organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Bromo-5-hy­dr­oxy-4-meth­­oxy­benzyl­­idene)-3,5-dihy­dr­oxy­benzo­hydrazide methanol monosolvate

aThe Second Hospital of Jilin University, Jilin Province 130041, People's Republic of China, bPharmacy College of Ningxia Medical University, Ningxia Province 750004, People's Republic of China, cMinority Traditional Medical Center of Minzu University of China, Beijing 100081, People's Republic of China, and dTraditional Chinese Medicine College of Ningxia Medical University, Ningxia Province 750004, People's Republic of China
*Correspondence e-mail: nanyiailing10@yeah.net

(Received 25 January 2011; accepted 7 March 2011; online 12 March 2011)

In the crystal structure of the title compound, C15H13BrN2O5·CH3OH, the methanol solvent mol­ecule links symmetry-related mol­ecules through O—H⋯O and N—H⋯O hydrogen bonds. Further inter­molecular O—H⋯O hydrogen bonds link symmetry-related mol­ecules, leading to the formation of a three-dimensional network. Two of the H atoms involved in hydrogen bonding are disordered. The dihedral angle between the rings is 5.64 (14)°.

Related literature

The title compound is a Schiff base with potential anti­bacterial properties. For the anti­bacterial and anti­tumor activity of Schiff base complexes, see: Brückner et al. (2000[Brückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100-6106.]); Harrop et al. (2003[Harrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410-411.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Diao (2007[Diao, Y.-P. (2007). Acta Cryst. E63, m1453-m1454.]); Diao et al. (2007[Diao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.]); Huang et al. (2007[Huang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.]); Li et al. (2007[Li, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13BrN2O5·CH4O

  • Mr = 413.23

  • Monoclinic, P 21 /n

  • a = 7.4242 (17) Å

  • b = 17.709 (4) Å

  • c = 12.927 (3) Å

  • β = 96.493 (3)°

  • V = 1688.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 296 K

  • 0.47 × 0.24 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.488, Tmax = 0.616

  • 9884 measured reflections

  • 3780 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.111

  • S = 1.01

  • 3780 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O5i 0.82 2.11 2.932 (3) 180
O2—H2B⋯O1ii 0.82 2.33 3.148 (4) 180
O4—H4A⋯O3iii 0.82 1.84 2.655 (3) 175
O5—H5A⋯O5iv 0.82 2.15 2.859 (5) 145
O5—H5B⋯O2v 0.82 2.12 2.932 (3) 171
N2—H2⋯O6 0.86 2.15 2.984 (4) 164
O6—H6⋯O4vi 0.82 2.33 3.101 (4) 157
Symmetry codes: (i) x+1, y, z+1; (ii) -x+1, -y+1, -z+2; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x, -y+1, -z; (v) x-1, y, z-1; (vi) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have received much attention in recent years. Some of the complexes have been found to have antibacterial and antitumor properties (Brückner, et al.,2000; Harrop et al.,2003; Ren et al.,2002). As part of our research programme on Schiff base compounds (Diao, 2007; Diao et al., 2007; Li et al., 2007; Huang et al., 2007), we report here the structure of the title compound.

The title compound co-crystallizes with one methanol molecule (Fig. 1), which links symmetry-related molecules through O—H···O and one N—H···O hydrogen bonds. In the crystal structure, further intermolecular O—H···O hydrogen bonds link symmetry-related molecules (Table 1), forming a three-dimensional network (Fig.2). The H atoms bonded to O2 and O5 are disordered over two positions. All positions take part in intermolecular hydrogen bonds.

Related literature top

The title compound is a Schiff base with potential antibacterial properties. For the antibacterial and antitumor activity of Schiff base complexes, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For related structures, see: Diao (2007); Diao et al. (2007); Huang et al. (2007); Li et al. (2007).

Experimental top

2-Bromo-5-hydroxy-4-methoxybenzaldehyde (0.1 mmol, 23.1 mg) and 3,5-Dihydroxybenzhydrazide (0.1 mmol, 16.8 mg) were dissolved in a methanol solution (10 ml). The mixture was stirred at room temperature for 1 h and filtered. After keeping the filtrate in air for three days, colorless block-like crystals were formed.

Refinement top

The H2 atom bonded to N2 was located in a difference map and refined freely, other H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, O—H=0.82,C—H=0.93 for phenyl, 0.96 for methyl H atoms, with Uiso(H)=1.2Ueq(C) for phenyl and 1.5eqU(C) for methyl and hydroxyl groups. H atoms bonded to O2 and O5 were split over two positions with a fixed occupation factor of 0.5.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellipsoids are shown at 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the b axis. The dashed lines represent hydrogen bonding interactions.
N'-(2-Bromo-5-hydroxy-4-methoxybenzylidene)-3,5-dihydroxybenzohydrazide methanol monosolvate top
Crystal data top
C15H13BrN2O5·CH4OF(000) = 840
Mr = 413.23Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2413 reflections
a = 7.4242 (17) Åθ = 2.3–25.8°
b = 17.709 (4) ŵ = 2.47 mm1
c = 12.927 (3) ÅT = 296 K
β = 96.493 (3)°Block, colorless
V = 1688.7 (6) Å30.47 × 0.24 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3780 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.488, Tmax = 0.616k = 1422
9884 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.8829P]
where P = (Fo2 + 2Fc2)/3
3780 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C15H13BrN2O5·CH4OV = 1688.7 (6) Å3
Mr = 413.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4242 (17) ŵ = 2.47 mm1
b = 17.709 (4) ÅT = 296 K
c = 12.927 (3) Å0.47 × 0.24 × 0.19 mm
β = 96.493 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3780 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2569 reflections with I > 2σ(I)
Tmin = 0.488, Tmax = 0.616Rint = 0.035
9884 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.01Δρmax = 0.46 e Å3
3780 reflectionsΔρmin = 0.36 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.38821 (6)0.687078 (19)0.54748 (3)0.05529 (16)
O10.6149 (3)0.58020 (13)0.91725 (17)0.0527 (6)
O20.5254 (4)0.43891 (13)0.86339 (18)0.0652 (8)
H2A0.61650.44220.90540.098*0.50
H2B0.48840.43380.92040.098*0.50
O30.1127 (4)0.31210 (12)0.42579 (17)0.0541 (7)
O40.2407 (4)0.19793 (12)0.12235 (16)0.0501 (6)
H4A0.28040.19330.06090.075*
O50.1488 (4)0.45108 (14)0.01335 (18)0.0636 (8)
H5A0.09420.49140.01800.095*0.50
H5B0.23270.44580.03300.095*0.50
N10.2142 (3)0.44876 (14)0.49680 (17)0.0348 (6)
N20.1270 (3)0.43712 (14)0.39748 (18)0.0354 (6)
H20.10710.47740.36080.059 (11)*
C10.3706 (4)0.53397 (16)0.6178 (2)0.0314 (7)
C20.4255 (4)0.60688 (16)0.6447 (2)0.0327 (7)
C30.5083 (4)0.62529 (17)0.7431 (2)0.0370 (7)
H3A0.54280.67480.75900.044*
C40.5387 (4)0.56937 (17)0.8169 (2)0.0373 (7)
C50.4914 (5)0.49492 (17)0.7916 (2)0.0394 (8)
C60.4093 (4)0.47768 (17)0.6937 (2)0.0367 (7)
H6A0.37870.42780.67740.044*
C70.0144 (4)0.35570 (16)0.2601 (2)0.0311 (7)
C80.0809 (4)0.28403 (17)0.2367 (2)0.0343 (7)
H8A0.06430.24590.28630.041*
C90.1723 (4)0.26884 (16)0.1392 (2)0.0323 (7)
C100.1920 (4)0.32480 (16)0.0639 (2)0.0326 (7)
H10A0.24970.31460.00230.039*
C110.1249 (4)0.39546 (17)0.0888 (2)0.0369 (7)
C120.0367 (4)0.41262 (16)0.1864 (2)0.0345 (7)
H12A0.00620.46110.20190.041*
C130.6728 (5)0.6544 (2)0.9486 (3)0.0553 (10)
H13A0.76280.67150.90620.083*
H13B0.72370.65361.02030.083*
H13C0.57100.68820.94060.083*
C140.2758 (4)0.51463 (17)0.5154 (2)0.0350 (7)
H14A0.26070.55120.46360.042*
C150.0798 (4)0.36657 (17)0.3681 (2)0.0329 (7)
O60.0298 (5)0.58875 (17)0.3072 (3)0.0832 (9)
H60.05330.60680.33590.125*
C160.0995 (12)0.6427 (4)0.2480 (5)0.156 (4)
H16A0.00790.65880.19420.234*
H16B0.20050.62220.21710.234*
H16C0.13910.68500.29110.234*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0774 (3)0.0372 (2)0.0484 (2)0.00523 (18)0.00500 (17)0.01134 (15)
O10.0713 (17)0.0449 (14)0.0359 (12)0.0053 (12)0.0200 (11)0.0098 (10)
O20.103 (2)0.0426 (14)0.0412 (13)0.0058 (14)0.0278 (13)0.0078 (11)
O30.0851 (19)0.0325 (12)0.0368 (12)0.0003 (12)0.0268 (12)0.0045 (10)
O40.0834 (19)0.0339 (13)0.0286 (11)0.0130 (11)0.0126 (12)0.0003 (9)
O50.094 (2)0.0457 (15)0.0418 (13)0.0179 (13)0.0316 (13)0.0206 (11)
N10.0415 (15)0.0358 (14)0.0241 (12)0.0030 (12)0.0085 (11)0.0049 (10)
N20.0475 (16)0.0300 (13)0.0255 (12)0.0015 (11)0.0101 (11)0.0012 (11)
C10.0342 (17)0.0315 (16)0.0276 (14)0.0011 (12)0.0001 (12)0.0036 (12)
C20.0336 (17)0.0299 (15)0.0343 (15)0.0019 (13)0.0024 (13)0.0029 (12)
C30.0408 (19)0.0288 (16)0.0398 (17)0.0038 (13)0.0030 (14)0.0074 (13)
C40.0387 (19)0.0387 (17)0.0320 (16)0.0009 (14)0.0075 (13)0.0084 (13)
C50.052 (2)0.0307 (16)0.0328 (16)0.0003 (14)0.0086 (14)0.0008 (13)
C60.0444 (19)0.0268 (15)0.0365 (16)0.0030 (13)0.0058 (14)0.0042 (12)
C70.0333 (17)0.0329 (16)0.0250 (14)0.0037 (13)0.0058 (12)0.0037 (12)
C80.0463 (19)0.0302 (15)0.0244 (14)0.0036 (13)0.0050 (13)0.0011 (12)
C90.0408 (19)0.0263 (15)0.0286 (15)0.0003 (13)0.0015 (13)0.0041 (12)
C100.0369 (17)0.0381 (17)0.0205 (13)0.0013 (13)0.0065 (12)0.0003 (12)
C110.0421 (19)0.0345 (17)0.0315 (15)0.0014 (14)0.0074 (13)0.0074 (13)
C120.0417 (18)0.0279 (15)0.0306 (15)0.0030 (13)0.0101 (13)0.0007 (12)
C130.058 (2)0.050 (2)0.054 (2)0.0051 (18)0.0111 (18)0.0216 (18)
C140.0421 (19)0.0341 (16)0.0273 (15)0.0006 (14)0.0020 (13)0.0013 (12)
C150.0357 (18)0.0360 (16)0.0251 (14)0.0019 (13)0.0052 (12)0.0031 (12)
O60.093 (3)0.0608 (19)0.095 (2)0.0126 (16)0.0061 (19)0.0034 (17)
C160.276 (10)0.091 (5)0.119 (5)0.061 (5)0.094 (6)0.051 (4)
Geometric parameters (Å, º) top
Br1—C21.896 (3)C4—C51.394 (4)
O1—C41.368 (3)C5—C61.375 (4)
O1—C131.428 (4)C6—H6A0.9300
O2—C51.362 (4)C7—C81.383 (4)
O2—H2A0.8200C7—C121.384 (4)
O2—H2B0.8200C7—C151.501 (4)
O3—C151.227 (3)C8—C91.388 (4)
O4—C91.363 (3)C8—H8A0.9300
O4—H4A0.8200C9—C101.385 (4)
O5—C111.383 (3)C10—C111.372 (4)
O5—H5A0.8200C10—H10A0.9300
O5—H5B0.8200C11—C121.388 (4)
N1—C141.266 (4)C12—H12A0.9300
N1—N21.386 (3)C13—H13A0.9600
N2—C151.341 (4)C13—H13B0.9600
N2—H20.8600C13—H13C0.9600
C1—C21.386 (4)C14—H14A0.9300
C1—C61.405 (4)O6—C161.362 (6)
C1—C141.468 (4)O6—H60.8200
C2—C31.388 (4)C16—H16A0.9600
C3—C41.376 (4)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C4—O1—C13118.5 (3)C7—C8—H8A119.9
C5—O2—H2A118.4C9—C8—H8A119.9
C5—O2—H2B129.6O4—C9—C10122.6 (3)
H2A—O2—H2B75.4O4—C9—C8117.3 (2)
C9—O4—H4A109.5C10—C9—C8120.1 (3)
C11—O5—H5A123.0C11—C10—C9118.8 (3)
C11—O5—H5B117.4C11—C10—H10A120.6
H5A—O5—H5B118.8C9—C10—H10A120.6
C14—N1—N2115.7 (2)C10—C11—O5118.0 (3)
C15—N2—N1118.7 (2)C10—C11—C12122.3 (3)
C15—N2—H2126.4O5—C11—C12119.7 (3)
N1—N2—H2114.8C7—C12—C11118.3 (3)
C2—C1—C6117.1 (3)C7—C12—H12A120.9
C2—C1—C14122.7 (3)C11—C12—H12A120.9
C6—C1—C14120.2 (3)O1—C13—H13A109.5
C1—C2—C3122.4 (3)O1—C13—H13B109.5
C1—C2—Br1121.0 (2)H13A—C13—H13B109.5
C3—C2—Br1116.6 (2)O1—C13—H13C109.5
C4—C3—C2119.2 (3)H13A—C13—H13C109.5
C4—C3—H3A120.4H13B—C13—H13C109.5
C2—C3—H3A120.4N1—C14—C1120.8 (3)
O1—C4—C3125.0 (3)N1—C14—H14A119.6
O1—C4—C5114.9 (3)C1—C14—H14A119.6
C3—C4—C5120.0 (3)O3—C15—N2122.2 (3)
O2—C5—C6119.6 (3)O3—C15—C7120.3 (3)
O2—C5—C4120.4 (3)N2—C15—C7117.5 (2)
C6—C5—C4120.0 (3)C16—O6—H6109.5
C5—C6—C1121.3 (3)O6—C16—H16A109.5
C5—C6—H6A119.4O6—C16—H16B109.5
C1—C6—H6A119.4H16A—C16—H16B109.5
C8—C7—C12120.4 (2)O6—C16—H16C109.5
C8—C7—C15116.0 (2)H16A—C16—H16C109.5
C12—C7—C15123.6 (3)H16B—C16—H16C109.5
C7—C8—C9120.2 (3)
C14—N1—N2—C15171.4 (3)C15—C7—C8—C9179.1 (3)
C6—C1—C2—C32.7 (5)C7—C8—C9—O4177.4 (3)
C14—C1—C2—C3177.2 (3)C7—C8—C9—C102.1 (5)
C6—C1—C2—Br1177.9 (2)O4—C9—C10—C11177.5 (3)
C14—C1—C2—Br12.2 (4)C8—C9—C10—C112.0 (5)
C1—C2—C3—C40.5 (5)C9—C10—C11—O5178.8 (3)
Br1—C2—C3—C4179.9 (2)C9—C10—C11—C120.5 (5)
C13—O1—C4—C31.8 (5)C8—C7—C12—C110.8 (5)
C13—O1—C4—C5177.9 (3)C15—C7—C12—C11179.4 (3)
C2—C3—C4—O1178.4 (3)C10—C11—C12—C70.9 (5)
C2—C3—C4—C51.9 (5)O5—C11—C12—C7179.8 (3)
O1—C4—C5—O21.5 (5)N2—N1—C14—C1179.9 (3)
C3—C4—C5—O2178.3 (3)C2—C1—C14—N1173.9 (3)
O1—C4—C5—C6178.3 (3)C6—C1—C14—N15.9 (5)
C3—C4—C5—C62.0 (5)N1—N2—C15—O30.7 (5)
O2—C5—C6—C1179.5 (3)N1—N2—C15—C7180.0 (3)
C4—C5—C6—C10.3 (5)C8—C7—C15—O38.3 (4)
C2—C1—C6—C52.5 (5)C12—C7—C15—O3171.9 (3)
C14—C1—C6—C5177.3 (3)C8—C7—C15—N2172.4 (3)
C12—C7—C8—C90.7 (5)C12—C7—C15—N27.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.822.112.932 (3)180
O2—H2B···O1ii0.822.333.148 (4)180
O4—H4A···O3iii0.821.842.655 (3)175
O5—H5A···O5iv0.822.152.859 (5)145
O5—H5B···O2v0.822.122.932 (3)171
N2—H2···O60.862.152.984 (4)164
O6—H6···O4vi0.822.333.101 (4)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x1, y, z1; (vi) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13BrN2O5·CH4O
Mr413.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.4242 (17), 17.709 (4), 12.927 (3)
β (°) 96.493 (3)
V3)1688.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.47 × 0.24 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.488, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
9884, 3780, 2569
Rint0.035
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.01
No. of reflections3780
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.36

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O5i0.822.112.932 (3)180
O2—H2B···O1ii0.822.333.148 (4)180
O4—H4A···O3iii0.821.842.655 (3)175
O5—H5A···O5iv0.822.152.859 (5)145
O5—H5B···O2v0.822.122.932 (3)171
N2—H2···O60.862.152.984 (4)164
O6—H6···O4vi0.822.333.101 (4)157
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+2; (iii) x1/2, y+1/2, z1/2; (iv) x, y+1, z; (v) x1, y, z1; (vi) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the 2008 Ningxia Science and technology key projects (No. 222) and 2009 Ningxia Science and technology key projects (No. 232).

References

First citationBrückner, C., Rettig, S. J. & Dolphin, D. (2000). Inorg. Chem. 39, 6100–6106.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P. (2007). Acta Cryst. E63, m1453–m1454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Shu, X.-H., Zhang, B.-J., Zhen, Y.-H. & Kang, T.-G. (2007). Acta Cryst. E63, m1816.  CSD CrossRef IUCr Journals Google Scholar
First citationHarrop, T. C., Olmstead, M. M. & Mascharak, P. K. (2003). Chem. Commun. pp. 410–411.  Web of Science CSD CrossRef Google Scholar
First citationHuang, S.-S., Zhou, Q. & Diao, Y.-P. (2007). Acta Cryst. E63, o4659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, K., Huang, S.-S., Zhang, B.-J., Meng, D.-L. & Diao, Y.-P. (2007). Acta Cryst. E63, m2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds