organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o981-o982

(2SR,3RS)-Methyl 2-(adamantan-1-yl)-3-phenyl­sulfonyl-3-(pyridin-2-ylsulfan­yl)propano­ate di­chloro­methane hemisolvate

aCentro de Investigación de la Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and bDEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso S/N, Col. Treviño, 64570 Monterrey, NL, Mexico
*Correspondence e-mail: sylvain_bernes@Hotmail.com

(Received 4 January 2011; accepted 18 March 2011; online 26 March 2011)

The title compound, C25H29NO4S2 0.5CH2Cl2, was obtained as a racemate. The pyridine and phenyl rings are arranged face-to-face, giving a weak intra­molecular ππ inter­action [centroid–centroid separation = 3.759 (3) Å]. These inter­actions are extended inter­molecularly, forming chains of stacked rings along [001] with separations of 3.859 (3) and 3.916 (3) Å. The solvent used for crystallization, CH2Cl2, is located in voids between the chains of mol­ecules, with a site occupancy of 0.5.

Related literature

For chemical, polymer and pharmaceutical applications of adamantane and its derivatives, see: Beller et al. (2002[Beller, M., Ehrentraut, A., Fuhrmann, C. & Zapf, A. (2002). WO Patent 0210178.]); Mathias et al. (1995[Mathias, L. J., Jensen, J. J., Reichert, V. R., Lewis, C. M. & Tullos, G. L. (1995). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 36, 741-742.], 2001[Mathias, L. J., Jensen, J., Thigpen, K., McGowen, J., McCormick, D. & Somlai, L. (2001). Polymer, 42, 6527-6537.]); Stotskaya et al. (1995[Stotskaya, L. L., Serbin, A. V., Munshi, K., Kozeletskaya, K. N., Sominina, A. A., Kiselev, O. I., Zaitseva, K. V. & Natochin, Yu. V. (1995). Khim. Farm. Zh. 29, 19-22.]); Spasov et al. (2000[Spasov, A. A., Khamidova, T. V., Bugaeva, L. I. & Morozov, I. S. (2000). Pharm. Chem. J. 34, 1-7.]); Enomoto et al. (2010[Enomoto, H., Sawa, A., Suhara, H., Yamamoto, N., Inoue, H., Setoguchi, Ch., Tsuji, F., Okamoto, M., Sasabuchi, Y., Horiuchi, M. & Ban, M. (2010). Bioorg. Med. Chem. Lett. 20, 4479-4482.]). For catalyst reactions, see: Taoufik et al. (1999[Taoufik, M., Santini, C. C. & Basset, J.-M. (1999). J. Organomet. Chem. 580, 128-136.]). For poly(p-phenyl­ene­vinyl­ene) (PPV) derivatives, see: Jeong et al. (2002[Jeong, H. Y., Lee, Y. K., Talaie, A., Kim, K. M., Kwon, Y. D., Jang, Y. R., Yoo, K. H., Choo, D. J. & Jang, J. (2002). Thin Solid Films, 417, 171-174.]). For their anti­viral and disease-related activity, see: Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Papanastasiou et al. (2010[Papanastasiou, I., Prousis, K. C., Georgikopoulou, K., Pavlidis, T., Scoulica, E., Kolocouris, N. & Calogeropoulou, T. (2010). Bioorg. Med. Chem. Lett. 20, 5484-5487.]) and for their use in the treatment of influenza A, leukemia and deafness, see: Zarubaev et al. (2010[Zarubaev, V. V., Golod, E. L., Anfimov, P. M., Shtro, A. A., Saraev, V. V., Gavrilov, A. S., Logvinov, A. V. & Kiselev, O. I. (2010). Bioorg. Med. Chem. 18, 839-848.]); Spasov et al. (2000[Spasov, A. A., Khamidova, T. V., Bugaeva, L. I. & Morozov, I. S. (2000). Pharm. Chem. J. 34, 1-7.]). For the Barton deca­rboxylation reaction, see: Togo (2004[Togo, H. (2004). Advanced Free Radical Reactions for Organic Synthesis, edited by H. Togo, pp. 199-213. Amsterdam: Elsevier BV.]).

[Scheme 1]

Experimental

Crystal data
  • C25H29NO4S2·0.5CH2Cl2

  • Mr = 514.08

  • Monoclinic, C 2/c

  • a = 12.709 (4) Å

  • b = 27.820 (6) Å

  • c = 14.448 (3) Å

  • β = 101.254 (19)°

  • V = 5010 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.40 × 0.40 × 0.40 mm

Data collection
  • Siemens P4 diffractometer

  • 6603 measured reflections

  • 4434 independent reflections

  • 2936 reflections with I > 2σ(I)

  • Rint = 0.026

  • 3 standard reflections every 97 reflections intensity decay: 40%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.03

  • 4434 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Adamantane and its derivatives have a broad range of chemical (Taoufik et al., 1999; Beller et al., 2002), polymer (Mathias et al., 1995, 2001), and pharmaceutical (Stotskaya et al., 1995; Spasov et al., 2000; Enomoto et al., 2010) applications. Compounds containing adamantyl radicals are useful catalysts for many chemical reactions, such as the refining of halogen atoms and preparation of heterogeneous bimetallic catalysts (Taoufik et al., 1999). The rigid, spherical shape of adamantane reduces interchain interactions in polymers and may help with the synthesis of poly(p-phenylenevinylene) (PPV) derivatives (Jeong et al., 2002). Adamantane-containing molecules have also been found to have antiviral activity (Kadi et al., 2010; Papanastasiou et al., 2010) and have been used in the treatment of influenza A (Zarubaev et al., 2010), HIV-1, leukemia and deafness (Spasov et al., 2000).

Alkyl radicals derived from O-acyl esters of N-hydroxy-2-thiopyridone (a.k.a. Barton esters) are nucleophilic, so treatment with electron-deficient olefins such as vinyl sulfones generates the corresponding addition products (alkyl 2-pyridyl sulfides) effectively. Derivatives generated from adamantylcarboxylic acid using the Barton method (Togo, 2004) have potential biological activity. Crystallization of the racemate in the title compound is similar to an anti addition of the Barton ester to the olefin.

The title compound, is a racemic mixture of enantiomers (Fig. 2). The CH2Cl2 solvent molecule is placed close to a 2-fold axis with a site occupancy of 1/2. The dihedral angle between the mean planes of the phenyl and pyridine rings is 20.24 (12)° [centroid to centroid separation = 3.759 (3)Å]. This ππ intramolecular interaction is extended along the c axis, with intermolecular pyridine-pyridine and phenyl-phenyl interactions related by 2-fold symmetry. Distances separating rings are 3.859 (3)Å and 3.916 (3)Å, respectively, while angles between aromatic mean planes are 25.28 (13)° and 19.84 (7)° (Fig. 3). CH2Cl2 molecules are placed between the chains of molecules stacked through these ππ contacts.

Related literature top

For chemical, polymer and pharmaceutical applications of adamantane and its derivatives, see: Beller et al. 2002); Mathias et al. (1995, 2001); Stotskaya et al. (1995); Spasov et al. (2000); Enomoto et al. (2010). For catalyst reactions, see: Taoufik et al. (1999). For poly(p-phenylenevinylene) (PPV) derivatives, see: Jeong et al. (2002). For their antiviral and disease-related activity, see: Kadi et al. (2010); Papanastasiou et al. (2010) and for their use in the treatment of influenza A, leukemia and deafness, see: Zarubaev et al. (2010); (Spasov et al. (2000). For the Barton decarboxylation reaction, see: Togo (2004).

Experimental top

To a solution of 1,3-dicyclohexylcarbodiimide (DCC, 2 mmol) in CH2Cl2 (8 ml) was added N-hydroxy-2-thiopyridone (2.2 mmol) under an argon atmosphere. The solution was protected from light with aluminium foil and kept at 273 K in an ice bath. Adamantylcarboxylic acid (2 mmol) dissolved in CH2Cl2 was added dropwise to the solution. After the addition, the mixture was allowed to reach room temperature and further stirred for a period of 1.5 h. The resulting yellow solid was filtered on a bed of silica gel and washed with dry CH2Cl2 (all in dark). The filtrate was concentrated under reduced pressure, to give a crystalline solid. m.p. 164–166°C (compound 1 in Fig. 1). O-acyl ester 1 (1 mmol) was dissolved in CH2Cl2 (5 ml) under an argon atmosphere and (E)-methyl-3-(phenylsulfonyl)acrylate 2 (1.1 mmol) was added to the yellowish solution. The mixture was irradiated with a tungsten lamp (150 W), following the reaction by TLC. The products were purified by chromatography on silica gel (eluent: hexane:ethyl-acetate, 7:3). A white crystalline solid was obtained with a yield of 88%. m.p. 145–146 °C (compound 3).This compound was crystallized by slow evaporation of a CH2Cl2 solution, affording the title hemisolvate.

Refinement top

Crystals of the title hemisolvate are stable in air for months, but solvent loss occurs under X-ray irradiation. A complete data set for the studied crystal was however collected over a period of 54 h, during which the intensity decayed by ca. 40%. Raw data were corrected using three periodically measured reflections. All H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2), or 0.98 Å (methine CH). Isotropic displacement parameters for H atoms were computed as Uiso(H) = 1.5 Ueq(carrier C) for the methyl group and Uiso(H) = 1.2 Ueq(carrier C) for other H atoms.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Synthetic route for the title compound.
[Figure 2] Fig. 2. The structure of the title compound, with displacement ellipsoids at the 30% probability level for non-H atoms.
[Figure 3] Fig. 3. Packing diagram of (I) viewed down the b axis. Distances for intra- and inter-molecular ππ interactions are labeled for one stack of molecules along the c axis. The solvent molecules are shown as spacefilled and the H atoms are omitted for clarity.
(2SR,3RS)-Methyl 2-(adamantan-1-yl)-3-phenylsulfonyl-3-(pyridin-2-ylsulfanyl)propanoate dichloromethane hemisolvate top
Crystal data top
C25H29NO4S2·0.5CH2Cl2F(000) = 2168
Mr = 514.08Dx = 1.363 Mg m3
Monoclinic, C2/cMelting point: 418 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.709 (4) ÅCell parameters from 78 reflections
b = 27.820 (6) Åθ = 4.8–12.4°
c = 14.448 (3) ŵ = 0.35 mm1
β = 101.254 (19)°T = 298 K
V = 5010 (2) Å3Irregular, colourless
Z = 80.40 × 0.40 × 0.40 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tube, FN4θmax = 25.1°, θmin = 1.8°
Graphite monochromatorh = 154
2θ/ω scansk = 3333
6603 measured reflectionsl = 1717
4434 independent reflections3 standard reflections every 97 reflections
2936 reflections with I > 2σ(I) intensity decay: 40%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0607P)2 + 7.2667P]
where P = (Fo2 + 2Fc2)/3
4434 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Crystal data top
C25H29NO4S2·0.5CH2Cl2V = 5010 (2) Å3
Mr = 514.08Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.709 (4) ŵ = 0.35 mm1
b = 27.820 (6) ÅT = 298 K
c = 14.448 (3) Å0.40 × 0.40 × 0.40 mm
β = 101.254 (19)°
Data collection top
Siemens P4
diffractometer
Rint = 0.026
6603 measured reflections3 standard reflections every 97 reflections
4434 independent reflections intensity decay: 40%
2936 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
4434 reflectionsΔρmin = 0.31 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17793 (7)0.34186 (3)0.15045 (6)0.0583 (3)
S20.17440 (7)0.32202 (3)0.05013 (6)0.0564 (3)
N10.0193 (2)0.36197 (12)0.1021 (2)0.0697 (8)
O10.3954 (2)0.35456 (12)0.0133 (3)0.1005 (11)
O20.44844 (18)0.38921 (10)0.1263 (2)0.0777 (8)
O30.1643 (3)0.38017 (10)0.21275 (18)0.0860 (9)
O40.2695 (2)0.31153 (10)0.1755 (2)0.0830 (8)
C10.3772 (3)0.37941 (13)0.0485 (3)0.0607 (9)
C20.2724 (2)0.40456 (11)0.0484 (2)0.0475 (7)
H2A0.27850.41820.11170.057*
C30.1791 (2)0.36853 (11)0.0372 (2)0.0465 (7)
H3A0.11270.38710.01980.056*
C40.5495 (3)0.36437 (17)0.1363 (4)0.1094 (19)
H4A0.59530.37380.19440.164*
H4B0.58310.37240.08430.164*
H4C0.53740.33030.13680.164*
C50.2526 (2)0.44789 (11)0.0205 (2)0.0490 (8)
C60.2242 (5)0.43425 (15)0.1234 (3)0.0962 (15)
H6A0.16200.41330.13400.115*
H6B0.28350.41690.14110.115*
C70.1992 (6)0.48093 (18)0.1860 (3)0.125 (2)
H7A0.17700.47250.25280.150*
C80.1119 (5)0.5102 (2)0.1524 (6)0.131 (3)
H8A0.09690.53900.19060.157*
H8B0.04650.49140.16040.157*
C90.1435 (3)0.52322 (17)0.0573 (5)0.1054 (18)
H9A0.08580.54200.03870.126*
C100.2416 (3)0.55331 (14)0.0445 (4)0.0905 (14)
H10A0.25900.56490.01990.109*
H10D0.22900.58090.08630.109*
C110.3329 (3)0.52465 (13)0.0658 (3)0.0745 (12)
H11A0.39790.54440.05430.089*
C120.3515 (3)0.48017 (12)0.0043 (3)0.0668 (10)
H12A0.36870.48970.06150.080*
H12B0.41210.46240.01850.080*
C130.3074 (5)0.50983 (18)0.1689 (4)0.1148 (19)
H13A0.36470.48990.18360.138*
H13B0.30040.53800.20910.138*
C140.1612 (3)0.47823 (15)0.0025 (4)0.0888 (14)
H14A0.09580.45930.00820.107*
H14B0.17760.48720.06860.107*
C150.0612 (3)0.30632 (12)0.1304 (2)0.0502 (8)
C160.0685 (3)0.25765 (13)0.1145 (3)0.0624 (9)
H16A0.13480.24320.11620.075*
C170.0236 (4)0.23100 (14)0.0963 (3)0.0764 (11)
H17A0.02040.19810.08600.092*
C180.1212 (3)0.25308 (18)0.0932 (3)0.0794 (12)
H18A0.18370.23490.08000.095*
C190.1273 (3)0.30086 (17)0.1089 (3)0.0772 (11)
H19A0.19370.31520.10710.093*
C200.0357 (3)0.32805 (14)0.1276 (3)0.0646 (9)
H20A0.03950.36090.13820.077*
C210.0357 (3)0.32124 (13)0.0982 (2)0.0543 (8)
C220.0087 (3)0.27858 (15)0.1342 (3)0.0731 (11)
H22A0.03190.25050.12790.088*
C230.1137 (4)0.2781 (2)0.1794 (3)0.0878 (13)
H23A0.14520.24980.20550.105*
C240.1705 (3)0.3188 (2)0.1856 (3)0.0879 (14)
H24A0.24180.31920.21680.105*
C250.1224 (3)0.36013 (18)0.1453 (3)0.0842 (13)
H25A0.16340.38800.14830.101*
Cl10.4213 (8)0.5932 (4)0.1685 (5)0.185 (4)0.50
Cl20.5855 (5)0.6034 (3)0.3296 (5)0.146 (3)0.50
C260.5288 (10)0.6258 (4)0.2308 (9)0.117 (4)0.50
H26A0.58220.62910.19150.141*0.50
H26B0.50380.65780.24210.141*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0626 (5)0.0619 (6)0.0460 (5)0.0173 (4)0.0003 (4)0.0039 (4)
S20.0525 (5)0.0586 (5)0.0574 (5)0.0086 (4)0.0087 (4)0.0117 (4)
N10.0573 (18)0.071 (2)0.072 (2)0.0139 (16)0.0071 (15)0.0036 (16)
O10.0538 (16)0.102 (2)0.142 (3)0.0152 (15)0.0085 (17)0.038 (2)
O20.0442 (13)0.0790 (18)0.097 (2)0.0072 (12)0.0189 (13)0.0219 (15)
O30.126 (2)0.0806 (18)0.0551 (15)0.0426 (17)0.0268 (15)0.0229 (14)
O40.0597 (15)0.090 (2)0.0858 (19)0.0064 (14)0.0193 (13)0.0332 (16)
C10.0431 (18)0.051 (2)0.082 (3)0.0051 (16)0.0023 (18)0.0075 (19)
C20.0397 (16)0.0519 (18)0.0468 (17)0.0052 (14)0.0015 (13)0.0003 (14)
C30.0434 (16)0.0497 (18)0.0430 (17)0.0056 (14)0.0002 (13)0.0015 (14)
C40.045 (2)0.084 (3)0.181 (5)0.002 (2)0.023 (3)0.037 (3)
C50.0362 (15)0.0476 (18)0.059 (2)0.0061 (13)0.0002 (14)0.0027 (15)
C60.151 (4)0.071 (3)0.058 (2)0.037 (3)0.001 (3)0.009 (2)
C70.230 (7)0.073 (3)0.059 (3)0.062 (4)0.005 (4)0.013 (2)
C80.104 (4)0.076 (3)0.180 (6)0.026 (3)0.054 (4)0.042 (4)
C90.047 (2)0.079 (3)0.183 (6)0.008 (2)0.006 (3)0.038 (4)
C100.076 (3)0.056 (2)0.133 (4)0.006 (2)0.005 (3)0.021 (2)
C110.049 (2)0.055 (2)0.114 (3)0.0093 (17)0.001 (2)0.020 (2)
C120.0418 (18)0.055 (2)0.095 (3)0.0078 (16)0.0066 (17)0.015 (2)
C130.168 (5)0.078 (3)0.112 (4)0.002 (3)0.058 (4)0.032 (3)
C140.055 (2)0.072 (3)0.142 (4)0.010 (2)0.027 (2)0.028 (3)
C150.0538 (19)0.055 (2)0.0416 (17)0.0116 (16)0.0084 (14)0.0016 (15)
C160.064 (2)0.054 (2)0.069 (2)0.0032 (18)0.0145 (18)0.0095 (18)
C170.096 (3)0.057 (2)0.079 (3)0.023 (2)0.026 (2)0.002 (2)
C180.069 (3)0.099 (3)0.073 (3)0.034 (2)0.022 (2)0.002 (2)
C190.059 (2)0.096 (3)0.081 (3)0.007 (2)0.024 (2)0.005 (2)
C200.067 (2)0.063 (2)0.067 (2)0.0033 (19)0.0208 (18)0.0039 (18)
C210.0552 (19)0.068 (2)0.0389 (17)0.0183 (18)0.0073 (14)0.0029 (16)
C220.074 (2)0.075 (3)0.071 (2)0.027 (2)0.014 (2)0.020 (2)
C230.079 (3)0.102 (4)0.080 (3)0.039 (3)0.010 (2)0.025 (3)
C240.063 (3)0.135 (4)0.060 (2)0.040 (3)0.0044 (19)0.001 (3)
C250.058 (2)0.100 (3)0.086 (3)0.011 (2)0.008 (2)0.011 (3)
Cl10.187 (7)0.233 (7)0.133 (5)0.043 (5)0.022 (4)0.097 (5)
Cl20.101 (3)0.159 (4)0.154 (5)0.051 (3)0.035 (3)0.050 (4)
C260.111 (11)0.150 (9)0.096 (9)0.013 (7)0.029 (6)0.009 (7)
Geometric parameters (Å, º) top
S1—O41.426 (3)C10—H10D0.9700
S1—O31.427 (3)C11—C121.515 (5)
S1—C151.759 (3)C11—C131.518 (7)
S1—C31.799 (3)C11—H11A0.9800
S2—C211.764 (3)C12—H12A0.9700
S2—C31.800 (3)C12—H12B0.9700
N1—C211.327 (5)C13—H13A0.9700
N1—C251.338 (5)C13—H13B0.9700
O1—C11.187 (5)C14—H14A0.9700
O2—C11.326 (4)C14—H14B0.9700
O2—C41.440 (5)C15—C201.366 (5)
C1—C21.505 (5)C15—C161.379 (5)
C2—C31.537 (4)C16—C171.367 (5)
C2—C51.552 (4)C16—H16A0.9300
C2—H2A0.9800C17—C181.376 (6)
C3—H3A0.9800C17—H17A0.9300
C4—H4A0.9600C18—C191.353 (6)
C4—H4B0.9600C18—H18A0.9300
C4—H4C0.9600C19—C201.370 (5)
C5—C61.508 (5)C19—H19A0.9300
C5—C141.524 (5)C20—H20A0.9300
C5—C121.526 (4)C21—C221.372 (5)
C6—C71.579 (6)C22—C231.366 (6)
C6—H6A0.9700C22—H22A0.9300
C6—H6B0.9700C23—C241.337 (6)
C7—C81.530 (9)C23—H23A0.9300
C7—C131.570 (8)C24—C251.376 (6)
C7—H7A0.9800C24—H24A0.9300
C8—C91.401 (9)C25—H25A0.9300
C8—H8A0.9700Cl1—C26i1.726 (14)
C8—H8B0.9700Cl1—C261.737 (15)
C9—C101.483 (6)Cl2—C261.594 (14)
C9—C141.513 (6)Cl2—C26i1.663 (15)
C9—H9A0.9800C26—H26A0.9700
C10—C111.488 (6)C26—H26B0.9700
C10—H10A0.9700
O4—S1—O3118.38 (18)H10A—C10—H10D108.2
O4—S1—C15109.21 (16)C10—C11—C12110.8 (4)
O3—S1—C15108.75 (17)C10—C11—C13108.8 (4)
O4—S1—C3108.91 (16)C12—C11—C13109.4 (4)
O3—S1—C3106.81 (16)C10—C11—H11A109.2
C15—S1—C3103.79 (14)C12—C11—H11A109.2
C21—S2—C3100.30 (16)C13—C11—H11A109.2
C21—N1—C25116.5 (3)C11—C12—C5111.2 (3)
C1—O2—C4115.7 (4)C11—C12—H12A109.4
O1—C1—O2123.8 (3)C5—C12—H12A109.4
O1—C1—C2124.9 (3)C11—C12—H12B109.4
O2—C1—C2111.3 (3)C5—C12—H12B109.4
C1—C2—C3111.2 (3)H12A—C12—H12B108.0
C1—C2—C5113.2 (3)C11—C13—C7107.8 (4)
C3—C2—C5114.4 (2)C11—C13—H13A110.1
C1—C2—H2A105.7C7—C13—H13A110.1
C3—C2—H2A105.7C11—C13—H13B110.1
C5—C2—H2A105.7C7—C13—H13B110.1
C2—C3—S1108.4 (2)H13A—C13—H13B108.5
C2—C3—S2117.5 (2)C9—C14—C5111.6 (4)
S1—C3—S2109.63 (17)C9—C14—H14A109.3
C2—C3—H3A106.9C5—C14—H14A109.3
S1—C3—H3A106.9C9—C14—H14B109.3
S2—C3—H3A106.9C5—C14—H14B109.3
O2—C4—H4A109.5H14A—C14—H14B108.0
O2—C4—H4B109.5C20—C15—C16121.2 (3)
H4A—C4—H4B109.5C20—C15—S1118.9 (3)
O2—C4—H4C109.5C16—C15—S1119.9 (3)
H4A—C4—H4C109.5C17—C16—C15118.8 (4)
H4B—C4—H4C109.5C17—C16—H16A120.6
C6—C5—C14108.0 (3)C15—C16—H16A120.6
C6—C5—C12109.3 (3)C16—C17—C18119.7 (4)
C14—C5—C12106.3 (3)C16—C17—H17A120.1
C6—C5—C2114.5 (3)C18—C17—H17A120.1
C14—C5—C2109.0 (3)C19—C18—C17120.9 (4)
C12—C5—C2109.5 (2)C19—C18—H18A119.5
C5—C6—C7109.9 (3)C17—C18—H18A119.5
C5—C6—H6A109.7C18—C19—C20120.0 (4)
C7—C6—H6A109.7C18—C19—H19A120.0
C5—C6—H6B109.7C20—C19—H19A120.0
C7—C6—H6B109.7C15—C20—C19119.2 (4)
H6A—C6—H6B108.2C15—C20—H20A120.4
C8—C7—C13110.1 (4)C19—C20—H20A120.4
C8—C7—C6109.5 (5)N1—C21—C22123.2 (3)
C13—C7—C6105.0 (5)N1—C21—S2118.9 (2)
C8—C7—H7A110.7C22—C21—S2117.7 (3)
C13—C7—H7A110.7C23—C22—C21118.8 (4)
C6—C7—H7A110.7C23—C22—H22A120.6
C9—C8—C7111.2 (4)C21—C22—H22A120.6
C9—C8—H8A109.4C24—C23—C22119.2 (4)
C7—C8—H8A109.4C24—C23—H23A120.4
C9—C8—H8B109.4C22—C23—H23A120.4
C7—C8—H8B109.4C23—C24—C25119.4 (4)
H8A—C8—H8B108.0C23—C24—H24A120.3
C8—C9—C10109.9 (5)C25—C24—H24A120.3
C8—C9—C14109.2 (5)N1—C25—C24122.9 (5)
C10—C9—C14111.6 (4)N1—C25—H25A118.6
C8—C9—H9A108.7C24—C25—H25A118.6
C10—C9—H9A108.7Cl2—C26—Cl1115.6 (7)
C14—C9—H9A108.7Cl2—C26—H26A108.4
C9—C10—C11110.0 (4)Cl1—C26—H26A108.4
C9—C10—H10A109.7Cl2—C26—H26B108.4
C11—C10—H10A109.7Cl1—C26—H26B108.4
C9—C10—H10D109.7H26A—C26—H26B107.4
C11—C10—H10D109.7
C4—O2—C1—O15.1 (5)C14—C5—C12—C1158.7 (4)
C4—O2—C1—C2176.1 (3)C2—C5—C12—C11176.3 (3)
O1—C1—C2—C357.9 (5)C10—C11—C13—C757.4 (5)
O2—C1—C2—C3123.3 (3)C12—C11—C13—C763.9 (5)
O1—C1—C2—C572.6 (5)C8—C7—C13—C1153.4 (6)
O2—C1—C2—C5106.2 (3)C6—C7—C13—C1164.3 (5)
C1—C2—C3—S180.7 (3)C8—C9—C14—C563.4 (5)
C5—C2—C3—S1149.4 (2)C10—C9—C14—C558.3 (6)
C1—C2—C3—S244.2 (3)C6—C5—C14—C959.5 (5)
C5—C2—C3—S285.6 (3)C12—C5—C14—C957.7 (5)
O4—S1—C3—C269.3 (2)C2—C5—C14—C9175.6 (4)
O3—S1—C3—C259.7 (3)O4—S1—C15—C20164.6 (3)
C15—S1—C3—C2174.5 (2)O3—S1—C15—C2034.1 (3)
O4—S1—C3—S260.2 (2)C3—S1—C15—C2079.3 (3)
O3—S1—C3—S2170.85 (17)O4—S1—C15—C1617.7 (3)
C15—S1—C3—S256.0 (2)O3—S1—C15—C16148.2 (3)
C21—S2—C3—C2138.9 (2)C3—S1—C15—C1698.3 (3)
C21—S2—C3—S196.70 (18)C20—C15—C16—C170.4 (5)
C1—C2—C5—C673.5 (4)S1—C15—C16—C17178.0 (3)
C3—C2—C5—C655.4 (4)C15—C16—C17—C180.7 (6)
C1—C2—C5—C14165.5 (3)C16—C17—C18—C190.7 (6)
C3—C2—C5—C1465.6 (4)C17—C18—C19—C200.5 (6)
C1—C2—C5—C1249.7 (4)C16—C15—C20—C190.2 (5)
C3—C2—C5—C12178.5 (3)S1—C15—C20—C19177.9 (3)
C14—C5—C6—C755.1 (5)C18—C19—C20—C150.3 (6)
C12—C5—C6—C760.2 (5)C25—N1—C21—C221.3 (5)
C2—C5—C6—C7176.6 (4)C25—N1—C21—S2175.3 (3)
C5—C6—C7—C854.8 (6)C3—S2—C21—N132.5 (3)
C5—C6—C7—C1363.5 (6)C3—S2—C21—C22150.6 (3)
C13—C7—C8—C956.3 (6)N1—C21—C22—C232.5 (6)
C6—C7—C8—C958.7 (5)S2—C21—C22—C23174.2 (3)
C7—C8—C9—C1060.8 (5)C21—C22—C23—C241.3 (6)
C7—C8—C9—C1461.9 (5)C22—C23—C24—C250.8 (7)
C8—C9—C10—C1165.1 (5)C21—N1—C25—C241.0 (6)
C14—C9—C10—C1156.2 (6)C23—C24—C25—N12.1 (7)
C9—C10—C11—C1257.0 (5)Cl1i—Cl2—C26—Cl113 (4)
C9—C10—C11—C1363.4 (5)C26i—Cl2—C26—Cl162.4 (9)
C10—C11—C12—C560.2 (5)Cl2i—Cl1—C26—Cl2127 (3)
C13—C11—C12—C559.8 (5)C26i—Cl1—C26—Cl264.3 (11)
C6—C5—C12—C1157.6 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H29NO4S2·0.5CH2Cl2
Mr514.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.709 (4), 27.820 (6), 14.448 (3)
β (°) 101.254 (19)
V3)5010 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.40 × 0.40 × 0.40
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6603, 4434, 2936
Rint0.026
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.03
No. of reflections4434
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.31

Computer programs: XSCANS (Siemens, 1996), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

 

Acknowledgements

We gratefully acknowledge financial support of the Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla.

References

First citationBeller, M., Ehrentraut, A., Fuhrmann, C. & Zapf, A. (2002). WO Patent 0210178.  Google Scholar
First citationEnomoto, H., Sawa, A., Suhara, H., Yamamoto, N., Inoue, H., Setoguchi, Ch., Tsuji, F., Okamoto, M., Sasabuchi, Y., Horiuchi, M. & Ban, M. (2010). Bioorg. Med. Chem. Lett. 20, 4479–4482.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJeong, H. Y., Lee, Y. K., Talaie, A., Kim, K. M., Kwon, Y. D., Jang, Y. R., Yoo, K. H., Choo, D. J. & Jang, J. (2002). Thin Solid Films, 417, 171–174.  CrossRef CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMathias, L. J., Jensen, J. J., Reichert, V. R., Lewis, C. M. & Tullos, G. L. (1995). Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.), 36, 741–742.  CAS Google Scholar
First citationMathias, L. J., Jensen, J., Thigpen, K., McGowen, J., McCormick, D. & Somlai, L. (2001). Polymer, 42, 6527–6537.  CrossRef CAS Google Scholar
First citationPapanastasiou, I., Prousis, K. C., Georgikopoulou, K., Pavlidis, T., Scoulica, E., Kolocouris, N. & Calogeropoulou, T. (2010). Bioorg. Med. Chem. Lett. 20, 5484–5487.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpasov, A. A., Khamidova, T. V., Bugaeva, L. I. & Morozov, I. S. (2000). Pharm. Chem. J. 34, 1–7.  CrossRef CAS Google Scholar
First citationStotskaya, L. L., Serbin, A. V., Munshi, K., Kozeletskaya, K. N., Sominina, A. A., Kiselev, O. I., Zaitseva, K. V. & Natochin, Yu. V. (1995). Khim. Farm. Zh. 29, 19–22.  CAS Google Scholar
First citationTaoufik, M., Santini, C. C. & Basset, J.-M. (1999). J. Organomet. Chem. 580, 128–136.  CrossRef CAS Google Scholar
First citationTogo, H. (2004). Advanced Free Radical Reactions for Organic Synthesis, edited by H. Togo, pp. 199–213. Amsterdam: Elsevier BV.  Google Scholar
First citationZarubaev, V. V., Golod, E. L., Anfimov, P. M., Shtro, A. A., Saraev, V. V., Gavrilov, A. S., Logvinov, A. V. & Kiselev, O. I. (2010). Bioorg. Med. Chem. 18, 839–848.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o981-o982
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds