metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,1′-methyl­enebis(1H-imidazole)-κ2N3:N3′]bis­­[di­chloridocobalt(II)]

aBiochemical Section of the Key Laboratory of Functional Polymer Materials, The Ministry of Education of China, Chemical School of Nankai University, 300071 Tianjin, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: changlianze@gmail.com

(Received 21 March 2011; accepted 22 March 2011; online 26 March 2011)

The title compound, [Co2Cl4(C7H8N4)2], contains a dinuclear complex molecule in which each CoII atom is tetra­hedrally coordinated by two N atoms and two chloride ions. The 1,1′-methyl­enebis(1H-imidazole) ligands adopt a bis-monodentate bridging mode linking two CoII atoms.

Related literature

For background to the design and synthesis of new organic–inorganic hybrid materials, see: Wang et al. (2007a[Wang, D. Z., Liu, C. S., Li, J. R., Li, L., Zeng, Y. F. & Bu, X. H. (2007a). CrystEngComm, 9, 289-297.],b[Wang, D.-Z., Tong, X.-L. & Li, J.-R. (2007b). Acta Cryst. E63, m1294-m1296.]). For a related structure, see: Wang et al. (2007b[Wang, D.-Z., Tong, X.-L. & Li, J.-R. (2007b). Acta Cryst. E63, m1294-m1296.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2Cl4(C7H8N4)2]

  • Mr = 556.01

  • Monoclinic, P 21 /c

  • a = 8.7137 (17) Å

  • b = 8.7948 (18) Å

  • c = 14.560 (3) Å

  • β = 98.75 (3)°

  • V = 1102.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.3 mm

Data collection
  • Rigaku SCX-mini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.789, Tmax = 1.0

  • 11057 measured reflections

  • 2501 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.075

  • S = 1.13

  • 2501 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Currently, increasing attention has been attracted to the design and synthesis of new organic-inorganic hybrid materials (Wang et al., 2007a). One of interesting strategies is using organic ligand to linking the metal salt. In our work the bridged ligand 1,1'-methylenedi-1H-imidazole (L) was selected to assemble novel organic-inorganic hybrid materials. Unexpectedly,the title compound, (I), was obtained with a dinuclear structure (Wang et al., 2007b). As shown in Fig. 1, the crystal structure of (I) the two CoCl2 uints linked by two L ligands. In the complex the CoII ion coordinated by two nitrogen atoms and and two Cl- giving a tetrahedral geometry. The bond distances are normal range with of Co—N 2.020 (2) Å-2.029 (2)Å and Co—Cl 2.2478 (9) Å-2.2676 (9) Å. The L ligands all adopt a bis-monodentate bridging mode linking two CoII atoms. atoms. The Cl- anions coordinated to the CoII atom in monodentate mode. By that way a diunclear complex was formed. The diunclear complex packing one by one in the soild state(Fig. 2).

Related literature top

For background to the design and synthesis of new organic–inorganic hybrid materials, see: Wang et al. (2007a,b). For a related structure, see: Wang et al. (2007b). Please note that the Related literature section should be subdivided – "For related literature, see:" followed by all the references is not acceptable.

Experimental top

In a typical synthesis, a mixture of Co(Cl)2.6H2O (0.05 mmol), 1,1'-methylenedi-1H-imidazole(0.05 mmol) and H2O (10 ml), was added to a 20 ml Teflon-lined reactor under autogenous pressure at 120 °C for 3 days. The resulting solution was slowly cooled to room temperature to yield single-crystal of the title compound.

Refinement top

All H atoms were positioned geometrically (C—H = 0.97Å and N—H = 0.90 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title compound.Ellipsoids are drawn at the 30% probability level.H atoms have been omitted for clarity. [Symmetry codes: (a) -x + 1, -y, -z + 1].
[Figure 2] Fig. 2. Packing diagram of the title compound.
Bis[µ-1,1'-methylenebis(1H-imidazole)- κ2N3:N3']bis[dichloridocobalt(II)] top
Crystal data top
[Co2Cl4(C7H8N4)2]F(000) = 556
Mr = 556.01Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9628 reflections
a = 8.7137 (17) Åθ = 3.3–27.4°
b = 8.7948 (18) ŵ = 2.01 mm1
c = 14.560 (3) ÅT = 293 K
β = 98.75 (3)°Block, red
V = 1102.8 (4) Å30.3 × 0.3 × 0.3 mm
Z = 2
Data collection top
Rigaku SCX-mini
diffractometer
2501 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.789, Tmax = 1.0k = 1111
11057 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.024P)2 + 0.5905P]
where P = (Fo2 + 2Fc2)/3
2501 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co2Cl4(C7H8N4)2]V = 1102.8 (4) Å3
Mr = 556.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.7137 (17) ŵ = 2.01 mm1
b = 8.7948 (18) ÅT = 293 K
c = 14.560 (3) Å0.3 × 0.3 × 0.3 mm
β = 98.75 (3)°
Data collection top
Rigaku SCX-mini
diffractometer
2501 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2004 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 1.0Rint = 0.040
11057 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.13Δρmax = 0.30 e Å3
2501 reflectionsΔρmin = 0.33 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.71310 (4)0.17519 (4)0.29288 (2)0.03334 (12)
Cl10.67525 (10)0.16673 (10)0.13677 (5)0.0560 (2)
Cl20.86129 (8)0.37006 (8)0.35849 (5)0.04539 (19)
N10.7895 (3)0.0223 (3)0.35434 (15)0.0392 (5)
N20.2068 (2)0.2229 (2)0.55419 (15)0.0376 (5)
N30.3271 (2)0.2738 (2)0.41927 (15)0.0345 (5)
N40.5028 (2)0.2027 (2)0.33439 (14)0.0349 (5)
C10.4789 (3)0.2715 (3)0.41130 (18)0.0355 (6)
H10.55700.31320.45460.043*
C20.3577 (3)0.1591 (4)0.2905 (2)0.0465 (7)
H20.33780.10690.23440.056*
C30.2496 (3)0.2042 (4)0.3417 (2)0.0502 (8)
H30.14290.19060.32720.060*
C40.2601 (3)0.3409 (3)0.4956 (2)0.0432 (7)
H4A0.17340.40540.47080.052*
H4B0.33730.40370.53280.052*
C50.7094 (3)0.1052 (3)0.4060 (2)0.0441 (7)
H50.60750.08470.41390.053*
C60.9327 (3)0.0932 (3)0.3608 (2)0.0459 (7)
H61.01420.06100.33120.055*
C70.0639 (3)0.2160 (3)0.5834 (2)0.0454 (7)
H70.01860.28290.56780.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0356 (2)0.0363 (2)0.02950 (19)0.00285 (16)0.00930 (14)0.00304 (16)
Cl10.0651 (5)0.0732 (6)0.0305 (4)0.0026 (4)0.0097 (3)0.0049 (4)
Cl20.0397 (4)0.0467 (4)0.0481 (4)0.0015 (3)0.0016 (3)0.0035 (3)
N10.0421 (13)0.0367 (13)0.0423 (13)0.0051 (11)0.0175 (10)0.0076 (11)
N20.0400 (13)0.0338 (12)0.0429 (14)0.0061 (10)0.0193 (11)0.0092 (10)
N30.0344 (12)0.0344 (12)0.0364 (12)0.0011 (10)0.0114 (10)0.0051 (10)
N40.0326 (12)0.0410 (13)0.0316 (12)0.0009 (10)0.0065 (9)0.0017 (10)
C10.0325 (14)0.0416 (15)0.0328 (14)0.0034 (12)0.0061 (11)0.0009 (12)
C20.0420 (16)0.060 (2)0.0367 (16)0.0092 (15)0.0035 (13)0.0091 (14)
C30.0313 (15)0.068 (2)0.0510 (19)0.0085 (15)0.0052 (14)0.0006 (16)
C40.0526 (17)0.0362 (16)0.0461 (17)0.0055 (13)0.0243 (14)0.0076 (13)
C50.0396 (15)0.0417 (16)0.0553 (18)0.0098 (13)0.0206 (14)0.0113 (14)
C60.0401 (16)0.0467 (17)0.0552 (19)0.0014 (14)0.0213 (14)0.0086 (15)
C70.0346 (15)0.0460 (17)0.0590 (19)0.0066 (13)0.0182 (14)0.0092 (15)
Geometric parameters (Å, º) top
Co1—N12.020 (2)N4—C21.381 (3)
Co1—N42.029 (2)C1—H10.9300
Co1—Cl12.2478 (9)C2—C31.347 (4)
Co1—Cl22.2676 (9)C2—H20.9300
N1—C51.320 (3)C3—H30.9300
N1—C61.385 (3)C4—H4A0.9700
N2—C5i1.346 (3)C4—H4B0.9700
N2—C71.377 (3)C5—N2i1.346 (3)
N2—C41.464 (3)C5—H50.9300
N3—C11.346 (3)C6—C7i1.349 (4)
N3—C31.369 (4)C6—H60.9300
N3—C41.456 (3)C7—C6i1.349 (4)
N4—C11.317 (3)C7—H70.9300
N1—Co1—N4102.85 (9)C3—C2—N4109.3 (3)
N1—Co1—Cl1114.03 (7)C3—C2—H2125.4
N4—Co1—Cl1107.75 (7)N4—C2—H2125.4
N1—Co1—Cl2109.58 (7)C2—C3—N3106.9 (2)
N4—Co1—Cl2105.46 (7)C2—C3—H3126.6
Cl1—Co1—Cl2115.95 (4)N3—C3—H3126.6
C5—N1—C6105.2 (2)N3—C4—N2111.0 (2)
C5—N1—Co1124.02 (18)N3—C4—H4A109.4
C6—N1—Co1130.55 (18)N2—C4—H4A109.4
C5i—N2—C7106.9 (2)N3—C4—H4B109.4
C5i—N2—C4126.6 (2)N2—C4—H4B109.4
C7—N2—C4126.4 (2)H4A—C4—H4B108.0
C1—N3—C3106.9 (2)N1—C5—N2i111.7 (2)
C1—N3—C4125.8 (2)N1—C5—H5124.1
C3—N3—C4127.3 (2)N2i—C5—H5124.1
C1—N4—C2105.6 (2)C7i—C6—N1109.8 (2)
C1—N4—Co1125.08 (18)C7i—C6—H6125.1
C2—N4—Co1129.31 (18)N1—C6—H6125.1
N4—C1—N3111.4 (2)C6i—C7—N2106.4 (2)
N4—C1—H1124.3C6i—C7—H7126.8
N3—C1—H1124.3N2—C7—H7126.8
N4—Co1—N1—C51.3 (3)C1—N4—C2—C30.6 (3)
Cl1—Co1—N1—C5115.1 (2)Co1—N4—C2—C3178.2 (2)
Cl2—Co1—N1—C5113.1 (2)N4—C2—C3—N31.2 (4)
N4—Co1—N1—C6172.0 (2)C1—N3—C3—C21.3 (3)
Cl1—Co1—N1—C671.6 (3)C4—N3—C3—C2179.8 (3)
Cl2—Co1—N1—C660.2 (3)C1—N3—C4—N2108.0 (3)
N1—Co1—N4—C188.2 (2)C3—N3—C4—N273.3 (4)
Cl1—Co1—N4—C1151.0 (2)C5i—N2—C4—N353.1 (4)
Cl2—Co1—N4—C126.6 (2)C7—N2—C4—N3130.9 (3)
N1—Co1—N4—C293.2 (2)C6—N1—C5—N2i0.8 (3)
Cl1—Co1—N4—C227.6 (3)Co1—N1—C5—N2i173.89 (18)
Cl2—Co1—N4—C2152.0 (2)C5—N1—C6—C7i0.5 (3)
C2—N4—C1—N30.3 (3)Co1—N1—C6—C7i173.8 (2)
Co1—N4—C1—N3179.13 (17)C5i—N2—C7—C6i0.5 (3)
C3—N3—C1—N41.0 (3)C4—N2—C7—C6i177.2 (3)
C4—N3—C1—N4179.9 (2)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co2Cl4(C7H8N4)2]
Mr556.01
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7137 (17), 8.7948 (18), 14.560 (3)
β (°) 98.75 (3)
V3)1102.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerRigaku SCX-mini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.789, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
11057, 2501, 2004
Rint0.040
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.075, 1.13
No. of reflections2501
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.33

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China [project approval No. 20974053].

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, D. Z., Liu, C. S., Li, J. R., Li, L., Zeng, Y. F. & Bu, X. H. (2007a). CrystEngComm, 9, 289–297.  CrossRef Google Scholar
First citationWang, D.-Z., Tong, X.-L. & Li, J.-R. (2007b). Acta Cryst. E63, m1294–m1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds