organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­ethanaminium 3,4,5,6-tetra­bromo-2-(meth­­oxy­carbon­yl)benzoate methanol monosolvate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 19 January 2011; accepted 6 March 2011; online 12 March 2011)

In the title compound, C2H8NO+·C9H3Br4O4·CH4O, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the components into chains along [001].

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8NO+·C9H3Br4O4·CH4O

  • Mr = 588.89

  • Monoclinic, P 21 /c

  • a = 9.4231 (11) Å

  • b = 25.475 (2) Å

  • c = 8.3463 (7) Å

  • β = 111.990 (1)°

  • V = 1857.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.69 mm−1

  • T = 298 K

  • 0.42 × 0.35 × 0.34 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.121, Tmax = 0.156

  • 9367 measured reflections

  • 3269 independent reflections

  • 1581 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.071

  • S = 1.00

  • 3269 reflections

  • 212 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.01 2.885 (7) 168
N1—H1B⋯O6 0.89 1.86 2.740 (7) 168
N1—H1C⋯O4ii 0.89 1.96 2.789 (8) 154
O5—H5⋯O4ii 0.82 2.00 2.813 (8) 169
O6—H6⋯O3iii 0.82 1.92 2.714 (8) 163
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,5,6,7-Tetrabromo-2-ethylisoindoline-1,3-dione is an important flame retardant. 2-(Methoxycarbonyl)-3,4,5,6-tetrabromobenzoic acid is the intermediate in the synthesis of 4,5,6,7-Tetrabromo-2-ethylisoindoline-1,3-dione. In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound (I) contains one ethanolaminium cation, one 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate anion and one methanol solvent molecule (Fig. 1). The bond lengths and angles agree with those in ethanaminium 2-(methoxycarbonyl)-3,4,5,6-tetrabromo benzoate methanol solvate (Li, 2011) and ethane-1,2-diaminium 2-(methoxycarbonyl)-3,4,5,6-tetrabromo benzoate methanol solvate (Liang, 2008). In the crystal structure, intermolecular N—H···O and O—H···O hydrogen bonds link the components of the structure into one-dimensional chains along [001](see Fig. 2 and Table 1).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrabromoisobenzofuran-1,3-dione (4.64 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Ethanolamine (0.61 g, 0.01 mol) was added to this solution, followed by stirring for 10 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.96–0.97 Å, N—H = 0.89 Å, O—H = 0.82Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are indicated by dashed lines.
2-Hydroxyethanaminium 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate methanol monosolvate top
Crystal data top
C2H8NO+·C9H3Br4O4·CH4OF(000) = 1128
Mr = 588.89Dx = 2.105 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4231 (11) ÅCell parameters from 1705 reflections
b = 25.475 (2) Åθ = 2.9–21.8°
c = 8.3463 (7) ŵ = 8.69 mm1
β = 111.990 (1)°T = 298 K
V = 1857.8 (3) Å3Block, colorless
Z = 40.42 × 0.35 × 0.34 mm
Data collection top
Bruker SMART CCD
diffractometer
3269 independent reflections
Radiation source: fine-focus sealed tube1581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1011
Tmin = 0.121, Tmax = 0.156k = 3028
9367 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0103P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3269 reflectionsΔρmax = 0.55 e Å3
212 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00077 (5)
Crystal data top
C2H8NO+·C9H3Br4O4·CH4OV = 1857.8 (3) Å3
Mr = 588.89Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4231 (11) ŵ = 8.69 mm1
b = 25.475 (2) ÅT = 298 K
c = 8.3463 (7) Å0.42 × 0.35 × 0.34 mm
β = 111.990 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3269 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1581 reflections with I > 2σ(I)
Tmin = 0.121, Tmax = 0.156Rint = 0.086
9367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
3269 reflectionsΔρmin = 0.58 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33226 (9)0.40176 (3)0.76997 (13)0.0614 (3)
Br20.40915 (10)0.52775 (3)0.75108 (12)0.0620 (3)
Br30.73518 (10)0.56240 (3)0.72387 (12)0.0632 (3)
Br40.98636 (10)0.47177 (3)0.73227 (13)0.0709 (3)
N10.4471 (6)0.6959 (2)0.6870 (8)0.0456 (18)
H1A0.42180.72970.67730.068*
H1B0.37550.67750.70770.068*
H1C0.45420.68480.58920.068*
O10.8414 (6)0.3298 (2)0.6314 (8)0.0643 (18)
O21.0002 (7)0.3545 (2)0.8847 (9)0.092 (2)
O30.6507 (6)0.30316 (19)0.8975 (8)0.0702 (18)
O40.5049 (6)0.30677 (18)0.6230 (8)0.0567 (17)
O50.7644 (6)0.6848 (2)0.6739 (8)0.081 (2)
H50.69200.68500.58070.097*
O60.2414 (7)0.6457 (2)0.7949 (8)0.095 (2)
H60.25700.65920.88910.114*
C10.8828 (10)0.3586 (3)0.7696 (14)0.051 (2)
C20.5883 (10)0.3264 (3)0.7595 (14)0.044 (2)
C30.7674 (8)0.4002 (2)0.7569 (9)0.0337 (19)
C40.6248 (8)0.3843 (3)0.7589 (9)0.0342 (19)
C50.5202 (7)0.4236 (3)0.7578 (9)0.038 (2)
C60.5502 (8)0.4761 (2)0.7492 (9)0.037 (2)
C70.6908 (9)0.4915 (2)0.7421 (10)0.041 (2)
C80.7971 (8)0.4530 (2)0.7450 (10)0.038 (2)
C90.9453 (9)0.2862 (3)0.6319 (12)0.096 (3)
H9A1.02270.29880.59280.145*
H9B0.88780.25880.55630.145*
H9C0.99270.27260.74710.145*
C100.5970 (9)0.6887 (3)0.8323 (10)0.052 (2)
H10A0.59150.70380.93650.062*
H10B0.61740.65140.85250.062*
C110.7246 (9)0.7134 (3)0.7971 (11)0.061 (3)
H11A0.69540.74880.75470.074*
H11B0.81330.71580.90400.074*
C120.1062 (10)0.6179 (3)0.7424 (12)0.087 (3)
H12A0.10930.59320.83060.130*
H12B0.09270.59940.63750.130*
H12C0.02240.64170.72250.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0395 (5)0.0646 (5)0.0851 (8)0.0002 (5)0.0292 (5)0.0080 (6)
Br20.0537 (6)0.0497 (5)0.0860 (8)0.0231 (5)0.0299 (6)0.0052 (5)
Br30.0653 (6)0.0307 (4)0.0958 (9)0.0021 (5)0.0328 (6)0.0015 (5)
Br40.0410 (6)0.0579 (5)0.1211 (10)0.0072 (5)0.0387 (6)0.0055 (6)
N10.050 (5)0.036 (3)0.052 (5)0.013 (3)0.020 (4)0.010 (4)
O10.044 (4)0.061 (4)0.078 (5)0.021 (3)0.012 (4)0.019 (4)
O20.060 (5)0.086 (4)0.092 (6)0.041 (4)0.016 (4)0.030 (5)
O30.097 (5)0.041 (3)0.050 (5)0.003 (3)0.001 (4)0.011 (3)
O40.062 (4)0.048 (3)0.053 (5)0.022 (3)0.014 (4)0.006 (3)
O50.049 (4)0.097 (5)0.093 (6)0.017 (4)0.023 (4)0.017 (4)
O60.082 (5)0.139 (5)0.076 (5)0.057 (5)0.042 (4)0.023 (4)
C10.037 (6)0.037 (5)0.064 (8)0.002 (5)0.002 (6)0.010 (5)
C20.035 (6)0.030 (5)0.066 (8)0.003 (4)0.018 (6)0.004 (5)
C30.021 (4)0.031 (4)0.046 (6)0.008 (4)0.008 (4)0.001 (4)
C40.031 (5)0.035 (4)0.031 (6)0.006 (4)0.004 (4)0.003 (4)
C50.027 (5)0.045 (4)0.042 (6)0.005 (4)0.012 (4)0.001 (4)
C60.038 (5)0.025 (4)0.048 (6)0.004 (4)0.014 (4)0.002 (4)
C70.044 (5)0.025 (4)0.053 (6)0.006 (4)0.019 (5)0.010 (4)
C80.025 (5)0.038 (4)0.044 (6)0.001 (4)0.005 (4)0.002 (4)
C90.078 (7)0.082 (7)0.114 (9)0.044 (6)0.019 (7)0.041 (6)
C100.067 (7)0.033 (4)0.052 (7)0.010 (5)0.019 (6)0.005 (5)
C110.039 (6)0.066 (6)0.070 (8)0.006 (5)0.010 (5)0.004 (5)
C120.067 (7)0.092 (7)0.113 (10)0.023 (6)0.047 (7)0.027 (7)
Geometric parameters (Å, º) top
Br1—C51.894 (6)C2—C41.514 (9)
Br2—C61.875 (6)C3—C81.384 (8)
Br3—C71.872 (6)C3—C41.410 (8)
Br4—C81.888 (6)C4—C51.402 (8)
N1—C101.489 (8)C5—C61.376 (8)
N1—H1A0.8900C6—C71.404 (8)
N1—H1B0.8900C7—C81.397 (8)
N1—H1C0.8900C9—H9A0.9600
O1—C11.298 (9)C9—H9B0.9600
O1—C91.480 (7)C9—H9C0.9600
O2—C11.166 (9)C10—C111.481 (8)
O3—C21.232 (9)C10—H10A0.9700
O4—C21.223 (9)C10—H10B0.9700
O5—C111.420 (8)C11—H11A0.9700
O5—H50.8200C11—H11B0.9700
O6—C121.377 (8)C12—H12A0.9600
O6—H60.8200C12—H12B0.9600
C1—C31.493 (9)C12—H12C0.9600
C10—N1—H1A109.5C6—C7—Br3121.1 (5)
C10—N1—H1B109.5C3—C8—C7121.5 (6)
H1A—N1—H1B109.5C3—C8—Br4118.1 (5)
C10—N1—H1C109.5C7—C8—Br4120.5 (5)
H1A—N1—H1C109.5O1—C9—H9A109.5
H1B—N1—H1C109.5O1—C9—H9B109.5
C1—O1—C9116.4 (6)H9A—C9—H9B109.5
C11—O5—H5109.5O1—C9—H9C109.5
C12—O6—H6109.5H9A—C9—H9C109.5
O2—C1—O1123.9 (8)H9B—C9—H9C109.5
O2—C1—C3124.3 (9)C11—C10—N1112.3 (6)
O1—C1—C3111.7 (8)C11—C10—H10A109.2
O4—C2—O3126.1 (7)N1—C10—H10A109.2
O4—C2—C4117.6 (9)C11—C10—H10B109.2
O3—C2—C4116.2 (8)N1—C10—H10B109.2
C8—C3—C4119.9 (6)H10A—C10—H10B107.9
C8—C3—C1122.2 (6)O5—C11—C10112.3 (6)
C4—C3—C1117.9 (6)O5—C11—H11A109.1
C5—C4—C3117.8 (6)C10—C11—H11A109.1
C5—C4—C2122.3 (6)O5—C11—H11B109.1
C3—C4—C2119.9 (6)C10—C11—H11B109.1
C6—C5—C4122.4 (6)H11A—C11—H11B107.9
C6—C5—Br1120.2 (5)O6—C12—H12A109.5
C4—C5—Br1117.4 (5)O6—C12—H12B109.5
C5—C6—C7119.4 (6)H12A—C12—H12B109.5
C5—C6—Br2121.5 (5)O6—C12—H12C109.5
C7—C6—Br2119.2 (5)H12A—C12—H12C109.5
C8—C7—C6119.0 (5)H12B—C12—H12C109.5
C8—C7—Br3119.9 (5)
C9—O1—C1—O26.2 (13)C4—C5—C6—C70.4 (11)
C9—O1—C1—C3178.2 (6)Br1—C5—C6—C7179.3 (5)
O2—C1—C3—C863.9 (13)C4—C5—C6—Br2179.1 (5)
O1—C1—C3—C8111.7 (8)Br1—C5—C6—Br20.5 (9)
O2—C1—C3—C4115.6 (10)C5—C6—C7—C80.4 (11)
O1—C1—C3—C468.9 (9)Br2—C6—C7—C8178.4 (6)
C8—C3—C4—C53.3 (11)C5—C6—C7—Br3178.2 (6)
C1—C3—C4—C5176.1 (7)Br2—C6—C7—Br33.0 (9)
C8—C3—C4—C2175.8 (8)C4—C3—C8—C72.7 (12)
C1—C3—C4—C24.7 (11)C1—C3—C8—C7176.7 (7)
O4—C2—C4—C577.2 (10)C4—C3—C8—Br4177.1 (5)
O3—C2—C4—C5105.4 (9)C1—C3—C8—Br43.4 (11)
O4—C2—C4—C3101.9 (9)C6—C7—C8—C30.8 (12)
O3—C2—C4—C375.5 (10)Br3—C7—C8—C3179.5 (6)
C3—C4—C5—C62.2 (11)C6—C7—C8—Br4179.0 (5)
C2—C4—C5—C6176.9 (8)Br3—C7—C8—Br40.4 (9)
C3—C4—C5—Br1177.5 (5)N1—C10—C11—O573.5 (8)
C2—C4—C5—Br13.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.012.885 (7)168
N1—H1B···O60.891.862.740 (7)168
N1—H1C···O4ii0.891.962.789 (8)154
O5—H5···O4ii0.822.002.813 (8)169
O6—H6···O3iii0.821.922.714 (8)163
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC2H8NO+·C9H3Br4O4·CH4O
Mr588.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.4231 (11), 25.475 (2), 8.3463 (7)
β (°) 111.990 (1)
V3)1857.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.69
Crystal size (mm)0.42 × 0.35 × 0.34
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.121, 0.156
No. of measured, independent and
observed [I > 2σ(I)] reflections
9367, 3269, 1581
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.071, 1.00
No. of reflections3269
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.58

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.012.885 (7)168
N1—H1B···O60.891.862.740 (7)168
N1—H1C···O4ii0.891.962.789 (8)154
O5—H5···O4ii0.822.002.813 (8)169
O6—H6···O3iii0.821.922.714 (8)163
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds