organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-2-tert-Butyl-2,4,5,6,6-penta­chloro­cyclo­hex-3-en-1-one

aBaku State University, Z. Khalilov St. 23, Baku AZ-1148, Azerbaijan
*Correspondence e-mail: Bahruz_81@mail.ru

(Received 4 February 2011; accepted 9 March 2011; online 15 March 2011)

The title compound, C10H11Cl5O, is a chiral mol­ecule with two stereogenic centres. However, it crystallizes as a racemate. One of enanti­omers reveals the relative configuration (2S*,5R*). The cyclo­hexene ring adopts a half-chair conformation.

Related literature

For general background to the synthesis of 2-tert-butyl-2,4,5,6,6-penta­chloro­cyclo­hex-3-enone and its derivatives, see: Hartshorn et al. (1992[Hartshorn, M. P., Roddick, A. D., Steel, P. J. & Wright, G. J. (1992). Aust. J. Chem. 45, 721-730.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11Cl5O

  • Mr = 324.44

  • Monoclinic, P 21 /n

  • a = 6.9466 (7) Å

  • b = 15.7237 (15) Å

  • c = 12.1785 (13) Å

  • β = 94.903 (5)°

  • V = 1325.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 296 K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.740, Tmax = 0.815

  • 11583 measured reflections

  • 2880 independent reflections

  • 2472 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.00

  • 2880 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of 2-tert-butyl-2,4,5,6,6-pentachlorocyclohex-3-enone and derivatives has been studied (Hartshorn et al., 1992). Here we describe recystallisation and structural characteristics of the target compound. In the title compound, C10H11Cl5O (I), the cyclohexene ring adopts a half-chair conformation (Fig. 1). The tert-butyl group is attached in a pseudo-axial position. Torsion angle between the tert-butyl group and the carbonyl group is O1—C1—C1—C7 is 39.5 (3) °. The molecule (I) possess two stereogenic centres at C2 and C5 carbon atoms. The crystal of (I) is racemate and consists of enantiomeric pairs with the relative configuration 2S*,5R*. The crystal packing is realised by van der Waals interactions.

Related literature top

For general background to the synthesis of 2-tert-butyl-2,4,5,6,6-pentachlorocyclohex-3-enone and its derivatives, see: Hartshorn et al. (1992).

Experimental top

2,6-di-tert-butylphenol (2.30 mol) and ammonium thiocyanate (4.83 mol) in methanol (1200 mL) was stirred with cooling at 273 K. While the temperature was kept in the range from 273 K to 283 K, chlorine gas was slowly bubbled through the mixture for about 1 h, during which the reaction mixture turned to yellow colour. Ammonia was then bubbled through the mixture for about 1.5 h, keeping the reaction mixture in the temperature range from 273 K to 283 K. The reaction was stirred for one more h at 273 K, poured into 2 L of cold distilled water and refrigerated overnight. The aqueous phase was decanted and the solid was taken up in methanol, precipitated by addition of water, filtered and dried. The resulting gummy yellow solid was recrystallised from methanol and dried in vacuum to yield the product as a white powder. The crystals were dissolved in methanol and recrystallised to yield colourless block-shaped crystals of the title compound.

Refinement top

The other hydrogen atoms were placed in calculated positions with and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
rac-2-tert-Butyl-2,4,5,6,6-pentachlorocyclohex-3-en-1-one top
Crystal data top
C10H11Cl5OF(000) = 656
Mr = 324.44Dx = 1.626 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6043 reflections
a = 6.9466 (7) Åθ = 2.6–28.3°
b = 15.7237 (15) ŵ = 1.07 mm1
c = 12.1785 (13) ÅT = 296 K
β = 94.903 (5)°Prism, colourless
V = 1325.3 (2) Å30.30 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2880 independent reflections
Radiation source: fine-focus sealed tube2472 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.740, Tmax = 0.815k = 1920
11583 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.082H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.5385P]
where P = (Fo2 + 2Fc2)/3
2880 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H11Cl5OV = 1325.3 (2) Å3
Mr = 324.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9466 (7) ŵ = 1.07 mm1
b = 15.7237 (15) ÅT = 296 K
c = 12.1785 (13) Å0.30 × 0.30 × 0.20 mm
β = 94.903 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2880 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2472 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.815Rint = 0.024
11583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.00Δρmax = 0.39 e Å3
2880 reflectionsΔρmin = 0.23 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71222 (8)0.85115 (3)0.19948 (5)0.05953 (16)
Cl21.04573 (7)0.57732 (3)0.09467 (4)0.04698 (13)
Cl31.04201 (9)0.55909 (4)0.38510 (5)0.06249 (17)
Cl40.60933 (10)0.59189 (4)0.43935 (5)0.0725 (2)
Cl50.51257 (7)0.65020 (4)0.21735 (5)0.05830 (16)
O10.7230 (3)0.76496 (11)0.44023 (14)0.0731 (5)
C10.7672 (3)0.73432 (11)0.35685 (15)0.0392 (4)
C20.8874 (2)0.78139 (10)0.27498 (13)0.0332 (3)
C30.9594 (2)0.72330 (10)0.18964 (13)0.0322 (3)
H31.01400.74790.13020.039*
C40.9500 (2)0.63939 (10)0.19366 (13)0.0311 (3)
C50.8610 (3)0.58988 (11)0.28024 (14)0.0382 (4)
H50.80300.53830.24640.046*
C60.7021 (3)0.64222 (12)0.32611 (15)0.0412 (4)
C71.0544 (3)0.83642 (11)0.33343 (15)0.0393 (4)
C81.1855 (3)0.77762 (14)0.40573 (18)0.0555 (5)
H8A1.11500.75480.46350.083*
H8B1.29490.80910.43740.083*
H8C1.22900.73190.36180.083*
C91.1720 (4)0.87761 (16)0.2469 (2)0.0649 (6)
H9A1.23000.83410.20540.097*
H9B1.27130.91270.28300.097*
H9C1.08840.91190.19810.097*
C100.9811 (3)0.90805 (13)0.40509 (18)0.0549 (5)
H10A1.08870.94120.43570.082*
H10B0.91500.88380.46370.082*
H10C0.89390.94390.36060.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0644 (3)0.0425 (3)0.0680 (3)0.0196 (2)0.0158 (3)0.0037 (2)
Cl20.0602 (3)0.0397 (2)0.0426 (3)0.0075 (2)0.0136 (2)0.01185 (18)
Cl30.0763 (4)0.0583 (3)0.0519 (3)0.0143 (3)0.0003 (3)0.0212 (2)
Cl40.0883 (5)0.0718 (4)0.0632 (4)0.0239 (3)0.0395 (3)0.0014 (3)
Cl50.0372 (2)0.0698 (4)0.0671 (3)0.0054 (2)0.0002 (2)0.0178 (3)
O10.0907 (12)0.0659 (10)0.0698 (11)0.0203 (9)0.0479 (10)0.0304 (8)
C10.0370 (9)0.0393 (9)0.0423 (10)0.0002 (7)0.0098 (7)0.0097 (7)
C20.0370 (9)0.0268 (8)0.0353 (9)0.0040 (6)0.0009 (7)0.0029 (6)
C30.0372 (9)0.0322 (8)0.0270 (8)0.0004 (7)0.0026 (6)0.0002 (6)
C40.0335 (8)0.0311 (8)0.0286 (8)0.0034 (6)0.0025 (6)0.0050 (6)
C50.0482 (10)0.0295 (8)0.0372 (9)0.0016 (7)0.0051 (7)0.0005 (7)
C60.0421 (10)0.0421 (10)0.0409 (10)0.0075 (8)0.0116 (8)0.0024 (8)
C70.0442 (10)0.0331 (9)0.0405 (10)0.0044 (7)0.0024 (8)0.0088 (7)
C80.0505 (12)0.0561 (12)0.0570 (13)0.0041 (10)0.0118 (9)0.0138 (10)
C90.0754 (16)0.0562 (13)0.0650 (14)0.0310 (12)0.0174 (12)0.0111 (11)
C100.0675 (14)0.0396 (10)0.0570 (13)0.0000 (10)0.0016 (10)0.0186 (9)
Geometric parameters (Å, º) top
Cl1—C21.8271 (17)C5—H50.9800
Cl2—C41.7278 (16)C7—C81.524 (3)
Cl3—C51.7808 (19)C7—C91.531 (3)
Cl4—C61.7593 (18)C7—C101.538 (2)
Cl5—C61.790 (2)C8—H8A0.9600
O1—C11.188 (2)C8—H8B0.9600
C1—C21.543 (2)C8—H8C0.9600
C1—C61.553 (2)C9—H9A0.9600
C2—C31.501 (2)C9—H9B0.9600
C2—C71.569 (2)C9—H9C0.9600
C3—C41.322 (2)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.487 (2)C10—H10C0.9600
C5—C61.521 (3)
O1—C1—C2123.48 (16)Cl4—C6—Cl5108.43 (10)
O1—C1—C6119.52 (17)C8—C7—C9109.08 (18)
C2—C1—C6117.00 (14)C8—C7—C10109.08 (16)
C3—C2—C1112.72 (13)C9—C7—C10107.62 (17)
C3—C2—C7111.88 (14)C8—C7—C2108.04 (14)
C1—C2—C7113.04 (14)C9—C7—C2109.78 (15)
C3—C2—Cl1105.30 (11)C10—C7—C2113.17 (16)
C1—C2—Cl1103.84 (11)C7—C8—H8A109.5
C7—C2—Cl1109.40 (11)C7—C8—H8B109.5
C4—C3—C2124.13 (15)H8A—C8—H8B109.5
C4—C3—H3117.9C7—C8—H8C109.5
C2—C3—H3117.9H8A—C8—H8C109.5
C3—C4—C5125.00 (15)H8B—C8—H8C109.5
C3—C4—Cl2120.98 (13)C7—C9—H9A109.5
C5—C4—Cl2114.03 (12)C7—C9—H9B109.5
C4—C5—C6109.63 (14)H9A—C9—H9B109.5
C4—C5—Cl3109.88 (12)C7—C9—H9C109.5
C6—C5—Cl3111.96 (13)H9A—C9—H9C109.5
C4—C5—H5108.4H9B—C9—H9C109.5
C6—C5—H5108.4C7—C10—H10A109.5
Cl3—C5—H5108.4C7—C10—H10B109.5
C5—C6—C1112.78 (14)H10A—C10—H10B109.5
C5—C6—Cl4111.74 (13)C7—C10—H10C109.5
C1—C6—Cl4110.43 (13)H10A—C10—H10C109.5
C5—C6—Cl5106.09 (12)H10B—C10—H10C109.5
C1—C6—Cl5107.08 (13)
O1—C1—C2—C3167.6 (2)Cl3—C5—C6—Cl451.23 (16)
C6—C1—C2—C312.6 (2)C4—C5—C6—Cl568.58 (15)
O1—C1—C2—C739.5 (3)Cl3—C5—C6—Cl5169.21 (9)
C6—C1—C2—C7140.75 (16)O1—C1—C6—C5137.5 (2)
O1—C1—C2—Cl179.0 (2)C2—C1—C6—C542.7 (2)
C6—C1—C2—Cl1100.79 (15)O1—C1—C6—Cl411.7 (2)
C1—C2—C3—C410.6 (2)C2—C1—C6—Cl4168.56 (13)
C7—C2—C3—C4118.08 (18)O1—C1—C6—Cl5106.2 (2)
Cl1—C2—C3—C4123.17 (16)C2—C1—C6—Cl573.58 (17)
C2—C3—C4—C52.4 (3)C3—C2—C7—C869.95 (19)
C2—C3—C4—Cl2177.26 (12)C1—C2—C7—C858.59 (19)
C3—C4—C5—C628.3 (2)Cl1—C2—C7—C8173.76 (13)
Cl2—C4—C5—C6152.03 (13)C3—C2—C7—C948.9 (2)
C3—C4—C5—Cl395.12 (18)C1—C2—C7—C9177.43 (16)
Cl2—C4—C5—Cl384.53 (13)Cl1—C2—C7—C967.40 (18)
C4—C5—C6—C148.3 (2)C3—C2—C7—C10169.15 (16)
Cl3—C5—C6—C173.88 (17)C1—C2—C7—C1062.3 (2)
C4—C5—C6—Cl4173.43 (12)Cl1—C2—C7—C1052.87 (18)

Experimental details

Crystal data
Chemical formulaC10H11Cl5O
Mr324.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.9466 (7), 15.7237 (15), 12.1785 (13)
β (°) 94.903 (5)
V3)1325.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.740, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
11583, 2880, 2472
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.00
No. of reflections2880
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank Atash Kurbanov for fruitful discussions and help in this work.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHartshorn, M. P., Roddick, A. D., Steel, P. J. & Wright, G. J. (1992). Aust. J. Chem. 45, 721–730.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds