metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(η3-2-tert-butyl-1-tri­methyl­silyl-3-phenyl-1-aza­all­yl)nickel(II)

aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: etongtong@sohu.com

(Received 28 February 2011; accepted 12 March 2011; online 19 March 2011)

The title compound, [Ni(C15H24NSi)2], is a homoleptic metal–η3-aza­allyl centrosymmetric complex containing two aza­allyl ligands bound in an η3-manner to an NiII atom located on a center of symmetry. The overall coordination about the NiII atom is square-planar. The C and N atoms of the aza­allyl group are sp2-hybridized. The uneven Ni—C and Ni—N distances [2.045 (5)/2.060 (6) and 1.916 (5) Å] are influenced by a steric hindering effect from the nearby benzene ring.

Related literature

For metal-mediated reactions, see: Blystone (1989[Blystone, S. L. (1989). Chem. Rev. 89, 1663-1679.]). For related 1-aza­allyl complexes including some main group elements and transition metals, see: Avent et al. (2004[Avent, A. G., Hitchcock, P. B., Lappert, M. F., Sablong, R. & Severn, J. R. (2004). Organometallics, 23, 2591-2600.]); Caro et al. (2001[Caro, C. F., Lappert, M. F. & Merle, P. G. (2001). Coord. Chem. Rev. 219-221, 605-663.]); Hitchcock et al. (2000[Hitchcock, P. B., Lappert, M. F., Layh, M., Liu, D.-S., Sablong, R. & Shun, J. (2000). J. Chem. Soc. Dalton Trans. pp. 2301-2312.]). For related cobalt–η3-allyl complexes, see: Yuan et al. (2007[Yuan, H.-Y., Tong, H.-B. & Wei, X.-H. (2007). Acta Cryst. E63, m1325-m1326.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C15H24NSi)2]

  • Mr = 551.59

  • Monoclinic, P 21 /n

  • a = 10.309 (6) Å

  • b = 9.289 (6) Å

  • c = 16.521 (9) Å

  • β = 94.84 (2)°

  • V = 1576.4 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 213 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.815, Tmax = 0.871

  • 7488 measured reflections

  • 2776 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.096

  • wR(F2) = 0.186

  • S = 1.36

  • 2776 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −1.22 e Å−3

Data collection: SMART (Bruker, 2009[Bruker (2009). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal-η3-allyl complexes are well known to play an important role in many metal-mediated reactions (Blystone et al., 1989). Lappert and co-workers have prepared a variety of 1-azaallyl complexes containing main group elements and transition metals (Avent et al., 2004; Caro et al., 2001; Hitchcock et al., 2000). Recently, Yuan and co-workers have prepared related Cobalt η^3^-allyl complexes (Yuan et al., 2007). As part of an subsequent investigation of metal-η3-azaallyl complexes, we have prepared the title complex, [Ni(C30H48N2Si2)2], (I),

The title compound is a homoleptic metal-η3-azaallyl centrosymmetric complex containing two azaallyl ligands bound in an η3 manner to a NiII atom located at the center of symmetry, thereby, forming two nonplanar 4-membered rings, N/C8/C7/Ni (Fig. 1). The dihedral angle between the N/C7/Ni and C8/C7/Ni planes is 49.0 (3)°. The C and N atoms of the azaallyl group are sp2– hybridized with the N—C8 bond [1.355 (7) Å] showing double-bond character. The uneven Ni—C7, Ni—C8 and Ni—N distances [2.045 (5), 2.060 (6)Å, and 1.916 (5)Å] are influenced by a steric hindered effect from the nearby benzene ring (C1—C6).

Related literature top

For metal-mediated reactions, see: Blystone (1989). For related 1-azaallyl complexes including some main group elements and transition metals, see: Avent et al. (2004); Caro et al. (2001); Hitchcock et al. (2000). For related cobalt η^3^-allyl complexes, see: Yuan et al. (2007).

Experimental top

All manipulations were carried out under argon or in vacuo using standard Schlenk techniques. The title complex was synthesized according to literature methods (Hitchcock et al., 2000; Avent et al., 2004). To a solution of trimethylsilylmethyltolulithium (6 mmol) in diethyl ether(20 ml), tert-butyl nitrile (6 mmol) was added at ca 273 K and the solution was stirred for 15 min and then for 5 h at room temperature. To this solution, NiCl2(3 mmol) was added at ca 200 K and the suspension was stirred for 15 min and then for 5 h at room temperature. The mixture was filtered and the filtrate was carefully concentrated under a vacuum until yellow crystals of the title compound appeared.

Refinement top

All H atoms were positioned geometrically, with CH = 0.96– 0.98 Å, CH3 = 0.96Å and refined as riding, allowing for free rotation of the methyl groups. The Uiso(H) values were set at 1.18-1.21 Ueq(CH) or 1.5Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity. The symmetry operator for i is –X, –Y, –Z.
Bis(η3-2-tert-butyl-1-trimethylsilyl-3-phenyl-1-azaallyl)nickel(II) top
Crystal data top
[Ni(C15H24NSi)2]F(000) = 596
Mr = 551.59Dx = 1.162 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1405 reflections
a = 10.309 (6) Åθ = 2.4–26.7°
b = 9.289 (6) ŵ = 0.71 mm1
c = 16.521 (9) ÅT = 213 K
β = 94.84 (2)°Block, yellow
V = 1576.4 (16) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2776 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 129
Tmin = 0.815, Tmax = 0.871k = 911
7488 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.096Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.36 w = 1/[σ2(Fo2) + (0.0426P)2 + 3.0952P]
where P = (Fo2 + 2Fc2)/3
2776 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ni(C15H24NSi)2]V = 1576.4 (16) Å3
Mr = 551.59Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.309 (6) ŵ = 0.71 mm1
b = 9.289 (6) ÅT = 213 K
c = 16.521 (9) Å0.30 × 0.30 × 0.20 mm
β = 94.84 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2776 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2446 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.871Rint = 0.061
7488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0960 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.36Δρmax = 0.63 e Å3
2776 reflectionsΔρmin = 1.22 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.50000.50000.00000.0230 (3)
N0.5562 (5)0.5466 (5)0.1104 (3)0.0258 (11)
Si0.60753 (18)0.6959 (2)0.16563 (10)0.0343 (5)
C10.6907 (6)0.2919 (7)0.0403 (4)0.0319 (15)
C20.7162 (8)0.1682 (7)0.0031 (4)0.0461 (18)
H20.64770.10780.02080.055*
C30.8420 (9)0.1330 (10)0.0205 (5)0.067 (3)
H30.85750.05020.04980.080*
C40.9421 (9)0.2215 (11)0.0060 (6)0.071 (3)
H41.02650.19840.00520.086*
C50.9199 (7)0.3447 (9)0.0491 (5)0.057 (2)
H50.98870.40470.06700.068*
C60.7934 (7)0.3781 (7)0.0655 (4)0.0404 (17)
H60.77830.46150.09440.048*
C70.5535 (6)0.3120 (6)0.0600 (3)0.0288 (14)
H70.49610.22990.04650.035*
C80.5045 (6)0.4128 (6)0.1139 (3)0.0264 (13)
C90.3895 (6)0.3787 (7)0.1648 (4)0.0354 (15)
C100.3392 (9)0.2272 (9)0.1507 (6)0.079 (3)
H10A0.27480.20660.18780.119*
H10B0.41000.16030.15940.119*
H10C0.30090.21840.09590.119*
C110.4382 (8)0.3936 (10)0.2540 (4)0.064 (2)
H11A0.36790.37540.28720.096*
H11B0.47060.48940.26410.096*
H11C0.50690.32550.26710.096*
C120.2786 (7)0.4838 (9)0.1442 (5)0.063 (2)
H12A0.24720.47280.08810.095*
H12B0.30930.58050.15340.095*
H12C0.20920.46460.17790.095*
C130.7233 (8)0.6372 (9)0.2517 (4)0.059 (2)
H13A0.67650.58870.29140.088*
H13B0.76690.71980.27600.088*
H13C0.78640.57280.23200.088*
C140.4802 (8)0.8102 (8)0.2082 (5)0.063 (2)
H14A0.41870.84180.16500.094*
H14B0.52060.89250.23500.094*
H14C0.43580.75510.24650.094*
C150.6989 (9)0.8097 (9)0.0976 (5)0.066 (3)
H15A0.76160.75170.07270.099*
H15B0.74300.88520.12860.099*
H15C0.63940.85120.05620.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0255 (6)0.0245 (6)0.0189 (5)0.0018 (5)0.0021 (4)0.0027 (5)
N0.029 (3)0.027 (3)0.022 (2)0.007 (2)0.006 (2)0.003 (2)
Si0.0386 (11)0.0359 (10)0.0281 (9)0.0032 (8)0.0005 (8)0.0048 (8)
C10.035 (4)0.033 (4)0.028 (3)0.007 (3)0.003 (3)0.014 (3)
C20.057 (5)0.040 (4)0.042 (4)0.011 (4)0.008 (4)0.007 (3)
C30.074 (7)0.058 (6)0.072 (6)0.030 (5)0.025 (5)0.008 (5)
C40.048 (6)0.082 (7)0.088 (7)0.032 (5)0.028 (5)0.027 (6)
C50.035 (5)0.074 (6)0.061 (5)0.007 (4)0.003 (4)0.019 (4)
C60.038 (4)0.046 (4)0.038 (4)0.001 (3)0.006 (3)0.008 (3)
C70.041 (4)0.020 (3)0.025 (3)0.003 (3)0.001 (3)0.004 (3)
C80.022 (3)0.030 (3)0.027 (3)0.008 (3)0.002 (3)0.013 (3)
C90.033 (4)0.043 (4)0.031 (3)0.007 (3)0.010 (3)0.002 (3)
C100.090 (7)0.067 (6)0.088 (7)0.036 (5)0.054 (6)0.007 (5)
C110.058 (5)0.099 (7)0.037 (4)0.002 (5)0.016 (4)0.013 (4)
C120.043 (5)0.079 (6)0.070 (5)0.003 (4)0.022 (4)0.028 (5)
C130.061 (6)0.067 (5)0.046 (4)0.006 (4)0.012 (4)0.005 (4)
C140.067 (6)0.054 (5)0.066 (5)0.012 (4)0.001 (4)0.022 (4)
C150.089 (7)0.062 (5)0.048 (5)0.043 (5)0.007 (4)0.001 (4)
Geometric parameters (Å, º) top
Ni—N1.916 (5)C7—H70.9800
Ni—Ni1.916 (5)C8—C91.544 (8)
Ni—C82.045 (5)C9—C101.511 (10)
Ni—C8i2.045 (5)C9—C121.521 (10)
Ni—C7i2.060 (6)C9—C111.523 (9)
Ni—C72.060 (6)C10—H10A0.9600
N—C81.355 (7)C10—H10B0.9600
N—Si1.720 (5)C10—H10C0.9600
Si—C151.857 (7)C11—H11A0.9600
Si—C131.860 (8)C11—H11B0.9600
Si—C141.871 (7)C11—H11C0.9600
C1—C61.365 (9)C12—H12A0.9600
C1—C21.390 (9)C12—H12B0.9600
C1—C71.490 (8)C12—H12C0.9600
C2—C31.390 (10)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
C3—C41.362 (12)C13—H13C0.9600
C3—H30.9300C14—H14A0.9600
C4—C51.377 (11)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.389 (9)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.414 (8)
N—Ni—Ni180.0N—C8—C7114.7 (5)
N—Ni—C839.8 (2)N—C8—C9122.3 (5)
Ni—Ni—C8140.2 (2)C7—C8—C9122.6 (5)
N—Ni—C8i140.2 (2)N—C8—Ni64.9 (3)
Ni—Ni—C8i39.8 (2)C7—C8—Ni70.4 (3)
C8—Ni—C8i180.0C9—C8—Ni128.6 (4)
N—Ni—C7i108.3 (2)C10—C9—C12108.8 (7)
Ni—Ni—C7i71.7 (2)C10—C9—C11108.4 (6)
C8—Ni—C7i139.7 (2)C12—C9—C11109.8 (6)
C8i—Ni—C7i40.3 (2)C10—C9—C8112.1 (5)
N—Ni—C771.7 (2)C12—C9—C8110.1 (5)
Ni—Ni—C7108.3 (2)C11—C9—C8107.7 (5)
C8—Ni—C740.3 (2)C9—C10—H10A109.5
C8i—Ni—C7139.7 (2)C9—C10—H10B109.5
C7i—Ni—C7180.0H10A—C10—H10B109.5
C8—N—Si145.2 (4)C9—C10—H10C109.5
C8—N—Ni75.2 (3)H10A—C10—H10C109.5
Si—N—Ni137.9 (3)H10B—C10—H10C109.5
N—Si—C15106.7 (3)C9—C11—H11A109.5
N—Si—C13108.5 (3)C9—C11—H11B109.5
C15—Si—C13107.7 (4)H11A—C11—H11B109.5
N—Si—C14117.6 (3)C9—C11—H11C109.5
C15—Si—C14108.2 (4)H11A—C11—H11C109.5
C13—Si—C14107.7 (4)H11B—C11—H11C109.5
C6—C1—C2117.8 (6)C9—C12—H12A109.5
C6—C1—C7125.8 (6)C9—C12—H12B109.5
C2—C1—C7116.2 (6)H12A—C12—H12B109.5
C1—C2—C3121.4 (8)C9—C12—H12C109.5
C1—C2—H2119.3H12A—C12—H12C109.5
C3—C2—H2119.3H12B—C12—H12C109.5
C4—C3—C2119.1 (8)Si—C13—H13A109.5
C4—C3—H3120.5Si—C13—H13B109.5
C2—C3—H3120.5H13A—C13—H13B109.5
C3—C4—C5120.9 (8)Si—C13—H13C109.5
C3—C4—H4119.6H13A—C13—H13C109.5
C5—C4—H4119.6H13B—C13—H13C109.5
C4—C5—C6119.1 (8)Si—C14—H14A109.5
C4—C5—H5120.5Si—C14—H14B109.5
C6—C5—H5120.5H14A—C14—H14B109.5
C1—C6—C5121.8 (7)Si—C14—H14C109.5
C1—C6—H6119.1H14A—C14—H14C109.5
C5—C6—H6119.1H14B—C14—H14C109.5
C8—C7—C1128.1 (5)Si—C15—H15A109.5
C8—C7—Ni69.3 (3)Si—C15—H15B109.5
C1—C7—Ni102.8 (4)H15A—C15—H15B109.5
C8—C7—H7114.7Si—C15—H15C109.5
C1—C7—H7114.7H15A—C15—H15C109.5
Ni—C7—H7114.7H15B—C15—H15C109.5
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C15H24NSi)2]
Mr551.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)213
a, b, c (Å)10.309 (6), 9.289 (6), 16.521 (9)
β (°) 94.84 (2)
V3)1576.4 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.815, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
7488, 2776, 2446
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.096, 0.186, 1.36
No. of reflections2776
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 1.22

Computer programs: SMART (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20772074).

References

First citationAvent, A. G., Hitchcock, P. B., Lappert, M. F., Sablong, R. & Severn, J. R. (2004). Organometallics, 23, 2591–2600.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlystone, S. L. (1989). Chem. Rev. 89, 1663–1679.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaro, C. F., Lappert, M. F. & Merle, P. G. (2001). Coord. Chem. Rev. 219–221, 605–663.  Web of Science CrossRef CAS Google Scholar
First citationHitchcock, P. B., Lappert, M. F., Layh, M., Liu, D.-S., Sablong, R. & Shun, J. (2000). J. Chem. Soc. Dalton Trans. pp. 2301–2312.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, H.-Y., Tong, H.-B. & Wei, X.-H. (2007). Acta Cryst. E63, m1325–m1326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds