metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

meso-[5,10,15,20-Tetra­kis(4-cyano­phen­yl)porphyrinato]zinc

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: jianzhuang@ustb.edu.cn

(Received 2 March 2011; accepted 6 March 2011; online 12 March 2011)

In the title compound, [Zn(C48H24N8)], the coordination environment of the Zn2+ ion (site symmetry [\overline1]) is octa­hedral, with four indole N atoms forming the equatorial plane and the axial positions being occupied by N atoms from the cyanide groups of neighbouring molecules. In the crystal, adjacent mol­ecules are assembled into a two-dimensional supra­molecular framework parallel to ([\overline1]01) via the coodination bonding. Topology analysis reveals this compound to be a (4,4)-connected network.

Related literature

For background to the use of porphyrins and derivatives, see: Jiang & Ng (2009[Jiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79-88.]). For the use of their metal complexes as catalysts, see: Chen et al. (2004[Chen, Y., Fields, K. B. & Zhang, X. P. (2004). J. Am. Chem. Soc. 126, 14718-14719.]). For Zn—N bond lengths in other Zn(II) porphyrin species, see: Muniappan et al. (2006[Muniappan, S., Lipstman, S. & Goldberg, I. (2006). Acta Cryst. C62, m477-m479.]). For the synthesis of the ligand, see: Kumar et al. (1998[Kumar, R. K., Balasubramanian, S. & Goldberg, I. (1998). Inorg. Chem. 37, 541-552.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C48H24N8)]

  • Mr = 778.12

  • Monoclinic, P 21 /n

  • a = 9.7373 (10) Å

  • b = 9.4468 (10) Å

  • c = 21.280 (2) Å

  • β = 101.229 (2)°

  • V = 1920.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 295 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.726, Tmax = 0.967

  • 9272 measured reflections

  • 3376 independent reflections

  • 2610 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.05

  • 3376 reflections

  • 259 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Porphyrins and derivatives have been an important class of dyes and pigments with extensive applications in the paints, printing, and textile industries ever since last century (Jiang & Ng, 2009). Their metal complexes are well known catalysts for numerous chemical reactions (Chen et al., 2004). Therefore, it is worthy to prepare corresponding metal complex.

As shown in Fig.1, compound I is a mononuclear neutral complex with a two-dimensional supramolecular configuration. Each Zn(II) atom is octa-coordinated completed by four indole nitrogen atoms and two nitrogen atoms of cyanogen groups. The bond length is in line with the distances of Zn—N in other Zn(II) porphyrin species (Muniappan et al., 2006). The neighboring Zn(TCPP) molecules are connected via the coodination bonding, forming a two-dimensional supramolecular network. The Zn(II) ion is treated as a node, this compound is a (4,4)-connected network, Figure 2.

Related literature top

For background to the use of porphyrins and derivatives, see: Jiang & Ng (2009). For the use of their metal complexes as catalysts, see: Chen et al. (2004). For Zn—N bond lengths in other Zn(II) porphyrin species, see: Muniappan et al. (2006). For the synthesis of the ligand, see: Kumar et al. (1998).

Experimental top

The H2TCPP ligand was synthesized according to the previous literature(Kumar et al., 1998). The synthesis method of the compound I was obtained by allowing the mixure of Zn(OAc)2 (0.02 g, 0.1 mmol) and H2TCPP (0.072 g, 0.1 mmol), and 15 mL DMF was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 110°C. Purple block-shaped crystals suitable for X-ray diffraction analysis were separated by filtration with the yield of 35%.

Refinement top

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the unique atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level, hydrogen atoms are omited for clarity.
[Figure 2] Fig. 2. A view of two-dimensional supramolecular configuration of (I).
meso-[5,10,15,20-Tetrakis(4-cyanophenyl)porphyrinato]zinc top
Crystal data top
[Zn(C48H24N8)]F(000) = 796
Mr = 778.12Dx = 1.346 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2737 reflections
a = 9.7373 (10) Åθ = 2.4–25.3°
b = 9.4468 (10) ŵ = 0.69 mm1
c = 21.280 (2) ÅT = 295 K
β = 101.229 (2)°Needle, purple
V = 1920.0 (3) Å30.30 × 0.05 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3376 independent reflections
Radiation source: fine-focus sealed tube2610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 1011
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
k = 1111
Tmin = 0.726, Tmax = 0.967l = 2225
9272 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.3654P]
where P = (Fo2 + 2Fc2)/3
3376 reflections(Δ/σ)max = 0.001
259 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Zn(C48H24N8)]V = 1920.0 (3) Å3
Mr = 778.12Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.7373 (10) ŵ = 0.69 mm1
b = 9.4468 (10) ÅT = 295 K
c = 21.280 (2) Å0.30 × 0.05 × 0.05 mm
β = 101.229 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3376 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
2610 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.967Rint = 0.028
9272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3376 reflectionsΔρmin = 0.24 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.00001.00000.03997 (16)
N20.9529 (2)0.0662 (2)1.08533 (8)0.0377 (5)
C51.0664 (3)0.1265 (3)1.15417 (10)0.0382 (6)
C100.8349 (2)0.2917 (3)1.04962 (11)0.0379 (6)
N11.0918 (2)0.1781 (2)1.04326 (8)0.0370 (5)
C41.1139 (3)0.2084 (3)1.10731 (11)0.0388 (6)
C161.0114 (3)0.2648 (3)1.24674 (12)0.0565 (7)
H160.92500.28741.22160.068*
C131.2649 (3)0.1964 (3)1.32212 (13)0.0590 (8)
H131.35050.17221.34750.071*
C90.8856 (3)0.1885 (3)1.09594 (11)0.0399 (6)
C141.1741 (3)0.2811 (3)1.34609 (11)0.0487 (7)
C180.6411 (3)0.3997 (3)1.09533 (13)0.0508 (7)
H180.60220.30991.09580.061*
C111.1027 (3)0.1798 (3)1.22180 (10)0.0390 (6)
N31.2522 (4)0.3731 (3)1.46169 (12)0.0859 (9)
C200.6318 (3)0.6457 (3)1.11635 (13)0.0542 (7)
C80.8808 (3)0.1975 (3)1.16333 (12)0.0516 (7)
H80.84070.27011.18320.062*
C121.2296 (3)0.1464 (3)1.26005 (12)0.0535 (7)
H121.29240.08951.24390.064*
C230.7632 (3)0.4171 (3)1.07089 (11)0.0397 (6)
C210.7496 (3)0.6674 (3)1.09048 (12)0.0539 (7)
H210.78460.75841.08800.065*
C60.9912 (3)0.0002 (2)1.14336 (11)0.0386 (6)
C171.2141 (4)0.3342 (3)1.41096 (13)0.0638 (8)
C220.8154 (3)0.5528 (3)1.06823 (12)0.0474 (6)
H220.89550.56731.05140.057*
C240.5695 (4)0.7637 (4)1.14423 (19)0.0853 (11)
C190.5774 (3)0.5122 (3)1.11873 (15)0.0558 (7)
H190.49800.49811.13610.067*
C70.9447 (3)0.0823 (3)1.19189 (11)0.0503 (7)
H70.95680.05991.23520.060*
C151.0462 (3)0.3172 (3)1.30882 (13)0.0585 (8)
H150.98440.37561.32500.070*
C11.1545 (3)0.2842 (3)1.01528 (11)0.0390 (6)
C21.2155 (3)0.3853 (3)1.06340 (12)0.0498 (7)
H21.26280.46781.05670.060*
C31.1911 (3)0.3379 (3)1.11993 (12)0.0500 (7)
H31.21910.38101.15970.060*
N40.5198 (5)0.8532 (4)1.1673 (2)0.1405 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0588 (3)0.0366 (3)0.0254 (2)0.01046 (19)0.01037 (17)0.00220 (16)
N20.0477 (12)0.0378 (11)0.0285 (10)0.0083 (10)0.0098 (9)0.0020 (9)
C50.0476 (14)0.0389 (14)0.0275 (12)0.0001 (11)0.0061 (10)0.0028 (10)
C100.0418 (13)0.0395 (14)0.0324 (12)0.0046 (11)0.0075 (10)0.0015 (10)
N10.0479 (12)0.0367 (11)0.0263 (9)0.0073 (9)0.0070 (8)0.0001 (8)
C40.0497 (14)0.0358 (13)0.0297 (12)0.0037 (11)0.0048 (10)0.0021 (10)
C160.0678 (19)0.0610 (18)0.0364 (14)0.0128 (15)0.0002 (13)0.0056 (13)
C130.0562 (17)0.076 (2)0.0393 (15)0.0041 (16)0.0047 (13)0.0030 (14)
C90.0471 (14)0.0415 (14)0.0319 (12)0.0050 (11)0.0097 (10)0.0008 (10)
C140.0720 (19)0.0447 (15)0.0280 (12)0.0195 (14)0.0063 (13)0.0003 (11)
C180.0547 (16)0.0402 (15)0.0610 (17)0.0013 (13)0.0195 (13)0.0009 (13)
C110.0523 (15)0.0365 (13)0.0277 (12)0.0063 (11)0.0068 (11)0.0001 (10)
N30.129 (3)0.088 (2)0.0374 (14)0.0310 (19)0.0062 (15)0.0121 (14)
C200.0636 (18)0.0475 (17)0.0531 (17)0.0133 (14)0.0152 (14)0.0054 (13)
C80.0727 (18)0.0519 (17)0.0327 (13)0.0172 (14)0.0168 (13)0.0011 (12)
C120.0564 (17)0.0639 (19)0.0394 (14)0.0039 (14)0.0075 (13)0.0074 (13)
C230.0472 (14)0.0391 (15)0.0315 (12)0.0068 (11)0.0049 (10)0.0009 (11)
C210.075 (2)0.0362 (15)0.0485 (16)0.0011 (14)0.0061 (14)0.0061 (12)
C60.0490 (14)0.0399 (14)0.0270 (11)0.0027 (11)0.0076 (10)0.0011 (10)
C170.092 (2)0.0591 (19)0.0392 (16)0.0252 (17)0.0088 (15)0.0042 (14)
C220.0531 (16)0.0479 (15)0.0417 (14)0.0013 (13)0.0102 (12)0.0025 (12)
C240.105 (3)0.050 (2)0.111 (3)0.0098 (19)0.047 (2)0.013 (2)
C190.0550 (17)0.0512 (18)0.0669 (19)0.0081 (14)0.0254 (14)0.0049 (14)
C70.0736 (19)0.0507 (17)0.0288 (13)0.0152 (14)0.0149 (12)0.0045 (12)
C150.085 (2)0.0498 (17)0.0425 (15)0.0079 (16)0.0159 (15)0.0093 (13)
C10.0441 (14)0.0393 (14)0.0330 (12)0.0067 (11)0.0061 (11)0.0006 (10)
C20.0650 (18)0.0457 (15)0.0378 (14)0.0208 (13)0.0077 (12)0.0026 (12)
C30.0685 (18)0.0485 (16)0.0310 (13)0.0172 (14)0.0049 (12)0.0081 (11)
N40.181 (4)0.070 (2)0.197 (4)0.024 (3)0.101 (3)0.036 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.0391 (19)C18—C191.372 (4)
Zn1—N12.0391 (19)C18—C231.396 (4)
Zn1—N22.0546 (18)C18—H180.9300
Zn1—N2i2.0546 (18)C11—C121.377 (4)
Zn1—N3ii2.675 (2)N3—C171.132 (3)
Zn1—N3iii2.675 (2)C20—C191.372 (4)
N2—C91.369 (3)C20—C211.381 (4)
N2—C61.370 (3)C20—C241.450 (4)
C5—C61.396 (3)C8—C71.339 (4)
C5—C41.409 (3)C8—H80.9300
C5—C111.501 (3)C12—H120.9300
C10—C91.406 (3)C23—C221.384 (4)
C10—C1i1.406 (3)C21—C221.387 (4)
C10—C231.490 (3)C21—H210.9300
N1—C41.368 (3)C6—C71.435 (3)
N1—C11.368 (3)C22—H220.9300
C4—C31.434 (3)C24—N41.134 (4)
C16—C111.379 (4)C19—H190.9300
C16—C151.390 (4)C7—H70.9300
C16—H160.9300C15—H150.9300
C13—C141.363 (4)C1—C10i1.406 (3)
C13—C121.382 (4)C1—C21.441 (3)
C13—H130.9300C2—C31.348 (3)
C9—C81.446 (3)C2—H20.9300
C14—C151.383 (4)C3—H30.9300
C14—C171.449 (4)
N1i—Zn1—N1180.000 (1)C19—C20—C24119.7 (3)
N1i—Zn1—N289.67 (7)C21—C20—C24119.7 (3)
N1—Zn1—N290.33 (7)C7—C8—C9107.5 (2)
N1i—Zn1—N2i90.33 (7)C7—C8—H8126.3
N1—Zn1—N2i89.67 (7)C9—C8—H8126.3
N2—Zn1—N2i180.000 (1)C11—C12—C13121.0 (3)
C9—N2—C6106.99 (18)C11—C12—H12119.5
C9—N2—Zn1126.80 (15)C13—C12—H12119.5
C6—N2—Zn1126.09 (16)C22—C23—C18118.1 (2)
C6—C5—C4125.9 (2)C22—C23—C10121.7 (2)
C6—C5—C11117.6 (2)C18—C23—C10120.2 (2)
C4—C5—C11116.5 (2)C20—C21—C22119.6 (3)
C9—C10—C1i124.8 (2)C20—C21—H21120.2
C9—C10—C23117.4 (2)C22—C21—H21120.2
C1i—C10—C23117.8 (2)N2—C6—C5125.5 (2)
C4—N1—C1106.49 (18)N2—C6—C7109.4 (2)
C4—N1—Zn1126.31 (16)C5—C6—C7125.1 (2)
C1—N1—Zn1126.96 (15)N3—C17—C14176.4 (4)
N1—C4—C5125.5 (2)C23—C22—C21120.7 (3)
N1—C4—C3109.9 (2)C23—C22—H22119.6
C5—C4—C3124.6 (2)C21—C22—H22119.6
C11—C16—C15121.2 (3)N4—C24—C20177.9 (4)
C11—C16—H16119.4C20—C19—C18119.6 (3)
C15—C16—H16119.4C20—C19—H19120.2
C14—C13—C12120.0 (3)C18—C19—H19120.2
C14—C13—H13120.0C8—C7—C6107.4 (2)
C12—C13—H13120.0C8—C7—H7126.3
N2—C9—C10125.7 (2)C6—C7—H7126.3
N2—C9—C8108.8 (2)C14—C15—C16118.9 (3)
C10—C9—C8125.4 (2)C14—C15—H15120.6
C13—C14—C15120.5 (2)C16—C15—H15120.6
C13—C14—C17119.1 (3)N1—C1—C10i126.1 (2)
C15—C14—C17120.4 (3)N1—C1—C2109.5 (2)
C19—C18—C23121.4 (3)C10i—C1—C2124.4 (2)
C19—C18—H18119.3C3—C2—C1107.1 (2)
C23—C18—H18119.3C3—C2—H2126.5
C12—C11—C16118.5 (2)C1—C2—H2126.5
C12—C11—C5120.5 (2)C2—C3—C4107.1 (2)
C16—C11—C5121.0 (2)C2—C3—H3126.5
C19—C20—C21120.5 (3)C4—C3—H3126.5
Symmetry codes: (i) x+2, y, z+2; (ii) x+5/2, y+1/2, z+5/2; (iii) x1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C48H24N8)]
Mr778.12
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.7373 (10), 9.4468 (10), 21.280 (2)
β (°) 101.229 (2)
V3)1920.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.726, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
9272, 3376, 2610
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.05
No. of reflections3376
No. of parameters259
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y., Fields, K. B. & Zhang, X. P. (2004). J. Am. Chem. Soc. 126, 14718–14719.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79–88.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKumar, R. K., Balasubramanian, S. & Goldberg, I. (1998). Inorg. Chem. 37, 541–552.  PubMed CAS Google Scholar
First citationMuniappan, S., Lipstman, S. & Goldberg, I. (2006). Acta Cryst. C62, m477–m479.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds