organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2-Nitro­prop-1-en­yl)thio­phene

aHangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou 310000, People's Republic of China, bZhejiang University of Technology, Hangzhou 310000, People's Republic of China, and cHangzhou Radio & TV University, Hangzhou 310000, People's Republic of China
*Correspondence e-mail: lzb@hz.cn

(Received 15 March 2011; accepted 22 March 2011; online 26 March 2011)

The title compound, C7H7NO2S, adopts an E conformation about the C=C bond. The torsion angle C=C—C—C is −177.7 (3)°. The crystal structure features weak inter­molecular by C—H⋯O inter­actions.

Related literature

For the use of nitro­alkenes as organic inter­mediates, see: Ballini & Petrini (2004[Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017-1047.]); Berner et al. (2002[Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877-1894.]); Ono (2001[Ono, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7NO2S

  • Mr = 169.20

  • Monoclinic, P 21 /n

  • a = 6.7545 (6) Å

  • b = 16.6940 (13) Å

  • c = 7.4527 (4) Å

  • β = 110.640 (7)°

  • V = 786.42 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.31 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.879, Tmax = 0.942

  • 5936 measured reflections

  • 1362 independent reflections

  • 971 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.170

  • S = 1.00

  • 1362 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.60 3.511 (5) 168
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007[Rigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the crystal structure of the title compound. The C2C3 bond involves the E configuration with the C2—C3—C4—C5 torsion angle of 177.71 (3)° (Fig. 1). The atoms of the thiophene ring are coplanar. The conformation of (I) is stabilized by weak intermolecular by C6—H6···O2' interaction (Fig. 2 and Table 1).

Related literature top

For the use of nitroalkenes as organic intermediates, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).

Experimental top

To a solution of thiophene-2-carbaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of an cyclohexane-EtOAc solution (10:1, v/v).

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku Americas and Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The view of intermolecular interaction illustrated as dash lines.
(E)-2-(2-Nitroprop-1-enyl)thiophene top
Crystal data top
C7H7NO2SF(000) = 352
Mr = 169.20Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3534 reflections
a = 6.7545 (6) Åθ = 3.2–27.4°
b = 16.6940 (13) ŵ = 0.36 mm1
c = 7.4527 (4) ÅT = 296 K
β = 110.640 (7)°Prism, yellow
V = 786.42 (10) Å30.31 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1362 independent reflections
Radiation source: rolling anode971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scansh = 78
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.879, Tmax = 0.942l = 88
5936 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0837P)2 + 0.8184P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1362 reflectionsΔρmax = 0.39 e Å3
102 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (6)
Crystal data top
C7H7NO2SV = 786.42 (10) Å3
Mr = 169.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7545 (6) ŵ = 0.36 mm1
b = 16.6940 (13) ÅT = 296 K
c = 7.4527 (4) Å0.31 × 0.18 × 0.17 mm
β = 110.640 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1362 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
971 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.942Rint = 0.035
5936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
1362 reflectionsΔρmin = 0.33 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21787 (15)0.56891 (6)0.61453 (16)0.0684 (5)
C40.4914 (5)0.5654 (2)0.7041 (5)0.0496 (8)
C30.6192 (5)0.4976 (2)0.7933 (4)0.0500 (8)
H30.76440.50670.83730.060*
N10.7349 (5)0.36806 (18)0.9203 (4)0.0584 (8)
O20.9190 (4)0.39008 (17)0.9632 (5)0.0775 (9)
C20.5624 (5)0.4238 (2)0.8227 (5)0.0493 (8)
O10.6885 (5)0.30107 (17)0.9578 (5)0.0832 (9)
C50.5793 (6)0.64019 (19)0.6781 (5)0.0512 (8)
H50.72300.65150.71500.061*
C10.3450 (6)0.3888 (2)0.7708 (6)0.0652 (10)
H1A0.29750.39410.87750.098*
H1B0.34870.33320.73980.098*
H1C0.24960.41680.66210.098*
C70.2176 (6)0.6653 (2)0.5463 (6)0.0698 (11)
H70.09480.69470.48690.084*
C60.4120 (6)0.6951 (2)0.5863 (6)0.0675 (11)
H60.43650.74750.55680.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0499 (6)0.0587 (7)0.0895 (8)0.0017 (4)0.0158 (5)0.0006 (5)
C40.0447 (19)0.051 (2)0.0507 (19)0.0015 (14)0.0131 (15)0.0040 (14)
C30.0419 (17)0.052 (2)0.052 (2)0.0039 (14)0.0124 (15)0.0078 (15)
N10.0557 (19)0.0507 (19)0.0660 (19)0.0060 (14)0.0180 (15)0.0000 (14)
O20.0474 (15)0.0661 (18)0.107 (2)0.0055 (12)0.0125 (15)0.0016 (16)
C20.0468 (18)0.0464 (19)0.0532 (19)0.0018 (14)0.0157 (15)0.0040 (14)
O10.079 (2)0.0533 (17)0.118 (3)0.0078 (14)0.0349 (18)0.0175 (16)
C50.056 (2)0.0418 (18)0.0499 (19)0.0022 (14)0.0116 (15)0.0006 (14)
C10.054 (2)0.056 (2)0.082 (3)0.0085 (17)0.0198 (19)0.0007 (19)
C70.058 (2)0.058 (2)0.083 (3)0.0100 (18)0.012 (2)0.002 (2)
C60.074 (3)0.047 (2)0.076 (3)0.0032 (18)0.019 (2)0.0038 (18)
Geometric parameters (Å, º) top
S1—C71.688 (4)C2—C11.499 (5)
S1—C41.730 (3)C5—C61.429 (5)
C4—C51.425 (5)C5—H50.9300
C4—C31.436 (5)C1—H1A0.9600
C3—C21.331 (5)C1—H1B0.9600
C3—H30.9300C1—H1C0.9600
N1—O11.220 (4)C7—C61.336 (5)
N1—O21.226 (4)C7—H70.9300
N1—C21.469 (4)C6—H60.9300
C7—S1—C492.09 (18)C4—C5—H5125.4
C5—C4—C3122.8 (3)C6—C5—H5125.4
C5—C4—S1110.9 (2)C2—C1—H1A109.5
C3—C4—S1126.3 (3)C2—C1—H1B109.5
C2—C3—C4130.0 (3)H1A—C1—H1B109.5
C2—C3—H3115.0C2—C1—H1C109.5
C4—C3—H3115.0H1A—C1—H1C109.5
O1—N1—O2122.3 (3)H1B—C1—H1C109.5
O1—N1—C2118.1 (3)C6—C7—S1113.0 (3)
O2—N1—C2119.6 (3)C6—C7—H7123.5
C3—C2—N1116.3 (3)S1—C7—H7123.5
C3—C2—C1129.2 (3)C7—C6—C5114.7 (4)
N1—C2—C1114.5 (3)C7—C6—H6122.7
C4—C5—C6109.3 (3)C5—C6—H6122.7
C7—S1—C4—C50.3 (3)O1—N1—C2—C13.2 (5)
C7—S1—C4—C3179.8 (3)O2—N1—C2—C1177.6 (3)
C5—C4—C3—C2177.7 (3)C3—C4—C5—C6179.8 (3)
S1—C4—C3—C22.1 (6)S1—C4—C5—C60.3 (4)
C4—C3—C2—N1179.7 (3)C4—S1—C7—C60.2 (4)
C4—C3—C2—C10.0 (6)S1—C7—C6—C50.1 (5)
O1—N1—C2—C3176.6 (3)C4—C5—C6—C70.2 (5)
O2—N1—C2—C32.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.603.511 (5)168
Symmetry code: (i) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H7NO2S
Mr169.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.7545 (6), 16.6940 (13), 7.4527 (4)
β (°) 110.640 (7)
V3)786.42 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.31 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.879, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
5936, 1362, 971
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.170, 1.00
No. of reflections1362
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.33

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku Americas and Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.9302.5973.511 (5)168
Symmetry code: (i) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors are grateful to Mr Jianming Gu for the X-ray single crystal analysis.

References

First citationBallini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.  Web of Science CrossRef CAS Google Scholar
First citationBerner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOno, N. (2001). The Nitro Group in Organic Synthesis. New York: Wiley-VCH.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds