organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-benzamido-5-phenyl-4H-1,2,4-triazole-3-carboxyl­ate monohydrate

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: piaolanger@qq.com

(Received 3 March 2011; accepted 17 March 2011; online 23 March 2011)

In the title compound, C18H16N4O3·H2O, the dihedral angles between the triazole ring and the phenyl rings are 84.8 (4) and and 39.8 (4)°. The phenyl rings make a dihedral angle of 84.5 (9)°. In the crystal, the molecules are linked by N—H⋯O and O—H⋯N hydrogen bonds. An intra­molecular O⋯N inter­action also occurs [2.827 (3) Å]

Related literature

For the synthesis, see: Tadha et al. (1973[Tadha, V. T. & Srinnivasna, V. R. (1973). Indian J. Chem. 11, 732-734.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O3·H2O

  • Mr = 354.36

  • Triclinic, [P \overline 1]

  • a = 7.932 (4) Å

  • b = 8.804 (4) Å

  • c = 13.316 (6) Å

  • α = 92.601 (7)°

  • β = 100.448 (7)°

  • γ = 91.378 (7)°

  • V = 913.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.33 × 0.28 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.979

  • 4594 measured reflections

  • 3197 independent reflections

  • 2012 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.210

  • S = 1.02

  • 3197 reflections

  • 245 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O4i 0.86 1.99 2.776 (4) 152
O4—H4A⋯N1ii 0.83 (3) 2.17 (3) 2.990 (4) 172 (4)
O4—H4B⋯N2iii 0.82 (3) 2.09 (3) 2.893 (4) 166 (5)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+2; (iii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

l,2,4 triazole has the widespread biological activity, and it may serve as anticarcinogen, the antiviral drug, the antibacteria reagent, the fungicide,anti-inflammation agent, the analgesic and the antidepressant and so on. Some Synthetic methods had been reported about l,2,4 triazole's, but the synthetic method of the title compound C18H18N4O4, (Fig. 1) is reported for the first time. In the title compound there are the intermolecular N4—H···O2 hydrogen bonds and the intramolecular hydrogen bonds between ethyl 5-phenyl-4-[(phenylcarbonyl)amino]-4H-1,2,4-triazole-3-carboxylate and water. The two phenyl rings are twisted away from the plane of the triazole ring by 84.84° and 39.84° respectively. the dihedral angle between two phenyl rings is 84.59°.

Related literature top

For the preparation, see: Tadha et al. (1973).

Experimental top

benzohydrazide (1 equiv.)was dissolved in 100 ml toluene, then methylsulfonic acid (1 equiv.)was dropped into the solution and stirred for 20 minutes. Ethyl 2-chloro-2-oxoacetate (1 equiv.)was added subsequently and heated to reflux for 6 h until the starting material was completely consumed as monitored by TLC. The resultant residue was directly purified by flash chromatography on silica (EtOAc: Cyclohexane 1:1) gave 37% yield as a white solid. recrystallization in ethyl acetate gave fine white crystals suitable for X-ray study.

Refinement top

All H atoms were placed in idealized positions and allowed to ride on the respective parent atom with C—H distances of 0.93 (aromatic), 0.96 (CH3), or 0.97 (CH2) Å and N—H distance of 0.86 Å and with Uiso(H) values of 1.2 times Ueq(C)[1.5 for methyl H atoms]. 2 restraints restraints were applied.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot
Ethyl 4-benzamido-5-phenyl-4H-1,2,4-triazole-3-carboxylate monohydrate top
Crystal data top
C18H16N4O3·H2OF(000) = 372
Mr = 354.36Dx = 1.289 Mg m3
Triclinic, P1Melting point: 498.450 K
a = 7.932 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.804 (4) ÅCell parameters from 1073 reflections
c = 13.316 (6) Åθ = 2.6–23.8°
α = 92.601 (7)°µ = 0.09 mm1
β = 100.448 (7)°T = 296 K
γ = 91.378 (7)°Block, colorless
V = 913.1 (8) Å30.33 × 0.28 × 0.17 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3197 independent reflections
Radiation source: fine-focus sealed tube2012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Bruker, 2001)
h = 99
Tmin = 0.960, Tmax = 0.979k = 810
4594 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1284P)2]
where P = (Fo2 + 2Fc2)/3
3197 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H16N4O3·H2Oγ = 91.378 (7)°
Mr = 354.36V = 913.1 (8) Å3
Triclinic, P1Z = 2
a = 7.932 (4) ÅMo Kα radiation
b = 8.804 (4) ŵ = 0.09 mm1
c = 13.316 (6) ÅT = 296 K
α = 92.601 (7)°0.33 × 0.28 × 0.17 mm
β = 100.448 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
3197 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2001)
2012 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.979Rint = 0.022
4594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0622 restraints
wR(F2) = 0.210H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
3197 reflectionsΔρmin = 0.28 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7002 (3)0.9462 (3)0.91869 (17)0.0571 (6)
N20.7312 (3)1.0778 (3)0.87158 (17)0.0560 (6)
N30.4588 (3)1.0142 (2)0.82616 (16)0.0465 (6)
N40.2941 (3)1.0037 (2)0.76763 (16)0.0477 (6)
H40.21131.05490.78410.057*
O10.5395 (3)0.7012 (3)0.99388 (19)0.0898 (8)
O20.2954 (3)0.7483 (2)0.88903 (15)0.0644 (6)
O30.3957 (3)0.8533 (2)0.65294 (16)0.0707 (6)
O40.0919 (3)0.1549 (3)0.88695 (18)0.0727 (7)
C10.0303 (6)0.6067 (6)0.8672 (4)0.1146 (16)
H1A0.03350.69300.88310.172*
H1B0.02480.51540.88400.172*
H1C0.03480.60210.79560.172*
C20.2071 (5)0.6214 (4)0.9275 (3)0.0797 (11)
H2A0.20370.64090.99930.096*
H2B0.26720.52810.92000.096*
C30.4579 (4)0.7737 (3)0.9298 (2)0.0582 (8)
C40.5362 (4)0.9084 (3)0.88951 (19)0.0507 (7)
C50.5855 (3)1.1164 (3)0.81539 (19)0.0466 (6)
C60.5647 (4)1.2538 (3)0.75589 (19)0.0489 (7)
C70.6932 (4)1.2967 (3)0.7040 (2)0.0656 (9)
H70.78841.23690.70490.079*
C80.6797 (5)1.4283 (4)0.6510 (3)0.0772 (10)
H80.76631.45740.61650.093*
C90.5387 (5)1.5165 (4)0.6491 (3)0.0742 (10)
H90.52911.60460.61280.089*
C100.4114 (5)1.4739 (3)0.7014 (2)0.0667 (9)
H100.31661.53430.70080.080*
C110.4232 (4)1.3429 (3)0.7545 (2)0.0572 (8)
H110.33661.31440.78910.069*
C120.2718 (3)0.9074 (3)0.6824 (2)0.0474 (7)
C130.0926 (3)0.8745 (3)0.6287 (2)0.0488 (7)
C140.0503 (4)0.9134 (4)0.6671 (2)0.0704 (9)
H140.03790.96330.73120.084*
C150.2125 (4)0.8794 (4)0.6118 (3)0.0781 (10)
H150.30810.90720.63890.094*
C160.2340 (4)0.8056 (4)0.5184 (3)0.0724 (10)
H160.34350.78410.48100.087*
C170.0927 (5)0.7635 (5)0.4803 (3)0.0898 (12)
H170.10590.71090.41710.108*
C180.0701 (4)0.7985 (4)0.5351 (2)0.0730 (9)
H180.16540.77000.50800.088*
H4A0.146 (5)0.135 (5)0.9435 (17)0.107 (15)*
H4B0.006 (3)0.129 (5)0.893 (4)0.130 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0410 (14)0.0673 (15)0.0602 (14)0.0028 (11)0.0004 (10)0.0077 (12)
N20.0393 (14)0.0667 (15)0.0608 (14)0.0013 (11)0.0050 (11)0.0079 (11)
N30.0313 (12)0.0526 (12)0.0549 (13)0.0014 (9)0.0061 (9)0.0028 (10)
N40.0284 (12)0.0539 (13)0.0593 (13)0.0032 (9)0.0049 (9)0.0013 (10)
O10.0885 (19)0.0843 (17)0.0899 (17)0.0041 (14)0.0077 (14)0.0342 (14)
O20.0569 (14)0.0648 (13)0.0733 (13)0.0091 (10)0.0158 (10)0.0125 (10)
O30.0417 (13)0.0867 (15)0.0830 (15)0.0066 (11)0.0149 (11)0.0199 (11)
O40.0421 (14)0.1099 (18)0.0658 (15)0.0039 (13)0.0110 (11)0.0049 (13)
C10.083 (3)0.130 (4)0.129 (4)0.045 (3)0.016 (3)0.027 (3)
C20.096 (3)0.068 (2)0.079 (2)0.0244 (19)0.030 (2)0.0070 (17)
C30.061 (2)0.0596 (17)0.0538 (17)0.0004 (15)0.0104 (14)0.0041 (14)
C40.0458 (17)0.0568 (16)0.0495 (15)0.0026 (13)0.0084 (12)0.0020 (12)
C50.0350 (15)0.0524 (15)0.0525 (15)0.0005 (11)0.0095 (11)0.0006 (12)
C60.0420 (16)0.0520 (15)0.0518 (15)0.0037 (12)0.0081 (12)0.0020 (12)
C70.053 (2)0.0646 (19)0.084 (2)0.0015 (15)0.0245 (16)0.0067 (16)
C80.074 (3)0.075 (2)0.089 (2)0.0044 (19)0.0328 (19)0.0131 (18)
C90.092 (3)0.0573 (18)0.077 (2)0.0009 (18)0.0242 (19)0.0125 (16)
C100.070 (2)0.0586 (18)0.073 (2)0.0077 (15)0.0145 (16)0.0022 (15)
C110.0530 (19)0.0556 (16)0.0637 (17)0.0015 (14)0.0132 (14)0.0014 (13)
C120.0354 (15)0.0519 (15)0.0552 (16)0.0020 (12)0.0085 (12)0.0046 (12)
C130.0373 (16)0.0535 (15)0.0553 (16)0.0016 (12)0.0080 (12)0.0038 (12)
C140.0415 (19)0.093 (2)0.073 (2)0.0067 (16)0.0102 (15)0.0221 (17)
C150.0336 (18)0.104 (3)0.096 (3)0.0083 (16)0.0145 (16)0.012 (2)
C160.045 (2)0.091 (2)0.076 (2)0.0186 (17)0.0027 (16)0.0062 (18)
C170.064 (3)0.129 (3)0.066 (2)0.018 (2)0.0036 (18)0.026 (2)
C180.053 (2)0.101 (2)0.0630 (19)0.0017 (17)0.0133 (15)0.0201 (17)
Geometric parameters (Å, º) top
N1—C41.319 (4)C6—C71.385 (4)
N1—N21.380 (3)C7—C81.380 (4)
N2—C51.319 (3)C7—H70.9300
N3—C51.364 (3)C8—C91.374 (5)
N3—C41.366 (3)C8—H80.9300
N3—N41.393 (3)C9—C101.381 (5)
N4—C121.368 (3)C9—H90.9300
N4—H40.8600C10—C111.376 (4)
O1—C31.193 (3)C10—H100.9300
O2—C31.314 (4)C11—H110.9300
O2—C21.464 (3)C12—C131.486 (4)
O3—C121.222 (3)C13—C181.368 (4)
O4—H4A0.83 (3)C13—C141.371 (4)
O4—H4B0.82 (3)C14—C151.380 (4)
C1—C21.484 (5)C14—H140.9300
C1—H1A0.9600C15—C161.357 (5)
C1—H1B0.9600C15—H150.9300
C1—H1C0.9600C16—C171.364 (5)
C2—H2A0.9700C16—H160.9300
C2—H2B0.9700C17—C181.384 (5)
C3—C41.491 (4)C17—H170.9300
C5—C61.472 (4)C18—H180.9300
C6—C111.383 (4)
C4—N1—N2107.4 (2)C8—C7—H7120.0
C5—N2—N1107.9 (2)C6—C7—H7120.0
C5—N3—C4105.9 (2)C9—C8—C7120.1 (3)
C5—N3—N4125.9 (2)C9—C8—H8119.9
C4—N3—N4126.9 (2)C7—C8—H8119.9
C12—N4—N3116.1 (2)C8—C9—C10119.7 (3)
C12—N4—H4121.9C8—C9—H9120.1
N3—N4—H4121.9C10—C9—H9120.1
C3—O2—C2116.7 (2)C11—C10—C9120.7 (3)
H4A—O4—H4B100 (4)C11—C10—H10119.7
C2—C1—H1A109.5C9—C10—H10119.7
C2—C1—H1B109.5C10—C11—C6119.6 (3)
H1A—C1—H1B109.5C10—C11—H11120.2
C2—C1—H1C109.5C6—C11—H11120.2
H1A—C1—H1C109.5O3—C12—N4120.3 (2)
H1B—C1—H1C109.5O3—C12—C13122.7 (3)
O2—C2—C1107.9 (3)N4—C12—C13117.0 (2)
O2—C2—H2A110.1C18—C13—C14118.2 (3)
C1—C2—H2A110.1C18—C13—C12117.3 (3)
O2—C2—H2B110.1C14—C13—C12124.5 (3)
C1—C2—H2B110.1C13—C14—C15120.8 (3)
H2A—C2—H2B108.4C13—C14—H14119.6
O1—C3—O2125.7 (3)C15—C14—H14119.6
O1—C3—C4121.0 (3)C16—C15—C14120.7 (3)
O2—C3—C4113.3 (2)C16—C15—H15119.6
N1—C4—N3109.5 (2)C14—C15—H15119.6
N1—C4—C3121.3 (3)C15—C16—C17119.0 (3)
N3—C4—C3129.1 (3)C15—C16—H16120.5
N2—C5—N3109.2 (2)C17—C16—H16120.5
N2—C5—C6124.3 (2)C16—C17—C18120.4 (3)
N3—C5—C6126.4 (2)C16—C17—H17119.8
C11—C6—C7119.9 (3)C18—C17—H17119.8
C11—C6—C5121.1 (2)C13—C18—C17120.8 (3)
C7—C6—C5118.9 (3)C13—C18—H18119.6
C8—C7—C6120.0 (3)C17—C18—H18119.6
C4—N1—N2—C50.1 (3)N2—C5—C6—C740.1 (4)
C5—N3—N4—C1291.3 (3)N3—C5—C6—C7143.7 (3)
C4—N3—N4—C1274.2 (3)C11—C6—C7—C80.0 (4)
C3—O2—C2—C1176.4 (3)C5—C6—C7—C8177.5 (3)
C2—O2—C3—O11.1 (5)C6—C7—C8—C90.3 (5)
C2—O2—C3—C4177.6 (2)C7—C8—C9—C100.7 (5)
N2—N1—C4—N31.3 (3)C8—C9—C10—C110.8 (5)
N2—N1—C4—C3177.7 (2)C9—C10—C11—C60.4 (5)
C5—N3—C4—N11.9 (3)C7—C6—C11—C100.1 (4)
N4—N3—C4—N1169.7 (2)C5—C6—C11—C10177.3 (2)
C5—N3—C4—C3177.9 (3)N3—N4—C12—O310.5 (4)
N4—N3—C4—C314.2 (4)N3—N4—C12—C13170.1 (2)
O1—C3—C4—N14.2 (5)O3—C12—C13—C189.5 (4)
O2—C3—C4—N1176.9 (3)N4—C12—C13—C18169.9 (2)
O1—C3—C4—N3171.4 (3)O3—C12—C13—C14169.6 (3)
O2—C3—C4—N37.5 (4)N4—C12—C13—C1411.0 (4)
N1—N2—C5—N31.1 (3)C18—C13—C14—C151.3 (5)
N1—N2—C5—C6177.9 (2)C12—C13—C14—C15179.6 (3)
C4—N3—C5—N21.8 (3)C13—C14—C15—C160.5 (6)
N4—N3—C5—N2169.8 (2)C14—C15—C16—C170.9 (6)
C4—N3—C5—C6178.5 (2)C15—C16—C17—C181.5 (6)
N4—N3—C5—C613.5 (4)C14—C13—C18—C170.7 (5)
N2—C5—C6—C11137.4 (3)C12—C13—C18—C17179.9 (3)
N3—C5—C6—C1138.9 (4)C16—C17—C18—C130.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O4i0.861.992.776 (4)152
O4—H4A···N1ii0.83 (3)2.17 (3)2.990 (4)172 (4)
O4—H4B···N2iii0.82 (3)2.09 (3)2.893 (4)166 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC18H16N4O3·H2O
Mr354.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.932 (4), 8.804 (4), 13.316 (6)
α, β, γ (°)92.601 (7), 100.448 (7), 91.378 (7)
V3)913.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.33 × 0.28 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2001)
Tmin, Tmax0.960, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4594, 3197, 2012
Rint0.022
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.210, 1.02
No. of reflections3197
No. of parameters245
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O4i0.861.992.776 (4)152
O4—H4A···N1ii0.83 (3)2.17 (3)2.990 (4)172 (4)
O4—H4B···N2iii0.82 (3)2.09 (3)2.893 (4)166 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+2; (iii) x1, y1, z.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (20572131).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTadha, V. T. & Srinnivasna, V. R. (1973). Indian J. Chem. 11, 732–734.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds