metal-organic compounds
Bis(η3-2-tert-butyl-1-trimethylsilyl-3-phenyl-1-azaallyl)nickel(II)
aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: etongtong@sohu.com
The title compound, [Ni(C15H24NSi)2], is a homoleptic metal–η3-azaallyl centrosymmetric complex containing two azaallyl ligands bound in an η3-manner to an NiII atom located on a center of symmetry. The overall coordination about the NiII atom is square-planar. The C and N atoms of the azaallyl group are sp2-hybridized. The uneven Ni—C and Ni—N distances [2.045 (5)/2.060 (6) and 1.916 (5) Å] are influenced by a steric hindering effect from the nearby benzene ring.
Related literature
For metal-mediated reactions, see: Blystone (1989). For related 1-azaallyl complexes including some main group elements and transition metals, see: Avent et al. (2004); Caro et al. (2001); Hitchcock et al. (2000). For related cobalt–η3-allyl complexes, see: Yuan et al. (2007).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811009469/jj2080sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811009469/jj2080Isup2.hkl
All manipulations were carried out under argon or in vacuo using standard Schlenk techniques. The title complex was synthesized according to literature methods (Hitchcock et al., 2000; Avent et al., 2004). To a solution of trimethylsilylmethyltolulithium (6 mmol) in diethyl ether(20 ml), tert-butyl nitrile (6 mmol) was added at ca 273 K and the solution was stirred for 15 min and then for 5 h at room temperature. To this solution, NiCl2(3 mmol) was added at ca 200 K and the suspension was stirred for 15 min and then for 5 h at room temperature. The mixture was filtered and the filtrate was carefully concentrated under a vacuum until yellow crystals of the title compound appeared.
All H atoms were positioned geometrically, with CH = 0.96– 0.98 Å, CH3 = 0.96Å and refined as riding, allowing for
of the methyl groups. The Uiso(H) values were set at 1.18-1.21 Ueq(CH) or 1.5Ueq(CH3).Data collection: SMART (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Ni(C15H24NSi)2] | F(000) = 596 |
Mr = 551.59 | Dx = 1.162 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1405 reflections |
a = 10.309 (6) Å | θ = 2.4–26.7° |
b = 9.289 (6) Å | µ = 0.71 mm−1 |
c = 16.521 (9) Å | T = 213 K |
β = 94.84 (2)° | Block, yellow |
V = 1576.4 (16) Å3 | 0.30 × 0.30 × 0.20 mm |
Z = 2 |
Siemens SMART CCD area-detector diffractometer | 2776 independent reflections |
Radiation source: fine-focus sealed tube | 2446 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −12→9 |
Tmin = 0.815, Tmax = 0.871 | k = −9→11 |
7488 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.096 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.36 | w = 1/[σ2(Fo2) + (0.0426P)2 + 3.0952P] where P = (Fo2 + 2Fc2)/3 |
2776 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −1.22 e Å−3 |
[Ni(C15H24NSi)2] | V = 1576.4 (16) Å3 |
Mr = 551.59 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.309 (6) Å | µ = 0.71 mm−1 |
b = 9.289 (6) Å | T = 213 K |
c = 16.521 (9) Å | 0.30 × 0.30 × 0.20 mm |
β = 94.84 (2)° |
Siemens SMART CCD area-detector diffractometer | 2776 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2446 reflections with I > 2σ(I) |
Tmin = 0.815, Tmax = 0.871 | Rint = 0.061 |
7488 measured reflections |
R[F2 > 2σ(F2)] = 0.096 | 0 restraints |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.36 | Δρmax = 0.63 e Å−3 |
2776 reflections | Δρmin = −1.22 e Å−3 |
166 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni | 0.5000 | 0.5000 | 0.0000 | 0.0230 (3) | |
N | 0.5562 (5) | 0.5466 (5) | 0.1104 (3) | 0.0258 (11) | |
Si | 0.60753 (18) | 0.6959 (2) | 0.16563 (10) | 0.0343 (5) | |
C1 | 0.6907 (6) | 0.2919 (7) | 0.0403 (4) | 0.0319 (15) | |
C2 | 0.7162 (8) | 0.1682 (7) | −0.0031 (4) | 0.0461 (18) | |
H2 | 0.6477 | 0.1078 | −0.0208 | 0.055* | |
C3 | 0.8420 (9) | 0.1330 (10) | −0.0205 (5) | 0.067 (3) | |
H3 | 0.8575 | 0.0502 | −0.0498 | 0.080* | |
C4 | 0.9421 (9) | 0.2215 (11) | 0.0060 (6) | 0.071 (3) | |
H4 | 1.0265 | 0.1984 | −0.0052 | 0.086* | |
C5 | 0.9199 (7) | 0.3447 (9) | 0.0491 (5) | 0.057 (2) | |
H5 | 0.9887 | 0.4047 | 0.0670 | 0.068* | |
C6 | 0.7934 (7) | 0.3781 (7) | 0.0655 (4) | 0.0404 (17) | |
H6 | 0.7783 | 0.4615 | 0.0944 | 0.048* | |
C7 | 0.5535 (6) | 0.3120 (6) | 0.0600 (3) | 0.0288 (14) | |
H7 | 0.4961 | 0.2299 | 0.0465 | 0.035* | |
C8 | 0.5045 (6) | 0.4128 (6) | 0.1139 (3) | 0.0264 (13) | |
C9 | 0.3895 (6) | 0.3787 (7) | 0.1648 (4) | 0.0354 (15) | |
C10 | 0.3392 (9) | 0.2272 (9) | 0.1507 (6) | 0.079 (3) | |
H10A | 0.2748 | 0.2066 | 0.1878 | 0.119* | |
H10B | 0.4100 | 0.1603 | 0.1594 | 0.119* | |
H10C | 0.3009 | 0.2184 | 0.0959 | 0.119* | |
C11 | 0.4382 (8) | 0.3936 (10) | 0.2540 (4) | 0.064 (2) | |
H11A | 0.3679 | 0.3754 | 0.2872 | 0.096* | |
H11B | 0.4706 | 0.4894 | 0.2641 | 0.096* | |
H11C | 0.5069 | 0.3255 | 0.2671 | 0.096* | |
C12 | 0.2786 (7) | 0.4838 (9) | 0.1442 (5) | 0.063 (2) | |
H12A | 0.2472 | 0.4728 | 0.0881 | 0.095* | |
H12B | 0.3093 | 0.5805 | 0.1534 | 0.095* | |
H12C | 0.2092 | 0.4646 | 0.1779 | 0.095* | |
C13 | 0.7233 (8) | 0.6372 (9) | 0.2517 (4) | 0.059 (2) | |
H13A | 0.6765 | 0.5887 | 0.2914 | 0.088* | |
H13B | 0.7669 | 0.7198 | 0.2760 | 0.088* | |
H13C | 0.7864 | 0.5728 | 0.2320 | 0.088* | |
C14 | 0.4802 (8) | 0.8102 (8) | 0.2082 (5) | 0.063 (2) | |
H14A | 0.4187 | 0.8418 | 0.1650 | 0.094* | |
H14B | 0.5206 | 0.8925 | 0.2350 | 0.094* | |
H14C | 0.4358 | 0.7551 | 0.2465 | 0.094* | |
C15 | 0.6989 (9) | 0.8097 (9) | 0.0976 (5) | 0.066 (3) | |
H15A | 0.7616 | 0.7517 | 0.0727 | 0.099* | |
H15B | 0.7430 | 0.8852 | 0.1286 | 0.099* | |
H15C | 0.6394 | 0.8512 | 0.0562 | 0.099* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni | 0.0255 (6) | 0.0245 (6) | 0.0189 (5) | −0.0018 (5) | 0.0021 (4) | 0.0027 (5) |
N | 0.029 (3) | 0.027 (3) | 0.022 (2) | 0.007 (2) | 0.006 (2) | 0.003 (2) |
Si | 0.0386 (11) | 0.0359 (10) | 0.0281 (9) | −0.0032 (8) | 0.0005 (8) | −0.0048 (8) |
C1 | 0.035 (4) | 0.033 (4) | 0.028 (3) | 0.007 (3) | 0.003 (3) | 0.014 (3) |
C2 | 0.057 (5) | 0.040 (4) | 0.042 (4) | 0.011 (4) | 0.008 (4) | 0.007 (3) |
C3 | 0.074 (7) | 0.058 (6) | 0.072 (6) | 0.030 (5) | 0.025 (5) | 0.008 (5) |
C4 | 0.048 (6) | 0.082 (7) | 0.088 (7) | 0.032 (5) | 0.028 (5) | 0.027 (6) |
C5 | 0.035 (5) | 0.074 (6) | 0.061 (5) | 0.007 (4) | 0.003 (4) | 0.019 (4) |
C6 | 0.038 (4) | 0.046 (4) | 0.038 (4) | 0.001 (3) | 0.006 (3) | 0.008 (3) |
C7 | 0.041 (4) | 0.020 (3) | 0.025 (3) | −0.003 (3) | −0.001 (3) | 0.004 (3) |
C8 | 0.022 (3) | 0.030 (3) | 0.027 (3) | −0.008 (3) | −0.002 (3) | 0.013 (3) |
C9 | 0.033 (4) | 0.043 (4) | 0.031 (3) | −0.007 (3) | 0.010 (3) | 0.002 (3) |
C10 | 0.090 (7) | 0.067 (6) | 0.088 (7) | −0.036 (5) | 0.054 (6) | −0.007 (5) |
C11 | 0.058 (5) | 0.099 (7) | 0.037 (4) | 0.002 (5) | 0.016 (4) | 0.013 (4) |
C12 | 0.043 (5) | 0.079 (6) | 0.070 (5) | 0.003 (4) | 0.022 (4) | 0.028 (5) |
C13 | 0.061 (6) | 0.067 (5) | 0.046 (4) | −0.006 (4) | −0.012 (4) | −0.005 (4) |
C14 | 0.067 (6) | 0.054 (5) | 0.066 (5) | 0.012 (4) | −0.001 (4) | −0.022 (4) |
C15 | 0.089 (7) | 0.062 (5) | 0.048 (5) | −0.043 (5) | 0.007 (4) | −0.001 (4) |
Ni—N | 1.916 (5) | C7—H7 | 0.9800 |
Ni—Ni | 1.916 (5) | C8—C9 | 1.544 (8) |
Ni—C8 | 2.045 (5) | C9—C10 | 1.511 (10) |
Ni—C8i | 2.045 (5) | C9—C12 | 1.521 (10) |
Ni—C7i | 2.060 (6) | C9—C11 | 1.523 (9) |
Ni—C7 | 2.060 (6) | C10—H10A | 0.9600 |
N—C8 | 1.355 (7) | C10—H10B | 0.9600 |
N—Si | 1.720 (5) | C10—H10C | 0.9600 |
Si—C15 | 1.857 (7) | C11—H11A | 0.9600 |
Si—C13 | 1.860 (8) | C11—H11B | 0.9600 |
Si—C14 | 1.871 (7) | C11—H11C | 0.9600 |
C1—C6 | 1.365 (9) | C12—H12A | 0.9600 |
C1—C2 | 1.390 (9) | C12—H12B | 0.9600 |
C1—C7 | 1.490 (8) | C12—H12C | 0.9600 |
C2—C3 | 1.390 (10) | C13—H13A | 0.9600 |
C2—H2 | 0.9300 | C13—H13B | 0.9600 |
C3—C4 | 1.362 (12) | C13—H13C | 0.9600 |
C3—H3 | 0.9300 | C14—H14A | 0.9600 |
C4—C5 | 1.377 (11) | C14—H14B | 0.9600 |
C4—H4 | 0.9300 | C14—H14C | 0.9600 |
C5—C6 | 1.389 (9) | C15—H15A | 0.9600 |
C5—H5 | 0.9300 | C15—H15B | 0.9600 |
C6—H6 | 0.9300 | C15—H15C | 0.9600 |
C7—C8 | 1.414 (8) | ||
N—Ni—Ni | 180.0 | N—C8—C7 | 114.7 (5) |
N—Ni—C8 | 39.8 (2) | N—C8—C9 | 122.3 (5) |
Ni—Ni—C8 | 140.2 (2) | C7—C8—C9 | 122.6 (5) |
N—Ni—C8i | 140.2 (2) | N—C8—Ni | 64.9 (3) |
Ni—Ni—C8i | 39.8 (2) | C7—C8—Ni | 70.4 (3) |
C8—Ni—C8i | 180.0 | C9—C8—Ni | 128.6 (4) |
N—Ni—C7i | 108.3 (2) | C10—C9—C12 | 108.8 (7) |
Ni—Ni—C7i | 71.7 (2) | C10—C9—C11 | 108.4 (6) |
C8—Ni—C7i | 139.7 (2) | C12—C9—C11 | 109.8 (6) |
C8i—Ni—C7i | 40.3 (2) | C10—C9—C8 | 112.1 (5) |
N—Ni—C7 | 71.7 (2) | C12—C9—C8 | 110.1 (5) |
Ni—Ni—C7 | 108.3 (2) | C11—C9—C8 | 107.7 (5) |
C8—Ni—C7 | 40.3 (2) | C9—C10—H10A | 109.5 |
C8i—Ni—C7 | 139.7 (2) | C9—C10—H10B | 109.5 |
C7i—Ni—C7 | 180.0 | H10A—C10—H10B | 109.5 |
C8—N—Si | 145.2 (4) | C9—C10—H10C | 109.5 |
C8—N—Ni | 75.2 (3) | H10A—C10—H10C | 109.5 |
Si—N—Ni | 137.9 (3) | H10B—C10—H10C | 109.5 |
N—Si—C15 | 106.7 (3) | C9—C11—H11A | 109.5 |
N—Si—C13 | 108.5 (3) | C9—C11—H11B | 109.5 |
C15—Si—C13 | 107.7 (4) | H11A—C11—H11B | 109.5 |
N—Si—C14 | 117.6 (3) | C9—C11—H11C | 109.5 |
C15—Si—C14 | 108.2 (4) | H11A—C11—H11C | 109.5 |
C13—Si—C14 | 107.7 (4) | H11B—C11—H11C | 109.5 |
C6—C1—C2 | 117.8 (6) | C9—C12—H12A | 109.5 |
C6—C1—C7 | 125.8 (6) | C9—C12—H12B | 109.5 |
C2—C1—C7 | 116.2 (6) | H12A—C12—H12B | 109.5 |
C1—C2—C3 | 121.4 (8) | C9—C12—H12C | 109.5 |
C1—C2—H2 | 119.3 | H12A—C12—H12C | 109.5 |
C3—C2—H2 | 119.3 | H12B—C12—H12C | 109.5 |
C4—C3—C2 | 119.1 (8) | Si—C13—H13A | 109.5 |
C4—C3—H3 | 120.5 | Si—C13—H13B | 109.5 |
C2—C3—H3 | 120.5 | H13A—C13—H13B | 109.5 |
C3—C4—C5 | 120.9 (8) | Si—C13—H13C | 109.5 |
C3—C4—H4 | 119.6 | H13A—C13—H13C | 109.5 |
C5—C4—H4 | 119.6 | H13B—C13—H13C | 109.5 |
C4—C5—C6 | 119.1 (8) | Si—C14—H14A | 109.5 |
C4—C5—H5 | 120.5 | Si—C14—H14B | 109.5 |
C6—C5—H5 | 120.5 | H14A—C14—H14B | 109.5 |
C1—C6—C5 | 121.8 (7) | Si—C14—H14C | 109.5 |
C1—C6—H6 | 119.1 | H14A—C14—H14C | 109.5 |
C5—C6—H6 | 119.1 | H14B—C14—H14C | 109.5 |
C8—C7—C1 | 128.1 (5) | Si—C15—H15A | 109.5 |
C8—C7—Ni | 69.3 (3) | Si—C15—H15B | 109.5 |
C1—C7—Ni | 102.8 (4) | H15A—C15—H15B | 109.5 |
C8—C7—H7 | 114.7 | Si—C15—H15C | 109.5 |
C1—C7—H7 | 114.7 | H15A—C15—H15C | 109.5 |
Ni—C7—H7 | 114.7 | H15B—C15—H15C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C15H24NSi)2] |
Mr | 551.59 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 213 |
a, b, c (Å) | 10.309 (6), 9.289 (6), 16.521 (9) |
β (°) | 94.84 (2) |
V (Å3) | 1576.4 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.71 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.815, 0.871 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7488, 2776, 2446 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.096, 0.186, 1.36 |
No. of reflections | 2776 |
No. of parameters | 166 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −1.22 |
Computer programs: SMART (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
We thank the Natural Science Foundation of China (grant No. 20772074).
References
Avent, A. G., Hitchcock, P. B., Lappert, M. F., Sablong, R. & Severn, J. R. (2004). Organometallics, 23, 2591–2600. Web of Science CSD CrossRef CAS Google Scholar
Blystone, S. L. (1989). Chem. Rev. 89, 1663–1679. CrossRef CAS Web of Science Google Scholar
Bruker (2009). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Caro, C. F., Lappert, M. F. & Merle, P. G. (2001). Coord. Chem. Rev. 219–221, 605–663. Web of Science CrossRef CAS Google Scholar
Hitchcock, P. B., Lappert, M. F., Layh, M., Liu, D.-S., Sablong, R. & Shun, J. (2000). J. Chem. Soc. Dalton Trans. pp. 2301–2312. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuan, H.-Y., Tong, H.-B. & Wei, X.-H. (2007). Acta Cryst. E63, m1325–m1326. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-η3-allyl complexes are well known to play an important role in many metal-mediated reactions (Blystone et al., 1989). Lappert and co-workers have prepared a variety of 1-azaallyl complexes containing main group elements and transition metals (Avent et al., 2004; Caro et al., 2001; Hitchcock et al., 2000). Recently, Yuan and co-workers have prepared related Cobalt η^3^-allyl complexes (Yuan et al., 2007). As part of an subsequent investigation of metal-η3-azaallyl complexes, we have prepared the title complex, [Ni(C30H48N2Si2)2], (I),
The title compound is a homoleptic metal-η3-azaallyl centrosymmetric complex containing two azaallyl ligands bound in an η3 manner to a NiII atom located at the center of symmetry, thereby, forming two nonplanar 4-membered rings, N/C8/C7/Ni (Fig. 1). The dihedral angle between the N/C7/Ni and C8/C7/Ni planes is 49.0 (3)°. The C and N atoms of the azaallyl group are sp2– hybridized with the N—C8 bond [1.355 (7) Å] showing double-bond character. The uneven Ni—C7, Ni—C8 and Ni—N distances [2.045 (5), 2.060 (6)Å, and 1.916 (5)Å] are influenced by a steric hindered effect from the nearby benzene ring (C1—C6).