15—N3—H1N3124.2 (17)C13—C12—H12A120.8
C15—N4—N5103.28 (11)C11—C12—H12A120.8
C16—N5—N4112.06 (12)N2—C13—C12121.93 (12)
C16—N5—H1N5127.6 (14)N2—C13—C14114.09 (12)
N4—N5—H1N5120.4 (14)C12—C13—C14123.97 (12)
C15—N6—H1N6111.6 (15)O4—C14—O8125.31 (13)
C15—N6—H2N6114.3 (13)O4—C14—C13121.79 (13)
H1N6—N6—H2N6117.0 (19)O8—C14—C13112.90 (12)
C16—N7—H1N7116.6 (15)N4—C15—N6125.87 (13)
C16—N7—H2N7119.6 (16)N4—C15—N3111.84 (13)
H1N7—N7—H2N7124 (2)N6—C15—N3122.19 (13)
O5—C1—O1125.68 (13)N7—C16—N5127.42 (14)
O5—C1—C2120.75 (13)N7—C16—N3126.69 (13)
O1—C1—C2113.57 (12)N5—C16—N3105.89 (13)
N1—C2—C3120.22 (12)H1W1—O1W—H2W1107 (3)
N1—C2—C1112.99 (12)H1W2—O2W—H2W2100 (3)
C3—C2—C1126.79 (12)H1W3—O3W—H2W3109 (2)
N1—Cu1—O1—C16.84 (10)N1—C2—C3—C41.9 (2)
N2—Cu1—O1—C1178.21 (10)C1—C2—C3—C4176.87 (13)
O2—Cu1—O1—C116.30 (18)C2—C3—C4—C50.1 (2)
O3—Cu1—O1—C1101.73 (10)C3—C4—C5—C61.6 (2)
O4—Cu1—O1—C1105.69 (10)C2—N1—C6—C50.6 (2)
N1—Cu1—O2—C75.71 (10)Cu1—N1—C6—C5179.32 (10)
N2—Cu1—O2—C7169.34 (10)C2—N1—C6—C7178.28 (12)
O1—Cu1—O2—C73.71 (18)Cu1—N1—C6—C70.41 (15)
O3—Cu1—O2—C7112.48 (10)C4—C5—C6—N11.3 (2)
O4—Cu1—O2—C794.47 (10)C4—C5—C6—C7179.91 (14)
N1—Cu1—O3—C8176.48 (9)Cu1—O2—C7—O6171.91 (13)
N2—Cu1—O3—C83.90 (9)Cu1—O2—C7—C67.35 (15)
O2—Cu1—O3—C899.97 (9)N1—C6—C7—O6173.99 (13)
O1—Cu1—O3—C898.08 (9)C5—C6—C7—O64.8 (2)
O4—Cu1—O3—C81.95 (14)N1—C6—C7—O25.33 (18)
N1—Cu1—O4—C14174.94 (10)C5—C6—C7—O2175.84 (14)
N2—Cu1—O4—C144.45 (9)Cu1—O3—C8—O7172.04 (12)
O2—Cu1—O4—C1495.00 (10)Cu1—O3—C8—C97.09 (14)
O1—Cu1—O4—C14105.24 (9)C13—N2—C9—C100.7 (2)
O3—Cu1—O4—C1410.33 (14)Cu1—N2—C9—C10176.17 (10)
N2—Cu1—N1—C2103.6 (6)C13—N2—C9—C8178.69 (12)
O2—Cu1—N1—C2178.65 (11)Cu1—N2—C9—C84.45 (16)
O1—Cu1—N1—C24.64 (10)O7—C8—C9—N2171.23 (12)
O3—Cu1—N1—C280.62 (11)O3—C8—C9—N27.99 (18)
O4—Cu1—N1—C296.82 (10)O7—C8—C9—C108.1 (2)
N2—Cu1—N1—C675.1 (6)O3—C8—C9—C10172.64 (13)
O2—Cu1—N1—C62.62 (10)N2—C9—C10—C110.7 (2)
O1—Cu1—N1—C6174.09 (11)C8—C9—C10—C11179.93 (13)
O3—Cu1—N1—C6100.66 (10)C9—C10—C11—C121.2 (2)
O4—Cu1—N1—C681.90 (10)C10—C11—C12—C130.3 (2)
N1—Cu1—N2—C9175.3 (5)C9—N2—C13—C121.7 (2)
O2—Cu1—N2—C998.28 (10)Cu1—N2—C13—C12175.13 (10)
O1—Cu1—N2—C986.74 (10)C9—N2—C13—C14177.65 (12)
O3—Cu1—N2—C90.61 (10)Cu1—N2—C13—C145.54 (16)
O4—Cu1—N2—C9177.83 (11)C11—C12—C13—N21.2 (2)
N1—Cu1—N2—C131.5 (6)C11—C12—C13—C14178.06 (13)
O2—Cu1—N2—C1378.54 (11)Cu1—O4—C14—O8177.73 (12)
O1—Cu1—N2—C1396.45 (11)Cu1—O4—C14—C133.18 (16)
O3—Cu1—N2—C13177.43 (11)N2—C13—C14—O40.74 (19)
O4—Cu1—N2—C135.36 (10)C12—C13—C14—O4179.95 (14)
C15—N4—N5—C160.02 (16)N2—C13—C14—O8178.46 (12)
Cu1—O1—C1—O5172.99 (12)C12—C13—C14—O80.9 (2)
Cu1—O1—C1—C27.53 (15)N5—N4—C15—N6176.70 (14)
C6—N1—C2—C32.3 (2)N5—N4—C15—N30.33 (16)
Cu1—N1—C2—C3179.01 (10)C16—N3—C15—N40.57 (17)
C6—N1—C2—C1176.63 (12)C16—N3—C15—N6177.08 (14)
Cu1—N1—C2—C12.03 (16)N4—N5—C16—N7179.65 (15)
O5—C1—C2—N1176.49 (13)N4—N5—C16—N30.36 (16)
O1—C1—C2—N14.00 (17)C15—N3—C16—N7179.84 (15)
O5—C1—C2—C34.6 (2)C15—N3—C16—N50.54 (16)
O1—C1—C2—C3174.87 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O1i0.90 (3)1.71 (2)2.5536 (15)157 (2)
N3—H1N3···O2Wii0.76 (2)2.26 (2)2.9081 (19)144 (2)
N5—H1N5···O3Wiii0.80 (2)2.23 (2)2.8310 (17)132.3 (18)
N5—H1N5···N4iv0.80 (2)2.40 (2)2.9925 (18)131.2 (19)
N6—H1N6···O2Wii0.83 (2)2.47 (2)3.209 (2)147.6 (19)
N6—H2N6···O3v0.93 (2)2.06 (2)2.9699 (17)168.7 (19)
N7—H1N7···O3Wiii0.81 (2)2.15 (2)2.8570 (19)145 (2)
N7—H2N7···O7vi0.82 (2)1.96 (2)2.7714 (18)170 (2)
O1W—H1W1···O20.79 (2)2.03 (3)2.7985 (19)168 (3)
O1W—H2W1···O5v0.77 (3)2.11 (3)2.8715 (17)171 (2)
O2W—H1W2···O1W0.90 (3)1.81 (3)2.703 (2)173 (3)
O2W—H2W2···O1i0.85 (3)2.58 (3)3.3968 (18)162 (3)
O3W—H1W3···O6vii0.89 (3)1.90 (3)2.7712 (17)169 (2)
O3W—H2W3···O30.77 (3)2.04 (3)2.8113 (16)177 (2)
C5—H5A···O6viii0.932.353.2042 (18)153
C12—H12A···O7i0.932.473.3960 (17)176
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x1/2, y+1/2, z; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C2H6N5)[Cu(C7H4NO4)(C7H3NO4)]·3H2O
Mr548.92
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)11.3091 (2), 14.9442 (3), 24.6045 (5)
V3)4158.29 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.54 × 0.20 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.583, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
55434, 9184, 6619
Rint0.040
(sin θ/λ)max1)0.811
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.05
No. of reflections9184
No. of parameters368
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.62

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), SHELXTL and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H1O8···O1i0.90 (3)1.71 (2)2.5536 (15)157 (2)
N3—H1N3···O2Wii0.76 (2)2.26 (2)2.9081 (19)144 (2)
N5—H1N5···O3Wiii0.80 (2)2.23 (2)2.8310 (17)132.3 (18)
N5—H1N5···N4iv0.80 (2)2.40 (2)2.9925 (18)131.2 (19)
N6—H1N6···O2Wii0.83 (2)2.47 (2)3.209 (2)147.6 (19)
N6—H2N6···O3v0.93 (2)2.06 (2)2.9699 (17)168.7 (19)
N7—H1N7···O3Wiii0.81 (2)2.15 (2)2.8570 (19)145 (2)
N7—H2N7···O7vi0.82 (2)1.96 (2)2.7714 (18)170 (2)
O1W—H1W1···O20.79 (2)2.03 (3)2.7985 (19)168 (3)
O1W—H2W1···O5v0.77 (3)2.11 (3)2.8715 (17)171 (2)
O2W—H1W2···O1W0.90 (3)1.81 (3)2.703 (2)173 (3)
O2W—H2W2···O1i0.85 (3)2.58 (3)3.3968 (18)162 (3)
O3W—H1W3···O6vii0.89 (3)1.90 (3)2.7712 (17)169 (2)
O3W—H2W3···O30.77 (3)2.04 (3)2.8113 (16)177 (2)
C5—H5A···O6viii0.932.353.2042 (18)153
C12—H12A···O7i0.932.473.3960 (17)176
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+3/2, y+1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1, y+1, z; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x1/2, y+1/2, z; (viii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AJ thanks The Academy of Sciences for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship and the H·E.J. Research Institute of Chemistry, Inter­national Center for Chemical and Biological Sciences, University of Karachi, for providing research facilities. SY thanks the School of Physics, Universiti Sains Malaysia, for providing X-ray diffraction research facilities. HKF thanks the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghajani, Z., Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran Chem. Soc. 6, 373–385.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuzelka, J., Farrll, J. R. & Lippard, S. J. (2003). Inorg. Chem. 42, 8652–8656.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perepectives, Weinheim: VCH.  Google Scholar
First citationMacDonald, J. C., Luo, T.-J. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 24, 1203–1209.  Web of Science CSD CrossRef Google Scholar
First citationRamos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). Acta Cryst. E64, m1173–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev. 104, 987–1012.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m509-m510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds