metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m419-m420

Bis(tetra­ethyl­ammonium) bis­­(di­methyl­formamide)­tetra­kis­(μ-N,2-dioxido­benzene-1-carboximidato)penta­copper(II)

aDepartment of Chemistry, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257, USA, and bDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555, USA
*Correspondence e-mail: cmzaleski@ship.edu

(Received 21 February 2011; accepted 2 March 2011; online 12 March 2011)

The title compound, (C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2], abbreviated as (TEA)2[CuII(12-MCCuIIN(shi)-4](DMF)2 [where TEA is tetra­ethyl­ammonium, shi3− is salicyl­hydroximate (or N,2-dioxidobenzene-1-carboximidate) and DMF is N,N-dimethyl­formamide], contains five CuII ions. Four of the CuII ions are members of a metallacrown ring (MC), while the fifth CuII is bound in a central cavity. Two of the ring CuII ions are five-coordinate with distorted square-pyramidal geometry. The coordination sphere is composed of two shi3− ligands and one DMF mol­ecule. The other two ring CuII ions and the central CuII ion are four-coordinate with square-planar geometry. The coordination spheres of these ions are only composed of shi3− ligands. The charge of the [CuII(12-MCCuIIN(shi)-4]2− unit is balanced by two uncoordinated TEA+ countercations. The structure shows severe static disorder with the metallacrown, the tetra­ethyl­ammonium cations and the DMF solvent mol­ecule all disordered over each of two mutually exclusive sites, with occupancy rates for the major moieties of 0.6215 (6) for the metallacrown, 0.759 (3) for the tetra­ethyl­ammonium ion and 0.537 (6) for the DMF mol­ecules. The metallacrown unit is located on a crystallographic inversion center and disordered about a non-crystallographic twofold axis. The DMF mol­ecule and the tetra­ethyl­ammonium ion are disordered about a non-crystallographic twofold axis and pseudo-inversion center, respectively.

Related literature

For a general review of metallacrowns, see: Mezei et al. (2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]); Pecoraro (1989[Pecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171-173.]); Pecoraro et al. (1997[Pecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83-177. New York: Wiley.]). For related [Cu(12-MCCuIIN(ligand)-4)]2− structures, see: Gibney et al. (1994[Gibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840-4849.]). For structure analysis of a two-dimensional chiral solid based on a CuII[12-MCCuII-4)]2+ complex, see: Bodwin & Pecoraro (2000[Bodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434-3435.]). For single-crystal X-ray structure analysis of related MnII(OAc)2[12-MCMnIIIN(shi)-4], where OAc is acetate, see: Lah et al. (1989[Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.]). For an explanation on how to calculate τ, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2]

  • Mr = 1325.74

  • Orthorhombic, P b c a

  • a = 16.641 (3) Å

  • b = 13.616 (2) Å

  • c = 23.238 (4) Å

  • V = 5265.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 100 K

  • 0.45 × 0.40 × 0.29 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.588, Tmax = 0.746

  • 51635 measured reflections

  • 8316 independent reflections

  • 6387 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.104

  • S = 1.12

  • 8316 reflections

  • 631 parameters

  • 101 restraints

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury Macrae et al. (2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and Ortep-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Since the identification of metallacrowns (MC) in 1989 (Pecoraro, 1989), these inorganic crown ether analogues have proved to be very diverse molecules (Mezei et al., 2007; Pecoraro et al., 1997). Metallacrowns can behave as single-molecule magnets, have potential use as MRI contrast agents, and can selectively bind cations or anions (Mezei et al., 2007). In addition to being inorganic structural and functional analogues of crown ethers, the naming scheme for the two molecules is very similar. For example, the name 12-MC-4 indicates that there are 12 atoms in the metallacrown ring and there are 4 oxygen atoms in the ring that can potentially bind to a central metal ion. A complete nomenclature description for metallacrowns can be found in Pecoraro et al. (1997).

Copper(II) 12-MC-4 structures are common (Mezei et al., 2007), and the structures tend to be fairly planar. The planar structures are generated by placing the ring CuII ions at 90o relative to each other. This placement is typically achieved by selection of a ligand, such as salicylhydroxamic acid, that can form fused five- and six-membered chelate rings. However, planar structures have been observed for other sized fused chelate rings (Mezei et al., 2007). One planar CuII[12-MCCuII-4]2+ has been used to build a two-dimensional chiral solid (Bodwin & Pecoraro, 2000).

Herein we report the synthesis, IR data, and the single-crystal X-ray structure of the title compound,C28H16Cu5N4O12, 2(C8H20N), 2(C3H7NO) abbreviated as (TEA)2[Cu(12—MCCuIIN(shi)-4](DMF)2, (1), where TEA is tetraethylammonium, shi3- is salicylhydroximate, and DMF is N,N-dimethylformamide. The single-crystal X-ray structure of a related molecule, (TMA)2[Cu(12—MCCuIIN(shi)-4].DMF (2, where TMA is tetramethylammonium), has previously been reported by Gibney et al. (1994), and the synthesis of another related molecule, (TEA)2[Cu(12—MCCuIIN(d2shi)-4)].2DMF.H2O (where d2shi is 3,5-dideuteriosalicylhydroximate), has been described by Gibney et al. (1994).

Compound 1 is fairly planar, which is typical of CuII 12-MC-4 structures (Fig. 1–3; Macrae et al., 2006). The structure consists of a [CuII—N—O] repeat unit around the MC ring, and the MC binds a CuII in the central cavity. Cu1 is located in the central cavity and is four-coordinate with square planar geometry. Cu2, Cu3, Cu2i and Cu3i compose the MC ring (symmetry operator (i): -x + 1, -y + 1, -z + 1). Cu2 is five-coordinate with distorted square pyramidal geometry with τ equal to 0.02 (τ = 0 for square pyramidal geometry and τ = 1 for trigonal bipyramidal geometry (Addison et al., 1984). The basal portion of the geometry is composed of two shi3- ligands that bind with oxygen and nitrogen atoms. The apical position is filled by a DMF molecule which binds with an oxygen atom (O7 and O7b). The Cu2—O7 bond distance is 2.763 (14) Å, and the Cu2—O7b bond distance is 2.696 (17) Å. Cu3 is four-coordinate with square planar geometry, and the coordination is composed of two shi3- ligands that bind with oxygen and nitrogen atoms. An uncoordinated TEA countercation is located in the lattice. In addition, the structure of 1 shows severe static disorder as the metallacrown, TEA, and DMF are disordered over two mutually exclusive sites (Figs. 4–6, Farrugia, 1997).

Compounds 1 and 2 are similar planar 12-MC-4 molecules. Compound 2 also consist of a [CuII—N—O] repeat unit with a CuII ion bound in the central cavity (Gibney et al., 1994). However, in 2 all of the ring CuII ions are four-coordinate with square planar geometry. The geometry about the ring CuII ions in 2 is different compared to 1. In 1 the DMF molecules are bound to two of the ring CuII ions, which gives these CuII ions a distorted square pyramidal geometry (Fig. 2). In 2 the DMF molecule does not bind to any of the CuII ions, but instead the DMF is present only in the lattice (Gibney et al., 1994).

Related literature top

For a general review of metallacrowns, see: Mezei et al. (2007); Pecoraro (1989); Pecoraro et al. (1997). For related [Cu(12-MCCuIIN(ligand)-4)]2- structures, see: Gibney et al. (1994). For a single-crystal X-ray structure of a chiral two-dimensional solid containing a CuII[12-MCCuII-4)]2+ complex, see: Bodwin & Pecoraro (2000). For a single-crystal X-ray structure of a related MnII(OAc)2[12-MCMn(III)N(shi)-4], where -OAc is acetate, see: Lah et al. (1989). For an explanation on how to calculate τ see Addison et al. (1984). For software used to create the figures, see: Farrugia (1997); Macrae et al. (2006).

Experimental top

Copper(II) acetate monohydrate (99+%) was purchased from Sigma-Aldrich, salicylhydroxamic acid (H3shi, 99%) was purchased from Alfa Aesar, tetraethylammonium acetate (99%) was purchased from Acros Organics, absolute diethyl ether was purchased from EMD Chemicals, and N,N-dimethylformamide (ACS grade) was purchased from Fisher Scientific. All reagents were used as received and without further purification.

Copper(II) acetate monohydrate (0.625 mmol), salicylhydroxamic acid (0.5 mmol), and tetraethylammonium acetate (1.0 mmol) were mixed in 10 mL of DMF. Upon mixing the solution turned a dark green color. After stirring overnight, the solution was gravity filtered. No precipitate was observed, and the filtrate remained a dark green color. X-ray quality crystals were grown via diffusion of diethyl ether at 277 K (4 oC). The product was a dark green diamond-shaped crystal, and after washing the filtered product with cold DMF, the percent yield was 36% (0.0607 g) based on copper(II) acetate monohydrate. Elemental analysis for C50H70Cu5N8O14 [FW = 1325.74 g/mol] found % (calculated); C 45.21 (45.33); H 5.33 (5.33); N 8.37 (8.46).

Refinement top

The structure of 1 shows severe static disorder. The anionic metallacrown, the tetraethylammonium and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two-fold axis, as is the DMF molecule. The tetraethylammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å2), and the ADPs of the atoms C18b and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Ångstroms.

Hydrogen atoms were placed in calculated positions with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methylene) and were refined with Uĩso~(H) = 1.5 Ueq(C) for methyl H atoms and 1.2 Ueq(C) for methylene and aromatic moieties.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: APEX2 (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Single-crystal X-ray structure (top view) of (TEA)2[Cu(12—MCCuIIN(shi)-4)](DMF)2 (1). The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. All non-carbon atoms are labeled. Hydrogen atoms and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1). Color scheme for all figures: orange - CuII, red - oxygen, blue - nitrogen, and gray - carbon.
[Figure 2] Fig. 2. Single-crystal X-ray structure (side view) of 1. The DMF is coordinated to Cu2 with a CuII—O7 distance of 2.763 (14) Å. The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Cu2 and O7 are labeled to highlight the DMF molecules bonded to the metallacrown. Hydrogen atoms and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1).
[Figure 3] Fig. 3. Packing diagram of 1 along the c axis. The thermal ellipsoid plot of 1 is at a 50% probability level with the disordered portions of the molecule shown only at the higher occupancy positions. Hydrogen atoms have been omitted for clarity.
[Figure 4] Fig. 4. Single-crystal X-ray structure (top view) of 1. The thermal ellipsoid plot of 1 is at a 50% probability level. All disordered atoms of the MC are shown. The metallacrown is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.6215 (6) to 0.3785 (6). All copper atoms are labeled. Hydrogen atoms, the DMF molecules, and the lattice TEA have been omitted for clarity (symmetry operator (i): -x + 1, -y + 1, -z + 1).
[Figure 5] Fig. 5. Single-crystal X-ray structure of the TEA countercation with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The tetraethylammonium is disordered over two mutually exclusive sites by a pseudo-inversion center. The refined occupancy ratio is 0.759 (3) to 0.241 (1). Hydrogen atoms have been omitted for clarity.
[Figure 6] Fig. 6. Single-crystal X-ray structure of the DMF molecule with all disordered atoms shown. The thermal ellipsoid plot is at a 50% probability level. The DMF is disordered over two mutually exclusive sites by a non-crystallographic twofold axis. The refined occupancy ratio is 0.537 (6) to 0.463 (6). Hydrogen atoms have been omitted for clarity.
Bis(tetraethylammonium) bis(dimethylformamide)tetrakis(µ-N,2-dioxidobenzene-1-carboximidato)pentacopper(II) top
Crystal data top
(C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2]F(000) = 2732
Mr = 1325.74Dx = 1.672 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9969 reflections
a = 16.641 (3) Åθ = 2.4–28.2°
b = 13.616 (2) ŵ = 2.06 mm1
c = 23.238 (4) ÅT = 100 K
V = 5265.4 (15) Å3Block, black
Z = 40.45 × 0.40 × 0.29 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8316 independent reflections
Radiation source: fine-focus sealed tube6387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 31.4°, θmin = 2.1°
Absorption correction: multi-scan
(APEX2; Bruker, 2009)
h = 2424
Tmin = 0.588, Tmax = 0.746k = 1919
51635 measured reflectionsl = 3133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.P)2 + 7.2598P]
where P = (Fo2 + 2Fc2)/3
8316 reflections(Δ/σ)max = 0.002
631 parametersΔρmax = 0.47 e Å3
101 restraintsΔρmin = 0.35 e Å3
3 constraints
Crystal data top
(C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2]V = 5265.4 (15) Å3
Mr = 1325.74Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 16.641 (3) ŵ = 2.06 mm1
b = 13.616 (2) ÅT = 100 K
c = 23.238 (4) Å0.45 × 0.40 × 0.29 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8316 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2009)
6387 reflections with I > 2σ(I)
Tmin = 0.588, Tmax = 0.746Rint = 0.055
51635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043101 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.12Δρmax = 0.47 e Å3
8316 reflectionsΔρmin = 0.35 e Å3
631 parameters
Special details top

Experimental. The structure of 1 shows severe static disorder. The anionic metallacrown, the tetraethylammonium, and the solvent DMF molecules all show disorder over each two mutually exclusive sites with different occupancy ratios. The refined values are 0.6215 (6) to 0.3785 (6) for the metallacrown, 0.759 (3) to 0.241 (1) for the tetraethylammonium ions and 0.537 (6) to 0.463 (6) for the DMF molecules. The metallacrown is disordered by a non-crystallographic two fold axis, as is the DMF molecule. The tetraethylammonium is disordered by a pseudo-inversion center. Equivalent bonds in disordered sections of the molecules were restrained to be similar (standard deviation 0.02 Å). The atom O7 and O7b were restrained to be approximately isotropic (standard deviation 0.01 Å2), and the ADPs of the atoms C18b and C22, O7 and O7b, and N4 and N4b were each constrained to be the same. Aromatic benzene rings were constrained to resemble ideal hexagons with C—C distances of 1.39 Å.

IR bands (cm-1): 1605(s), 1572(s), 1526(s), 1437(m), 1389(s), 1319(s), 1254(s), 1097(m), 1024(m), 943(m), 742(m), 684(m), 657(m), 582(m), 476(m).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.02182 (9)
Cu20.57625 (3)0.41430 (3)0.616568 (19)0.02373 (11)0.6215 (7)
O10.41463 (15)0.57229 (17)0.46572 (10)0.0221 (5)0.6215 (7)
N10.3913 (12)0.6588 (11)0.4928 (5)0.0215 (16)0.6215 (7)
C10.3635 (2)0.7238 (3)0.45496 (15)0.0231 (7)0.6215 (7)
O20.36367 (16)0.7058 (2)0.40009 (11)0.0269 (5)0.6215 (7)
C20.33280 (17)0.81957 (17)0.4762 (2)0.0211 (8)0.6215 (7)
C30.3010 (2)0.8806 (3)0.43404 (12)0.0292 (10)0.6215 (7)
H30.30170.86070.39490.035*0.6215 (7)
C40.2680 (3)0.9708 (3)0.44919 (16)0.0366 (14)0.6215 (7)
H40.24631.01250.42040.044*0.6215 (7)
C50.2669 (3)0.9999 (2)0.50651 (19)0.0390 (15)0.6215 (7)
H50.24441.06160.51690.047*0.6215 (7)
C60.2988 (3)0.9389 (3)0.54869 (12)0.0290 (9)0.6215 (7)
H60.29800.95880.58790.035*0.6215 (7)
C70.33169 (17)0.8487 (2)0.53355 (16)0.0240 (8)0.6215 (7)
O30.35984 (17)0.7964 (2)0.57879 (12)0.0292 (6)0.6215 (7)
Cu30.41466 (3)0.67697 (3)0.573321 (18)0.02160 (11)0.6215 (7)
O40.49116 (17)0.57526 (19)0.56729 (11)0.0294 (6)0.6215 (7)
N20.5163 (9)0.5344 (12)0.6212 (5)0.024 (2)0.6215 (7)
C80.4843 (2)0.5834 (3)0.66324 (15)0.0240 (7)0.6215 (7)
O50.43610 (16)0.65689 (19)0.65495 (11)0.0265 (5)0.6215 (7)
C90.5018 (2)0.5490 (3)0.72258 (11)0.0232 (8)0.6215 (7)
C100.4681 (2)0.6052 (2)0.7663 (2)0.0293 (11)0.6215 (7)
H100.43910.66330.75720.035*0.6215 (7)
C110.4768 (3)0.5765 (3)0.82335 (16)0.0412 (16)0.6215 (7)
H110.45380.61490.85320.049*0.6215 (7)
C120.5193 (3)0.4915 (4)0.83670 (10)0.0396 (17)0.6215 (7)
H120.52520.47190.87570.047*0.6215 (7)
C130.5530 (2)0.4353 (2)0.7930 (2)0.0305 (10)0.6215 (7)
H130.58190.37730.80210.037*0.6215 (7)
C140.54424 (19)0.4641 (3)0.73593 (15)0.0265 (8)0.6215 (7)
O60.58043 (19)0.4037 (2)0.69748 (12)0.0336 (6)0.6215 (7)
Cu2B0.39897 (4)0.64754 (5)0.42099 (3)0.02356 (18)0.3785 (7)
O1B0.5618 (2)0.4844 (3)0.56838 (16)0.0223 (8)0.3785 (7)
N1B0.5321 (13)0.5252 (18)0.6190 (8)0.022 (3)0.3785 (7)
C1B0.5508 (3)0.4708 (4)0.6645 (2)0.0225 (11)0.3785 (7)
O2B0.5924 (3)0.3906 (3)0.6598 (2)0.0304 (10)0.3785 (7)
C2B0.5244 (3)0.5036 (5)0.72271 (17)0.0189 (12)0.3785 (7)
C3B0.5475 (4)0.4426 (3)0.7677 (3)0.0265 (16)0.3785 (7)
H3B0.57750.38470.76000.032*0.3785 (7)
C4B0.5269 (6)0.4664 (5)0.8240 (2)0.037 (3)0.3785 (7)
H4B0.54270.42470.85470.045*0.3785 (7)
C5B0.4830 (6)0.5511 (6)0.83522 (17)0.038 (3)0.3785 (7)
H5B0.46890.56730.87370.045*0.3785 (7)
C6B0.4598 (4)0.6121 (4)0.7902 (3)0.0236 (14)0.3785 (7)
H6B0.42990.67000.79790.028*0.3785 (7)
C7B0.4805 (3)0.5883 (4)0.7340 (2)0.0212 (12)0.3785 (7)
O3B0.4532 (3)0.6525 (3)0.69378 (19)0.0265 (9)0.3785 (7)
Cu3B0.45480 (4)0.63044 (5)0.61447 (3)0.02077 (18)0.3785 (7)
O4B0.4357 (3)0.5941 (3)0.53712 (17)0.0242 (8)0.3785 (7)
N2B0.394 (2)0.6670 (17)0.5039 (8)0.021 (3)0.3785 (7)
C8B0.3775 (3)0.7426 (4)0.5357 (2)0.0235 (11)0.3785 (7)
O5B0.3936 (3)0.7458 (3)0.58976 (17)0.0247 (9)0.3785 (7)
C9B0.3388 (3)0.8271 (3)0.5066 (3)0.0192 (12)0.3785 (7)
C10B0.3119 (4)0.9002 (5)0.54365 (16)0.0270 (16)0.3785 (7)
H10B0.31880.89320.58400.032*0.3785 (7)
C11B0.2749 (5)0.9836 (5)0.5216 (3)0.036 (2)0.3785 (7)
H11B0.25651.03360.54690.044*0.3785 (7)
C12B0.2647 (5)0.9939 (4)0.4625 (3)0.032 (2)0.3785 (7)
H12B0.23941.05090.44740.039*0.3785 (7)
C13B0.2916 (4)0.9207 (4)0.42551 (17)0.0266 (14)0.3785 (7)
H13B0.28470.92770.38510.032*0.3785 (7)
C14B0.3286 (3)0.8373 (3)0.4476 (3)0.0206 (12)0.3785 (7)
O6B0.3489 (3)0.7691 (3)0.40768 (19)0.0322 (10)0.3785 (7)
N30.80044 (11)0.22899 (15)0.27205 (9)0.0278 (4)
C150.85084 (18)0.2867 (2)0.31451 (14)0.0294 (7)0.759 (3)
H15A0.89530.24440.32820.035*0.759 (3)
H15B0.87510.34340.29420.035*0.759 (3)
C160.8052 (4)0.3239 (9)0.3657 (3)0.0357 (17)0.759 (3)
H16A0.76100.36600.35280.054*0.759 (3)
H16B0.84140.36190.39050.054*0.759 (3)
H16C0.78350.26820.38740.054*0.759 (3)
C170.73347 (18)0.2923 (2)0.24704 (16)0.0324 (8)0.759 (3)
H17A0.70470.25350.21750.039*0.759 (3)
H17B0.69460.30720.27810.039*0.759 (3)
C180.7599 (3)0.3870 (4)0.2205 (2)0.0417 (12)0.759 (3)
H18A0.78670.42750.24960.063*0.759 (3)
H18B0.71300.42220.20550.063*0.759 (3)
H18C0.79750.37350.18900.063*0.759 (3)
C190.85842 (19)0.1995 (3)0.22333 (15)0.0349 (8)0.759 (3)
H19A0.88310.25980.20740.042*0.759 (3)
H19B0.90210.15910.23990.042*0.759 (3)
C200.8199 (4)0.1429 (4)0.1748 (3)0.0452 (13)0.759 (3)
H20A0.78950.08750.19050.068*0.759 (3)
H20B0.86170.11830.14880.068*0.759 (3)
H20C0.78350.18630.15350.068*0.759 (3)
C210.7619 (2)0.1412 (2)0.29905 (17)0.0368 (8)0.759 (3)
H21A0.72760.10840.27000.044*0.759 (3)
H21B0.72660.16350.33070.044*0.759 (3)
C220.8207 (6)0.0671 (5)0.3226 (3)0.0457 (15)0.759 (3)
H22A0.85440.04210.29130.069*0.759 (3)
H22B0.79120.01260.34020.069*0.759 (3)
H22C0.85470.09860.35170.069*0.759 (3)
C15B0.7458 (6)0.1682 (8)0.2338 (4)0.030 (2)0.241 (3)
H15C0.72210.11410.25660.035*0.241 (3)
H15D0.70140.21000.21950.035*0.241 (3)
C16B0.7909 (12)0.1255 (15)0.1830 (7)0.042 (4)0.241 (3)
H16D0.81440.17890.16020.064*0.241 (3)
H16E0.75370.08770.15890.064*0.241 (3)
H16F0.83380.08230.19690.064*0.241 (3)
C17B0.8620 (6)0.1601 (8)0.3017 (5)0.032 (2)0.241 (3)
H17C0.89850.13440.27170.038*0.241 (3)
H17D0.89480.20050.32820.038*0.241 (3)
C18B0.830 (2)0.0743 (18)0.3351 (12)0.0457 (15)0.241 (3)
H18D0.79520.09790.36600.069*0.241 (3)
H18E0.87530.03760.35180.069*0.241 (3)
H18F0.79970.03120.30940.069*0.241 (3)
C19B0.7420 (6)0.2669 (7)0.3214 (4)0.029 (2)0.241 (3)
H19C0.70180.31140.30400.035*0.241 (3)
H19D0.71260.20980.33740.035*0.241 (3)
C20B0.7826 (14)0.320 (3)0.3702 (11)0.036 (5)0.241 (3)
H20D0.81250.27280.39380.055*0.241 (3)
H20E0.74210.35280.39390.055*0.241 (3)
H20F0.81990.36900.35460.055*0.241 (3)
C21B0.8441 (6)0.3090 (8)0.2448 (5)0.036 (2)0.241 (3)
H21C0.88440.28070.21820.043*0.241 (3)
H21D0.87360.34570.27490.043*0.241 (3)
C22B0.7923 (9)0.3799 (13)0.2118 (8)0.043 (4)0.241 (3)
H22D0.75210.34340.18960.064*0.241 (3)
H22E0.82590.41850.18560.064*0.241 (3)
H22F0.76500.42410.23880.064*0.241 (3)
O70.4383 (10)0.3329 (7)0.5707 (5)0.046 (2)0.537 (7)
C230.4581 (3)0.2485 (4)0.5501 (2)0.0402 (15)0.537 (7)
H230.49470.20870.57110.048*0.537 (7)
N40.4289 (7)0.2151 (9)0.5002 (5)0.0320 (13)0.537 (7)
C240.3656 (4)0.2678 (5)0.4701 (4)0.0466 (16)0.537 (7)
H24A0.31790.22590.46720.070*0.537 (7)
H24B0.38420.28520.43140.070*0.537 (7)
H24C0.35220.32770.49140.070*0.537 (7)
C250.4551 (4)0.1234 (4)0.4765 (4)0.0528 (19)0.537 (7)
H25A0.40990.07720.47560.079*0.537 (7)
H25B0.49830.09630.50030.079*0.537 (7)
H25C0.47490.13390.43720.079*0.537 (7)
O7B0.4483 (11)0.3087 (10)0.5815 (6)0.046 (2)0.463 (7)
C23B0.4126 (4)0.3086 (5)0.5331 (4)0.052 (2)0.463 (7)
H23B0.38550.36640.52100.062*0.463 (7)
N4B0.4120 (9)0.2298 (11)0.4988 (6)0.0320 (13)0.463 (7)
C24B0.4578 (4)0.1433 (6)0.5139 (4)0.0451 (18)0.463 (7)
H24D0.49370.12600.48200.068*0.463 (7)
H24E0.42110.08860.52150.068*0.463 (7)
H24F0.48980.15680.54840.068*0.463 (7)
C25B0.3773 (6)0.2329 (10)0.4413 (4)0.069 (3)0.463 (7)
H25D0.32550.19880.44140.104*0.463 (7)
H25E0.41380.20070.41410.104*0.463 (7)
H25F0.36930.30150.42970.104*0.463 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02558 (18)0.02169 (17)0.01818 (17)0.00622 (14)0.00229 (14)0.00452 (14)
Cu20.0274 (2)0.0264 (2)0.0174 (2)0.00638 (17)0.00076 (17)0.00123 (16)
O10.0262 (12)0.0207 (11)0.0193 (12)0.0034 (9)0.0006 (10)0.0032 (9)
N10.024 (2)0.020 (3)0.021 (4)0.003 (2)0.005 (3)0.005 (3)
C10.0205 (15)0.0266 (17)0.0222 (17)0.0000 (13)0.0007 (13)0.0018 (13)
O20.0312 (13)0.0285 (14)0.0210 (13)0.0084 (11)0.0037 (10)0.0003 (11)
C20.0214 (17)0.0212 (17)0.021 (2)0.0031 (13)0.0021 (19)0.003 (2)
C30.027 (2)0.030 (3)0.030 (2)0.008 (2)0.0025 (17)0.0045 (19)
C40.035 (3)0.034 (3)0.041 (3)0.008 (2)0.002 (2)0.014 (3)
C50.034 (3)0.024 (2)0.059 (4)0.0123 (19)0.004 (3)0.003 (3)
C60.033 (2)0.024 (2)0.030 (2)0.008 (2)0.0035 (18)0.002 (2)
C70.0216 (18)0.022 (2)0.029 (3)0.0071 (15)0.0063 (16)0.0052 (16)
O30.0387 (15)0.0248 (13)0.0243 (14)0.0118 (12)0.0002 (11)0.0041 (11)
Cu30.0256 (2)0.0206 (2)0.0186 (2)0.00376 (16)0.00108 (16)0.00308 (16)
O40.0437 (16)0.0300 (13)0.0145 (12)0.0152 (12)0.0006 (11)0.0010 (10)
N20.030 (6)0.030 (2)0.012 (2)0.008 (3)0.000 (2)0.0020 (19)
C80.0219 (16)0.0274 (17)0.0227 (17)0.0002 (13)0.0011 (13)0.0028 (14)
O50.0326 (14)0.0301 (13)0.0168 (13)0.0083 (11)0.0012 (10)0.0073 (10)
C90.019 (2)0.034 (3)0.0162 (18)0.0028 (16)0.0008 (15)0.0052 (19)
C100.0193 (19)0.040 (2)0.028 (3)0.0006 (16)0.004 (2)0.007 (2)
C110.027 (3)0.066 (4)0.031 (3)0.001 (3)0.008 (2)0.018 (3)
C120.026 (3)0.074 (5)0.019 (2)0.006 (3)0.0004 (18)0.003 (3)
C130.022 (2)0.048 (3)0.022 (2)0.0043 (17)0.001 (2)0.001 (2)
C140.0218 (19)0.041 (3)0.017 (2)0.0017 (18)0.0054 (16)0.0034 (17)
O60.0455 (17)0.0390 (16)0.0162 (14)0.0137 (13)0.0015 (12)0.0011 (11)
Cu2B0.0292 (4)0.0255 (3)0.0160 (3)0.0097 (3)0.0015 (3)0.0015 (3)
O1B0.027 (2)0.026 (2)0.0142 (18)0.0063 (16)0.0035 (15)0.0003 (15)
N1B0.018 (7)0.031 (7)0.017 (4)0.002 (4)0.006 (3)0.009 (3)
C1B0.022 (3)0.028 (3)0.018 (3)0.002 (2)0.003 (2)0.003 (2)
O2B0.038 (3)0.030 (2)0.023 (2)0.0163 (19)0.0105 (19)0.0007 (18)
C2B0.022 (3)0.028 (4)0.006 (3)0.004 (3)0.002 (2)0.003 (3)
C3B0.025 (3)0.032 (3)0.023 (4)0.008 (2)0.016 (4)0.003 (4)
C4B0.040 (5)0.042 (5)0.030 (5)0.004 (4)0.014 (4)0.015 (5)
C5B0.026 (5)0.076 (7)0.011 (3)0.014 (5)0.005 (3)0.012 (4)
C6B0.017 (3)0.034 (3)0.019 (4)0.003 (2)0.000 (3)0.000 (3)
C7B0.016 (3)0.033 (4)0.015 (4)0.003 (2)0.001 (2)0.009 (3)
O3B0.033 (2)0.025 (2)0.022 (2)0.0069 (17)0.0005 (18)0.0056 (17)
Cu3B0.0239 (3)0.0214 (3)0.0170 (3)0.0056 (3)0.0010 (3)0.0019 (3)
O4B0.032 (2)0.0220 (19)0.019 (2)0.0105 (16)0.0009 (16)0.0014 (16)
N2B0.030 (5)0.016 (5)0.017 (6)0.011 (4)0.004 (5)0.000 (4)
C8B0.025 (3)0.024 (3)0.022 (3)0.004 (2)0.001 (2)0.004 (2)
O5B0.033 (2)0.022 (2)0.019 (2)0.0075 (18)0.0000 (17)0.0046 (16)
C9B0.024 (3)0.016 (3)0.018 (3)0.009 (2)0.004 (3)0.006 (3)
C10B0.036 (4)0.027 (4)0.018 (3)0.012 (3)0.004 (3)0.010 (3)
C11B0.047 (6)0.032 (5)0.030 (4)0.005 (4)0.006 (4)0.016 (4)
C12B0.030 (4)0.016 (3)0.050 (6)0.013 (3)0.007 (4)0.002 (4)
C13B0.032 (4)0.023 (4)0.025 (3)0.008 (3)0.001 (3)0.003 (3)
C14B0.022 (3)0.026 (3)0.014 (3)0.005 (2)0.003 (3)0.002 (2)
O6B0.047 (3)0.028 (2)0.021 (2)0.015 (2)0.0022 (19)0.0002 (18)
N30.0189 (8)0.0309 (10)0.0337 (11)0.0012 (7)0.0027 (8)0.0086 (8)
C150.0238 (14)0.0309 (15)0.0336 (17)0.0045 (12)0.0062 (12)0.0050 (13)
C160.037 (4)0.036 (3)0.034 (3)0.003 (3)0.003 (3)0.008 (2)
C170.0210 (14)0.0342 (16)0.0420 (19)0.0067 (12)0.0070 (13)0.0128 (14)
C180.043 (3)0.040 (2)0.042 (3)0.013 (2)0.005 (2)0.0051 (18)
C190.0244 (15)0.0441 (19)0.0361 (19)0.0099 (13)0.0027 (13)0.0090 (15)
C200.053 (4)0.044 (3)0.038 (3)0.007 (2)0.000 (2)0.014 (2)
C210.0337 (17)0.0285 (16)0.048 (2)0.0082 (13)0.0070 (15)0.0092 (15)
C220.056 (3)0.0320 (18)0.050 (4)0.0023 (16)0.003 (3)0.002 (2)
C15B0.020 (4)0.035 (5)0.034 (5)0.003 (4)0.009 (4)0.006 (4)
C16B0.058 (12)0.048 (9)0.021 (6)0.011 (8)0.006 (7)0.008 (5)
C17B0.024 (5)0.037 (5)0.035 (6)0.011 (4)0.001 (4)0.003 (4)
C18B0.056 (3)0.0320 (18)0.050 (4)0.0023 (16)0.003 (3)0.002 (2)
C19B0.025 (4)0.028 (5)0.034 (5)0.008 (4)0.001 (4)0.006 (4)
C20B0.042 (13)0.032 (7)0.036 (8)0.014 (12)0.007 (9)0.016 (6)
C21B0.029 (5)0.042 (6)0.037 (6)0.006 (4)0.009 (4)0.004 (5)
C22B0.039 (9)0.043 (8)0.045 (9)0.003 (7)0.005 (8)0.012 (7)
O70.040 (4)0.053 (5)0.046 (4)0.009 (4)0.006 (3)0.013 (3)
C230.030 (2)0.049 (3)0.041 (3)0.012 (2)0.009 (2)0.007 (2)
N40.015 (5)0.041 (4)0.0400 (15)0.004 (2)0.006 (2)0.005 (2)
C240.033 (3)0.051 (4)0.055 (4)0.007 (2)0.010 (3)0.006 (3)
C250.037 (3)0.042 (3)0.079 (6)0.000 (2)0.010 (3)0.018 (3)
O7B0.040 (4)0.053 (5)0.046 (4)0.009 (4)0.006 (3)0.013 (3)
C23B0.036 (4)0.044 (4)0.075 (6)0.009 (3)0.026 (4)0.005 (4)
N4B0.015 (5)0.041 (4)0.0400 (15)0.004 (2)0.006 (2)0.005 (2)
C24B0.035 (3)0.045 (4)0.056 (5)0.005 (3)0.005 (3)0.002 (3)
C25B0.059 (5)0.110 (9)0.039 (5)0.014 (5)0.014 (4)0.017 (5)
Geometric parameters (Å, º) top
Cu1—O4i1.875 (2)C12B—C13B1.3900
Cu1—O41.875 (2)C12B—H12B0.9500
Cu1—O4B1.879 (4)C13B—C14B1.3900
Cu1—O4Bi1.879 (4)C13B—H13B0.9500
Cu1—O11.903 (2)C14B—O6B1.355 (5)
Cu1—O1i1.903 (2)N3—C21B1.454 (11)
Cu1—O1B1.905 (4)N3—C211.495 (4)
Cu1—O1Bi1.905 (4)N3—C151.515 (3)
Cu2—O61.887 (3)N3—C15B1.517 (9)
Cu2—N21.919 (12)N3—C171.524 (4)
Cu2—O1i1.927 (2)N3—C191.541 (4)
Cu2—O2i1.956 (3)N3—C17B1.550 (10)
O1—N11.390 (12)N3—C19B1.590 (10)
O1—Cu2i1.927 (2)C15—C161.499 (7)
N1—C11.331 (14)C15—H15A0.9900
N1—Cu31.927 (11)C15—H15B0.9900
C1—O21.298 (4)C16—H16A0.9800
C1—C21.485 (4)C16—H16B0.9800
O2—Cu2i1.956 (3)C16—H16C0.9800
C2—C31.3900C17—C181.496 (6)
C2—C71.3900C17—H17A0.9900
C3—C41.3900C17—H17B0.9900
C3—H30.9500C18—H18A0.9800
C4—C51.3900C18—H18B0.9800
C4—H40.9500C18—H18C0.9800
C5—C61.3900C19—C201.509 (6)
C5—H50.9500C19—H19A0.9900
C6—C71.3900C19—H19B0.9900
C6—H60.9500C20—H20A0.9800
C7—O31.354 (4)C20—H20B0.9800
O3—Cu31.868 (3)C20—H20C0.9800
Cu3—O41.886 (3)C21—C221.508 (9)
Cu3—O51.949 (3)C21—H21A0.9900
O4—N21.432 (12)C21—H21B0.9900
N2—C81.298 (12)C22—H22A0.9800
C8—O51.297 (4)C22—H22B0.9800
C8—C91.485 (4)C22—H22C0.9800
C9—C101.3900C15B—C16B1.514 (13)
C9—C141.3900C15B—H15C0.9900
C10—C111.3900C15B—H15D0.9900
C10—H100.9500C16B—H16D0.9800
C11—C121.3900C16B—H16E0.9800
C11—H110.9500C16B—H16F0.9800
C12—C131.3900C17B—C18B1.499 (15)
C12—H120.9500C17B—H17C0.9900
C13—C141.3900C17B—H17D0.9900
C13—H130.9500C18B—H18D0.9800
C14—O61.355 (4)C18B—H18E0.9800
Cu2B—O6B1.879 (4)C18B—H18F0.9800
Cu2B—O1Bi1.928 (4)C19B—C20B1.505 (14)
Cu2B—N2B1.946 (19)C19B—H19C0.9900
Cu2B—O2Bi1.953 (5)C19B—H19D0.9900
O1B—N1B1.391 (18)C20B—H20D0.9800
O1B—Cu2Bi1.928 (4)C20B—H20E0.9800
N1B—C1B1.329 (19)C20B—H20F0.9800
N1B—Cu3B1.928 (18)C21B—C22B1.505 (12)
C1B—O2B1.297 (7)C21B—H21C0.9900
C1B—C2B1.492 (6)C21B—H21D0.9900
O2B—Cu2Bi1.953 (5)C22B—H22D0.9800
C2B—C3B1.3900C22B—H22E0.9800
C2B—C7B1.3900C22B—H22F0.9800
C3B—C4B1.3900O7—C231.288 (11)
C3B—H3B0.9500C23—N41.337 (9)
C4B—C5B1.3900C23—H230.9500
C4B—H4B0.9500N4—C251.434 (9)
C5B—C6B1.3900N4—C241.454 (8)
C5B—H5B0.9500C24—H24A0.9800
C6B—C7B1.3900C24—H24B0.9800
C6B—H6B0.9500C24—H24C0.9800
C7B—O3B1.357 (5)C25—H25A0.9800
O3B—Cu3B1.867 (4)C25—H25B0.9800
Cu3B—O4B1.891 (4)C25—H25C0.9800
Cu3B—O5B1.958 (4)O7B—C23B1.272 (13)
O4B—N2B1.434 (19)C23B—N4B1.338 (11)
N2B—C8B1.297 (18)C23B—H23B0.9500
C8B—O5B1.286 (7)N4B—C24B1.446 (10)
C8B—C9B1.481 (6)N4B—C25B1.455 (11)
C9B—C10B1.3900C24B—H24D0.9800
C9B—C14B1.3900C24B—H24E0.9800
C10B—C11B1.3900C24B—H24F0.9800
C10B—H10B0.9500C25B—H25D0.9800
C11B—C12B1.3900C25B—H25E0.9800
C11B—H11B0.9500C25B—H25F0.9800
O4i—Cu1—O4179.997 (1)O5B—C8B—C9B120.7 (5)
O4i—Cu1—O4B143.14 (14)N2B—C8B—C9B116.8 (9)
O4—Cu1—O4B36.86 (14)C8B—O5B—Cu3B111.6 (3)
O4i—Cu1—O4Bi36.86 (14)C10B—C9B—C14B120.0
O4—Cu1—O4Bi143.14 (14)C10B—C9B—C8B114.5 (5)
O4B—Cu1—O4Bi179.998 (1)C14B—C9B—C8B125.5 (5)
O4i—Cu1—O189.55 (11)C11B—C10B—C9B120.0
O4—Cu1—O190.45 (11)C11B—C10B—H10B120.0
O4B—Cu1—O154.15 (14)C9B—C10B—H10B120.0
O4Bi—Cu1—O1125.84 (14)C10B—C11B—C12B120.0
O4i—Cu1—O1i90.45 (11)C10B—C11B—H11B120.0
O4—Cu1—O1i89.55 (11)C12B—C11B—H11B120.0
O4B—Cu1—O1i125.84 (14)C13B—C12B—C11B120.0
O4Bi—Cu1—O1i54.16 (14)C13B—C12B—H12B120.0
O1—Cu1—O1i179.998 (1)C11B—C12B—H12B120.0
O4i—Cu1—O1B126.32 (14)C12B—C13B—C14B120.0
O4—Cu1—O1B53.67 (14)C12B—C13B—H13B120.0
O4B—Cu1—O1B90.03 (17)C14B—C13B—H13B120.0
O4Bi—Cu1—O1B89.97 (17)O6B—C14B—C13B114.7 (5)
O1—Cu1—O1B144.09 (13)O6B—C14B—C9B125.2 (5)
O1i—Cu1—O1B35.91 (13)C13B—C14B—C9B120.0
O4i—Cu1—O1Bi53.68 (14)C14B—O6B—Cu2B127.0 (4)
O4—Cu1—O1Bi126.33 (14)C21B—N3—C21174.9 (5)
O4B—Cu1—O1Bi89.97 (17)C21B—N3—C1567.5 (5)
O4Bi—Cu1—O1Bi90.03 (17)C21—N3—C15112.3 (2)
O1—Cu1—O1Bi35.91 (13)C21B—N3—C15B116.9 (6)
O1i—Cu1—O1Bi144.09 (13)C21—N3—C15B63.4 (4)
O1B—Cu1—O1Bi179.999 (1)C15—N3—C15B175.2 (4)
O6—Cu2—N291.7 (3)C21B—N3—C1777.0 (4)
O6—Cu2—O1i173.29 (12)C21—N3—C17107.4 (2)
N2—Cu2—O1i90.9 (3)C15—N3—C17111.1 (2)
O6—Cu2—O2i96.57 (11)C15B—N3—C1769.3 (4)
N2—Cu2—O2i171.8 (3)C21B—N3—C1964.1 (5)
O1i—Cu2—O2i80.94 (10)C21—N3—C19111.6 (2)
N1—O1—Cu1117.2 (6)C15—N3—C19105.5 (2)
N1—O1—Cu2i113.0 (6)C15B—N3—C1978.6 (4)
Cu1—O1—Cu2i113.93 (12)C17—N3—C19109.0 (2)
C1—N1—O1111.1 (8)C21B—N3—C17B108.5 (6)
C1—N1—Cu3128.8 (8)C21—N3—C17B67.2 (4)
O1—N1—Cu3119.5 (8)C15—N3—C17B70.0 (4)
O2—C1—N1121.6 (6)C15B—N3—C17B109.1 (6)
O2—C1—C2119.5 (3)C17—N3—C17B174.1 (4)
N1—C1—C2118.9 (6)C19—N3—C17B75.9 (4)
C1—O2—Cu2i110.7 (2)C21B—N3—C19B112.1 (6)
C3—C2—C7120.0C21—N3—C19B72.2 (4)
C3—C2—C1114.9 (3)C15—N3—C19B72.6 (4)
C7—C2—C1125.0 (3)C15B—N3—C19B103.5 (5)
C4—C3—C2120.0C17—N3—C19B69.2 (4)
C4—C3—H3120.0C19—N3—C19B176.2 (4)
C2—C3—H3120.0C17B—N3—C19B106.2 (6)
C3—C4—C5120.0C16—C15—N3114.3 (3)
C3—C4—H4120.0C16—C15—H15A108.7
C5—C4—H4120.0N3—C15—H15A108.7
C6—C5—C4120.0C16—C15—H15B108.7
C6—C5—H5120.0N3—C15—H15B108.7
C4—C5—H5120.0H15A—C15—H15B107.6
C7—C6—C5120.0C18—C17—N3115.4 (3)
C7—C6—H6120.0C18—C17—H17A108.4
C5—C6—H6120.0N3—C17—H17A108.4
O3—C7—C6113.9 (3)C18—C17—H17B108.4
O3—C7—C2126.1 (3)N3—C17—H17B108.4
C6—C7—C2120.0H17A—C17—H17B107.5
C7—O3—Cu3125.0 (2)C20—C19—N3114.6 (3)
O3—Cu3—O4166.74 (13)C20—C19—H19A108.6
O3—Cu3—N194.6 (4)N3—C19—H19A108.6
O4—Cu3—N188.3 (4)C20—C19—H19B108.6
O3—Cu3—O598.35 (11)N3—C19—H19B108.6
O4—Cu3—O581.13 (11)H19A—C19—H19B107.6
N1—Cu3—O5164.5 (5)N3—C21—C22114.1 (4)
N2—O4—Cu1119.6 (6)N3—C21—H21A108.7
N2—O4—Cu3114.7 (5)C22—C21—H21A108.7
Cu1—O4—Cu3121.07 (14)N3—C21—H21B108.7
C8—N2—O4109.8 (8)C22—C21—H21B108.7
C8—N2—Cu2133.9 (8)H21A—C21—H21B107.6
O4—N2—Cu2115.7 (7)C16B—C15B—N3111.7 (10)
O5—C8—N2122.6 (6)C16B—C15B—H15C109.3
O5—C8—C9120.2 (3)N3—C15B—H15C109.3
N2—C8—C9117.2 (6)C16B—C15B—H15D109.3
C8—O5—Cu3111.5 (2)N3—C15B—H15D109.3
C10—C9—C14120.0H15C—C15B—H15D107.9
C10—C9—C8115.2 (4)C15B—C16B—H16D109.5
C14—C9—C8124.7 (4)C15B—C16B—H16E109.5
C9—C10—C11120.0H16D—C16B—H16E109.5
C9—C10—H10120.0C15B—C16B—H16F109.5
C11—C10—H10120.0H16D—C16B—H16F109.5
C10—C11—C12120.0H16E—C16B—H16F109.5
C10—C11—H11120.0C18B—C17B—N3118.0 (15)
C12—C11—H11120.0C18B—C17B—H17C107.8
C11—C12—C13120.0N3—C17B—H17C107.8
C11—C12—H12120.0C18B—C17B—H17D107.8
C13—C12—H12120.0N3—C17B—H17D107.8
C14—C13—C12120.0H17C—C17B—H17D107.1
C14—C13—H13120.0C17B—C18B—H18D109.5
C12—C13—H13120.0C17B—C18B—H18E109.5
O6—C14—C13114.3 (4)H18D—C18B—H18E109.5
O6—C14—C9125.7 (4)C17B—C18B—H18F109.5
C13—C14—C9120.0H18D—C18B—H18F109.5
C14—O6—Cu2126.5 (3)H18E—C18B—H18F109.5
O6B—Cu2B—O1Bi173.0 (2)C20B—C19B—N3115.1 (11)
O6B—Cu2B—N2B91.4 (6)C20B—C19B—H19C108.5
O1Bi—Cu2B—N2B90.8 (6)N3—C19B—H19C108.5
O6B—Cu2B—O2Bi96.25 (18)C20B—C19B—H19D108.5
O1Bi—Cu2B—O2Bi81.39 (17)N3—C19B—H19D108.5
N2B—Cu2B—O2Bi172.1 (6)H19C—C19B—H19D107.5
N1B—O1B—Cu1117.9 (8)C19B—C20B—H20D109.5
N1B—O1B—Cu2Bi112.6 (9)C19B—C20B—H20E109.5
Cu1—O1B—Cu2Bi113.2 (2)H20D—C20B—H20E109.5
C1B—N1B—O1B111.5 (13)C19B—C20B—H20F109.5
C1B—N1B—Cu3B127.9 (12)H20D—C20B—H20F109.5
O1B—N1B—Cu3B119.2 (12)H20E—C20B—H20F109.5
O2B—C1B—N1B121.9 (9)N3—C21B—C22B114.6 (10)
O2B—C1B—C2B119.1 (5)N3—C21B—H21C108.6
N1B—C1B—C2B119.0 (9)C22B—C21B—H21C108.6
C1B—O2B—Cu2Bi110.1 (4)N3—C21B—H21D108.6
C3B—C2B—C7B120.0C22B—C21B—H21D108.6
C3B—C2B—C1B115.0 (6)H21C—C21B—H21D107.6
C7B—C2B—C1B125.0 (6)C21B—C22B—H22D109.5
C2B—C3B—C4B120.0C21B—C22B—H22E109.5
C2B—C3B—H3B120.0H22D—C22B—H22E109.5
C4B—C3B—H3B120.0C21B—C22B—H22F109.5
C5B—C4B—C3B120.0H22D—C22B—H22F109.5
C5B—C4B—H4B120.0H22E—C22B—H22F109.5
C3B—C4B—H4B120.0O7—C23—N4122.2 (8)
C4B—C5B—C6B120.0O7—C23—H23118.9
C4B—C5B—H5B120.0N4—C23—H23118.9
C6B—C5B—H5B120.0C23—N4—C25121.3 (7)
C7B—C6B—C5B120.0C23—N4—C24120.9 (7)
C7B—C6B—H6B120.0C25—N4—C24117.7 (7)
C5B—C6B—H6B120.0O7B—C23B—N4B122.1 (10)
O3B—C7B—C6B114.5 (6)O7B—C23B—H23B118.9
O3B—C7B—C2B125.5 (6)N4B—C23B—H23B118.9
C6B—C7B—C2B120.0C23B—N4B—C24B120.3 (9)
C7B—O3B—Cu3B124.8 (4)C23B—N4B—C25B121.8 (11)
O3B—Cu3B—O4B167.9 (2)C24B—N4B—C25B117.1 (9)
O3B—Cu3B—N1B94.3 (6)N4B—C24B—H24D109.5
O4B—Cu3B—N1B88.2 (6)N4B—C24B—H24E109.5
O3B—Cu3B—O5B98.81 (17)H24D—C24B—H24E109.5
O4B—Cu3B—O5B80.99 (16)N4B—C24B—H24F109.5
N1B—Cu3B—O5B163.5 (6)H24D—C24B—H24F109.5
N2B—O4B—Cu1119.9 (9)H24E—C24B—H24F109.5
N2B—O4B—Cu3B114.3 (7)N4B—C25B—H25D109.5
Cu1—O4B—Cu3B121.3 (2)N4B—C25B—H25E109.5
C8B—N2B—O4B110.2 (12)H25D—C25B—H25E109.5
C8B—N2B—Cu2B132.9 (14)N4B—C25B—H25F109.5
O4B—N2B—Cu2B114.8 (12)H25D—C25B—H25F109.5
O5B—C8B—N2B122.6 (9)H25E—C25B—H25F109.5
O4i—Cu1—O1—N1166.7 (10)N1B—C1B—C2B—C7B0.2 (15)
O4—Cu1—O1—N113.3 (10)C7B—C2B—C3B—C4B0.0
O4B—Cu1—O1—N120.2 (10)C1B—C2B—C3B—C4B179.5 (5)
O4Bi—Cu1—O1—N1159.8 (10)C2B—C3B—C4B—C5B0.0
O1B—Cu1—O1—N115.5 (10)C3B—C4B—C5B—C6B0.0
O1Bi—Cu1—O1—N1164.5 (10)C4B—C5B—C6B—C7B0.0
O4i—Cu1—O1—Cu2i31.57 (14)C5B—C6B—C7B—O3B178.8 (5)
O4—Cu1—O1—Cu2i148.43 (14)C5B—C6B—C7B—C2B0.0
O4B—Cu1—O1—Cu2i155.3 (2)C3B—C2B—C7B—O3B178.7 (5)
O4Bi—Cu1—O1—Cu2i24.7 (2)C1B—C2B—C7B—O3B1.9 (6)
O1B—Cu1—O1—Cu2i150.7 (2)C3B—C2B—C7B—C6B0.0
O1Bi—Cu1—O1—Cu2i29.3 (2)C1B—C2B—C7B—C6B179.4 (6)
Cu1—O1—N1—C1149.6 (10)C6B—C7B—O3B—Cu3B168.6 (4)
Cu2i—O1—N1—C114.0 (17)C2B—C7B—O3B—Cu3B10.1 (6)
Cu1—O1—N1—Cu322.5 (17)C7B—O3B—Cu3B—O4B84.7 (9)
Cu2i—O1—N1—Cu3158.0 (9)C7B—O3B—Cu3B—N1B17.2 (9)
O1—N1—C1—O23 (2)C7B—O3B—Cu3B—O5B172.8 (4)
Cu3—N1—C1—O2167.9 (11)C1B—N1B—Cu3B—O3B20 (2)
O1—N1—C1—C2177.8 (9)O1B—N1B—Cu3B—O3B174.6 (17)
Cu3—N1—C1—C211 (2)O1B—N1B—Cu3B—O4B17.3 (18)
N1—C1—O2—Cu2i8.9 (12)C1B—N1B—Cu3B—O5B163.0 (9)
C2—C1—O2—Cu2i170.1 (2)O1B—N1B—Cu3B—O5B32 (4)
O2—C1—C2—C34.3 (4)O1B—Cu1—O4B—Cu3B0.2 (3)
N1—C1—C2—C3176.7 (11)O1Bi—Cu1—O4B—Cu3B179.8 (3)
O2—C1—C2—C7178.0 (3)O3B—Cu3B—O4B—N2B93.2 (19)
N1—C1—C2—C71.1 (12)N1B—Cu3B—O4B—N2B164.3 (19)
C7—C2—C3—C40.0O5B—Cu3B—O4B—N2B3.2 (17)
C1—C2—C3—C4177.9 (3)O3B—Cu3B—O4B—Cu1110.7 (8)
C2—C3—C4—C50.0N1B—Cu3B—O4B—Cu18.2 (8)
C3—C4—C5—C60.0O5B—Cu3B—O4B—Cu1159.3 (3)
C4—C5—C6—C70.0Cu1—O4B—N2B—C8B157.7 (16)
C5—C6—C7—O3179.5 (3)Cu3B—O4B—N2B—C8B1 (3)
C5—C6—C7—C20.0Cu1—O4B—N2B—Cu2B8 (3)
C3—C2—C7—O3179.4 (3)Cu3B—O4B—N2B—Cu2B164.5 (12)
C1—C2—C7—O31.7 (4)O6B—Cu2B—N2B—C8B12 (3)
C3—C2—C7—C60.0O1Bi—Cu2B—N2B—C8B175 (3)
C1—C2—C7—C6177.7 (3)O6B—Cu2B—N2B—O4B173 (2)
C6—C7—O3—Cu3175.1 (2)O1Bi—Cu2B—N2B—O4B14 (2)
C2—C7—O3—Cu35.5 (4)O4B—N2B—C8B—O5B3 (3)
C7—O3—Cu3—O491.1 (6)Cu2B—N2B—C8B—O5B165 (2)
C7—O3—Cu3—N110.8 (7)O4B—N2B—C8B—C9B176.5 (15)
C7—O3—Cu3—O5177.8 (3)Cu2B—N2B—C8B—C9B14 (4)
C1—N1—Cu3—O314.2 (18)N2B—C8B—O5B—Cu3B6 (2)
O1—N1—Cu3—O3175.2 (14)C9B—C8B—O5B—Cu3B173.9 (4)
C1—N1—Cu3—O4152.8 (18)O3B—Cu3B—O5B—C8B172.4 (4)
O1—N1—Cu3—O417.7 (14)O4B—Cu3B—O5B—C8B4.7 (4)
C1—N1—Cu3—O5160.7 (7)N1B—Cu3B—O5B—C8B45 (3)
O1—N1—Cu3—O529 (4)O5B—C8B—C9B—C10B8.9 (7)
O4B—Cu1—O4—N2144.6 (8)N2B—C8B—C9B—C10B171.4 (19)
O4Bi—Cu1—O4—N235.4 (8)O5B—C8B—C9B—C14B170.7 (4)
O1—Cu1—O4—N2153.9 (8)N2B—C8B—C9B—C14B9 (2)
O1i—Cu1—O4—N226.1 (8)C14B—C9B—C10B—C11B0.0
O1B—Cu1—O4—N224.5 (8)C8B—C9B—C10B—C11B179.6 (5)
O1Bi—Cu1—O4—N2155.5 (8)C9B—C10B—C11B—C12B0.0
O4B—Cu1—O4—Cu39.9 (2)C10B—C11B—C12B—C13B0.0
O4Bi—Cu1—O4—Cu3170.1 (2)C11B—C12B—C13B—C14B0.0
O1—Cu1—O4—Cu30.56 (18)C12B—C13B—C14B—O6B177.0 (5)
O1i—Cu1—O4—Cu3179.44 (18)C12B—C13B—C14B—C9B0.0
O1B—Cu1—O4—Cu3178.9 (3)C10B—C9B—C14B—O6B176.7 (6)
O1Bi—Cu1—O4—Cu31.1 (3)C8B—C9B—C14B—O6B3.7 (6)
O3—Cu3—O4—N294.1 (10)C10B—C9B—C14B—C13B0.0
N1—Cu3—O4—N2163.4 (11)C8B—C9B—C14B—C13B179.6 (6)
O5—Cu3—O4—N25.3 (8)C13B—C14B—O6B—Cu2B179.7 (4)
O3—Cu3—O4—Cu1110.3 (5)C9B—C14B—O6B—Cu2B2.8 (7)
N1—Cu3—O4—Cu17.7 (7)N2B—Cu2B—O6B—C14B4.8 (12)
O5—Cu3—O4—Cu1160.95 (19)O2Bi—Cu2B—O6B—C14B176.9 (5)
Cu1—O4—N2—C8161.1 (8)C21B—N3—C15—C16126.6 (8)
Cu3—O4—N2—C85.0 (15)C21—N3—C15—C1658.8 (6)
Cu1—O4—N2—Cu211.6 (13)C17—N3—C15—C1661.4 (6)
Cu3—O4—N2—Cu2167.6 (6)C19—N3—C15—C16179.4 (6)
O6—Cu2—N2—C86.1 (16)C17B—N3—C15—C16112.4 (7)
O1i—Cu2—N2—C8179.9 (16)C19B—N3—C15—C162.8 (7)
O6—Cu2—N2—O4176.5 (10)C21B—N3—C17—C185.5 (6)
O1i—Cu2—N2—O49.7 (10)C21—N3—C17—C18177.0 (3)
O4—N2—C8—O51.0 (16)C15—N3—C17—C1853.9 (4)
Cu2—N2—C8—O5169.8 (10)C15B—N3—C17—C18131.2 (5)
O4—N2—C8—C9178.0 (7)C19—N3—C17—C1861.9 (4)
Cu2—N2—C8—C97.2 (19)C19B—N3—C17—C18114.6 (5)
N2—C8—O5—Cu33.3 (10)C21B—N3—C19—C20123.5 (6)
C9—C8—O5—Cu3173.6 (2)C21—N3—C19—C2059.4 (4)
O3—Cu3—O5—C8171.2 (2)C15—N3—C19—C20178.4 (4)
O4—Cu3—O5—C84.6 (2)C15B—N3—C19—C204.2 (5)
N1—Cu3—O5—C843 (2)C17—N3—C19—C2059.0 (4)
O5—C8—C9—C104.6 (4)C17B—N3—C19—C20117.4 (6)
N2—C8—C9—C10178.3 (9)C15—N3—C21—C2261.4 (4)
O5—C8—C9—C14171.6 (3)C15B—N3—C21—C22120.9 (6)
N2—C8—C9—C145.5 (10)C17—N3—C21—C22176.2 (4)
C14—C9—C10—C110.0C19—N3—C21—C2256.8 (5)
C8—C9—C10—C11176.4 (3)C17B—N3—C21—C226.4 (6)
C9—C10—C11—C120.0C19B—N3—C21—C22123.3 (5)
C10—C11—C12—C130.0C21B—N3—C15B—C16B55.7 (13)
C11—C12—C13—C140.0C21—N3—C15B—C16B118.6 (12)
C12—C13—C14—O6179.4 (3)C17—N3—C15B—C16B118.3 (12)
C12—C13—C14—C90.0C19—N3—C15B—C16B2.8 (11)
C10—C9—C14—O6179.3 (4)C17B—N3—C15B—C16B67.7 (12)
C8—C9—C14—O64.7 (4)C19B—N3—C15B—C16B179.5 (11)
C10—C9—C14—C130.0C21B—N3—C17B—C18B177.3 (16)
C8—C9—C14—C13176.0 (3)C21—N3—C17B—C18B5.6 (15)
C13—C14—O6—Cu2175.9 (2)C15—N3—C17B—C18B120.6 (16)
C9—C14—O6—Cu24.7 (4)C15B—N3—C17B—C18B54.4 (17)
N2—Cu2—O6—C144.2 (6)C19—N3—C17B—C18B126.8 (16)
O2i—Cu2—O6—C14175.8 (3)C19B—N3—C17B—C18B56.6 (17)
O4B—Cu1—O1B—N1B12.4 (13)C21B—N3—C19B—C20B60 (2)
O4Bi—Cu1—O1B—N1B167.6 (13)C21—N3—C19B—C20B117 (2)
O4B—Cu1—O1B—Cu2Bi146.8 (2)C15—N3—C19B—C20B4.2 (19)
O4Bi—Cu1—O1B—Cu2Bi33.2 (2)C15B—N3—C19B—C20B173 (2)
Cu2Bi—O1B—N1B—C1B11 (2)C17—N3—C19B—C20B126 (2)
Cu1—O1B—N1B—Cu3B22 (2)C17B—N3—C19B—C20B58 (2)
Cu2Bi—O1B—N1B—Cu3B156.3 (12)C15—N3—C21B—C22B124.4 (12)
O1B—N1B—C1B—O2B1 (2)C15B—N3—C21B—C22B53.7 (13)
Cu3B—N1B—C1B—O2B166.8 (13)C17—N3—C21B—C22B4.8 (11)
O1B—N1B—C1B—C2B179.5 (11)C19—N3—C21B—C22B114.1 (12)
Cu3B—N1B—C1B—C2B14 (3)C17B—N3—C21B—C22B177.5 (11)
N1B—C1B—O2B—Cu2Bi11.7 (15)C19B—N3—C21B—C22B65.6 (12)
C2B—C1B—O2B—Cu2Bi169.3 (4)O7—C23—N4—C25176.5 (12)
O2B—C1B—C2B—C3B0.2 (7)O7—C23—N4—C247 (2)
N1B—C1B—C2B—C3B179.2 (14)O7B—C23B—N4B—C24B5 (2)
O2B—C1B—C2B—C7B179.2 (4)O7B—C23B—N4B—C25B174.3 (15)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C8H20N)2[Cu5(C7H4NO3)4(C3H7NO)2]
Mr1325.74
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)16.641 (3), 13.616 (2), 23.238 (4)
V3)5265.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.45 × 0.40 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2009)
Tmin, Tmax0.588, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
51635, 8316, 6387
Rint0.055
(sin θ/λ)max1)0.734
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.12
No. of reflections8316
No. of parameters631
No. of restraints101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.35

Computer programs: APEX2 (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was funded by the Shippensburg University CFEST Teaching and Research Excellence Program and the Shippensburg University Foundation (grant No. UG 2540-11 to JH and CMZ). The diffractometer was funded by NSF grant No. 0087210, by the Ohio Board of Regents grant No. CAP-491 and by YSU.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBodwin, J. J. & Pecoraro, V. L. (2000). Inorg. Chem. 39, 3434–3435.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGibney, B. R., Kessissoglou, D. P., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4840–4849.  CSD CrossRef CAS Web of Science Google Scholar
First citationLah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258–7259.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPecoraro, V. L. (1989). Inorg. Chim. Acta, 155, 171–173.  CrossRef CAS Google Scholar
First citationPecoraro, V. L., Stemmler, A. J., Gibney, B. R., Bodwin, J. J., Wang, H., Kampf, J. W. & Barwinski, A. (1997). Progress in Inorganic Chemistry, edited by K. D. Karlin, pp. 83–177. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m419-m420
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds