organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-Hy­dr­oxy­methyl-1,4-bis­­(4-methyl­phen­yl)naphthalen-2-yl]methanol

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 18 February 2011; accepted 16 March 2011; online 19 March 2011)

In the title compound, C26H24O2, the crowded naphthalene ring system is essentially planar [maximum deviation of 0.027 (2) Å for one of the C atoms of the unsubstituted ring]. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds into chains along the a axis. Pairs of the oppositely oriented chains are further cross-linked by O—H⋯O hydrogen bonds, forming infinte bands of alternating R44(8) dimers and R22(14) motifs.

Related literature

For applications of naphthalene derivatives, see: Fukuzumi et al. (1994[Fukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298919.]); Tsukada et al. (1994[Tsukada, H., Tajiri, T., Fukuzumi, T. & Yoshida, J. (1994). Jpn Patent JP 06 298918.]). For related structures, see: Wang et al. (2008[Wang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.]); Çelik et al. (2009[Çelik, Í., Akkurt, M., Şenocak, A., Çakmak, O., Torre-Fernández, L. & García-Granda, S. (2009). Acta Cryst. E65, o1376.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24O2

  • Mr = 368.45

  • Triclinic, [P \overline 1]

  • a = 6.3525 (3) Å

  • b = 10.0192 (4) Å

  • c = 16.4654 (7) Å

  • α = 77.723 (2)°

  • β = 81.870 (2)°

  • γ = 78.108 (2)°

  • V = 996.80 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 19109 measured reflections

  • 3910 independent reflections

  • 3061 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.133

  • S = 1.04

  • 3910 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.89 2.7065 (18) 175
O2—H2A⋯O1ii 0.82 2.02 2.7235 (17) 143
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,4-Naphthalene derivatives are important synthones in preparation of polymers (Fukuzumi et al.,1994; Tsukada et al.,1994). The title compound, C26H24O2, was synthesized from diethyl(1,4-di-p-tolylnaphthalene-2,3-dicarboxylate).

The naphthalene moiety is essentially planar with a maximum deviation of 0.027 (2) Å for atom C4. The X-ray study confirms the molecular structure and atom connectivity as shown in the Fig.1. The naphthalene moiety forms dihedral angles of 72.91 (7)° and 69.58 (7)° with two adjacent benzene rings C11···C16 and C18···C23, respectively. Atoms O1 and O2 are rotated in opposite directions from the naphthalene plane, deviating by -1.227 (1)Å and 1.218 (1) Å, repectively (Nardelli, 1983).

Hydrogen bonds O2—H2A···O1 connect adjacent molecules to form one-dimensional chains along crystallographic x axis. Pairs of the oppositely oriented chains are further cross-linked by O1—H1A···O2 hygrogen bonds forming infinite bands made of alternate R44(8) dimers and R22(14) graphset motifs (Bernstein et al. 1995) as shown in Fig.2.

Related literature top

For applications of naphthalene derivatives, see: Fukuzumi et al. (1994); Tsukada et al. (1994). For related structures, see: Wang et al. (2008); Çelik et al. (2009). For graph-set notation, see: Bernstein et al. (1995). For asymmetry parameters, see: Nardelli (1983).

Experimental top

LiAlH4 (2.77 g, 73.01 mmol) in THF (100 ml) was added to an oven-dried flask. Diethyl(1,4-di-p-tolylnaphthalene-2,3-dicarboxylate) (15 g, 33.18 mmol) was dissolved in anhydrous THF (100 ml) and added dropwise to the LiAlH4 solution. The reaction was stirred for 12 h at room temperature. The mixture was cooled to 273 K and quenched very slowly by addition of water (20 ml) and 10% HCl (20 ml). Dichloromethane (200 ml) was added to the mixture and then organic layer was separated and washed with water (2x100 ml). The solution was dried with Na2SO4 and organic solvent was evaporated to give crude product. The crude product was purified by column chromotography to give the title compound (12 g) in 90% yield as a white solid.

Refinement top

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The H atoms of hydroxy groups were constrained to a distance of d(O—H) = 0.82 Å with Uiso(H) = 1.5Ueq(O). The H atoms bound to the C atoms were treated as riding atoms, with d(C—H)=0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, d(C—H)=0.97 Å and Uiso(H)=1.2Ueq(C) for methylene and d(C—H)=0.96 Å and Uiso(H) =1.5Ueq(C) for methyl groups. The rotation angles for hydroxy and methyl groups were optimized by least squares.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as small spheres of arbitary radius.
[Figure 2] Fig. 2. Part of crystal structure of the title compound, showing formation of the one-dimensional band along x axis with dimeric R44(8) and R22(14)grsaphset motifs.
[3-Hydroxymethyl-1,4-bis(4-methylphenyl)naphthalen-2-yl]methanol top
Crystal data top
C26H24O2Z = 2
Mr = 368.45F(000) = 392
Triclinic, P1Dx = 1.228 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3525 (3) ÅCell parameters from 3910 reflections
b = 10.0192 (4) Åθ = 1.0–26.0°
c = 16.4654 (7) ŵ = 0.08 mm1
α = 77.723 (2)°T = 293 K
β = 81.870 (2)°Block, colorless
γ = 78.108 (2)°0.30 × 0.25 × 0.20 mm
V = 996.80 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3061 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.0°, θmin = 2.3°
ω scansh = 77
19109 measured reflectionsk = 1212
3910 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0683P)2 + 0.2321P]
where P = (Fo2 + 2Fc2)/3
3910 reflections(Δ/σ)max = 0.024
257 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H24O2γ = 78.108 (2)°
Mr = 368.45V = 996.80 (7) Å3
Triclinic, P1Z = 2
a = 6.3525 (3) ÅMo Kα radiation
b = 10.0192 (4) ŵ = 0.08 mm1
c = 16.4654 (7) ÅT = 293 K
α = 77.723 (2)°0.30 × 0.25 × 0.20 mm
β = 81.870 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3061 reflections with I > 2σ(I)
19109 measured reflectionsRint = 0.036
3910 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3910 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2706 (3)0.94217 (18)0.07678 (10)0.0492 (4)
H10.35341.01140.05850.059*
C20.2351 (3)0.8678 (2)0.02158 (11)0.0587 (5)
H20.29430.88600.03370.070*
C30.1105 (3)0.76456 (19)0.04756 (11)0.0573 (5)
H30.08490.71500.00930.069*
C40.0258 (3)0.73548 (17)0.12864 (10)0.0479 (4)
H40.05780.66640.14500.057*
C50.0626 (2)0.80827 (14)0.18835 (9)0.0355 (3)
C60.1845 (2)0.91646 (15)0.16136 (9)0.0361 (3)
C70.2177 (2)0.99509 (14)0.22017 (9)0.0329 (3)
C80.1344 (2)0.96324 (13)0.30250 (8)0.0307 (3)
C90.0165 (2)0.85221 (13)0.32980 (8)0.0309 (3)
C100.0209 (2)0.77660 (14)0.27435 (9)0.0327 (3)
C110.1450 (2)0.66107 (14)0.30361 (9)0.0345 (3)
C120.0415 (3)0.52369 (16)0.31375 (12)0.0505 (4)
H120.10590.50280.29740.061*
C130.1532 (3)0.41753 (16)0.34770 (13)0.0577 (5)
H130.07920.32620.35380.069*
C140.3727 (3)0.44283 (16)0.37296 (10)0.0467 (4)
C150.4757 (3)0.57913 (17)0.36041 (11)0.0500 (4)
H150.62380.59970.37550.060*
C160.3654 (3)0.68645 (15)0.32604 (11)0.0451 (4)
H160.44080.77740.31790.054*
C170.4920 (4)0.3264 (2)0.41238 (15)0.0716 (6)
H17A0.50380.27470.37090.107*
H17B0.63400.36400.43520.107*
H17C0.41440.26600.45620.107*
C180.3357 (2)1.11445 (14)0.19167 (9)0.0355 (3)
C190.2405 (3)1.23562 (16)0.14231 (10)0.0469 (4)
H190.10931.23910.12230.056*
C200.3375 (3)1.35125 (17)0.12230 (11)0.0536 (4)
H200.26951.43160.08940.064*
C210.5335 (3)1.35040 (17)0.15006 (11)0.0492 (4)
C220.6302 (3)1.22817 (17)0.19724 (11)0.0486 (4)
H220.76341.22390.21580.058*
C230.5348 (3)1.11207 (16)0.21764 (10)0.0428 (4)
H230.60501.03110.24920.051*
C240.6348 (4)1.4786 (2)0.13058 (14)0.0717 (6)
H24A0.62401.52170.07300.108*
H24B0.78431.45310.14070.108*
H24C0.56051.54260.16560.108*
C250.1635 (2)1.04605 (14)0.36509 (9)0.0357 (3)
H25A0.20661.13260.33600.043*
H25B0.02751.06810.39870.043*
C260.0681 (3)0.82015 (16)0.42085 (9)0.0400 (4)
H26A0.10940.72940.43320.048*
H26B0.04610.81670.45500.048*
O10.32387 (18)0.96912 (12)0.41770 (8)0.0525 (3)
H1A0.30680.99890.46130.074 (7)*
O20.24973 (19)0.92102 (14)0.44206 (8)0.0564 (3)
H2A0.35080.91890.41670.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0593 (10)0.0559 (10)0.0370 (9)0.0265 (8)0.0082 (7)0.0120 (7)
C20.0800 (13)0.0701 (12)0.0324 (9)0.0304 (10)0.0092 (8)0.0175 (8)
C30.0814 (13)0.0635 (11)0.0382 (9)0.0269 (10)0.0022 (9)0.0232 (8)
C40.0620 (11)0.0479 (9)0.0418 (9)0.0244 (8)0.0025 (8)0.0143 (7)
C50.0381 (8)0.0364 (7)0.0344 (8)0.0103 (6)0.0012 (6)0.0105 (6)
C60.0381 (8)0.0397 (8)0.0328 (8)0.0121 (6)0.0008 (6)0.0097 (6)
C70.0320 (7)0.0340 (7)0.0335 (7)0.0085 (6)0.0014 (6)0.0071 (6)
C80.0286 (7)0.0313 (7)0.0328 (7)0.0045 (5)0.0024 (6)0.0092 (5)
C90.0287 (7)0.0327 (7)0.0308 (7)0.0051 (5)0.0012 (5)0.0068 (5)
C100.0326 (7)0.0321 (7)0.0337 (8)0.0073 (6)0.0020 (6)0.0066 (6)
C110.0386 (8)0.0329 (7)0.0340 (7)0.0100 (6)0.0019 (6)0.0082 (6)
C120.0408 (9)0.0375 (8)0.0711 (12)0.0061 (7)0.0005 (8)0.0105 (8)
C130.0568 (11)0.0297 (8)0.0824 (13)0.0062 (7)0.0069 (10)0.0029 (8)
C140.0551 (10)0.0410 (8)0.0464 (9)0.0211 (7)0.0053 (8)0.0011 (7)
C150.0389 (9)0.0485 (9)0.0636 (11)0.0159 (7)0.0032 (8)0.0104 (8)
C160.0407 (9)0.0328 (7)0.0608 (10)0.0076 (6)0.0019 (7)0.0078 (7)
C170.0820 (14)0.0565 (11)0.0770 (14)0.0367 (11)0.0019 (11)0.0050 (10)
C180.0405 (8)0.0360 (7)0.0322 (7)0.0132 (6)0.0020 (6)0.0087 (6)
C190.0477 (9)0.0483 (9)0.0458 (9)0.0163 (7)0.0084 (7)0.0019 (7)
C200.0650 (11)0.0402 (8)0.0524 (10)0.0143 (8)0.0065 (9)0.0030 (7)
C210.0617 (11)0.0452 (9)0.0454 (9)0.0260 (8)0.0069 (8)0.0115 (7)
C220.0474 (9)0.0536 (9)0.0504 (10)0.0232 (8)0.0038 (8)0.0095 (8)
C230.0420 (8)0.0414 (8)0.0455 (9)0.0136 (7)0.0047 (7)0.0035 (7)
C240.0944 (16)0.0555 (11)0.0736 (14)0.0427 (11)0.0022 (12)0.0094 (10)
C250.0356 (8)0.0363 (7)0.0372 (8)0.0065 (6)0.0008 (6)0.0134 (6)
C260.0411 (8)0.0482 (8)0.0328 (8)0.0151 (7)0.0018 (6)0.0092 (6)
O10.0477 (7)0.0649 (7)0.0515 (7)0.0002 (6)0.0165 (5)0.0285 (6)
O20.0388 (6)0.0868 (9)0.0503 (7)0.0135 (6)0.0076 (5)0.0337 (6)
Geometric parameters (Å, º) top
C1—C21.360 (2)C15—H150.9300
C1—C61.413 (2)C16—H160.9300
C1—H10.9300C17—H17A0.9600
C2—C31.390 (2)C17—H17B0.9600
C2—H20.9300C17—H17C0.9600
C3—C41.361 (2)C18—C191.384 (2)
C3—H30.9300C18—C231.386 (2)
C4—C51.412 (2)C19—C201.380 (2)
C4—H40.9300C19—H190.9300
C5—C61.4198 (19)C20—C211.384 (3)
C5—C101.433 (2)C20—H200.9300
C6—C71.4333 (19)C21—C221.379 (2)
C7—C81.379 (2)C21—C241.508 (2)
C7—C181.4976 (18)C22—C231.378 (2)
C8—C91.4266 (18)C22—H220.9300
C8—C251.5052 (18)C23—H230.9300
C9—C101.3762 (19)C24—H24A0.9600
C9—C261.509 (2)C24—H24B0.9600
C10—C111.4916 (19)C24—H24C0.9600
C11—C161.381 (2)C25—O11.4228 (18)
C11—C121.384 (2)C25—H25A0.9700
C12—C131.376 (2)C25—H25B0.9700
C12—H120.9300C26—O21.425 (2)
C13—C141.384 (3)C26—H26A0.9700
C13—H130.9300C26—H26B0.9700
C14—C151.373 (2)O1—H1A0.8200
C14—C171.503 (2)O2—H2A0.8200
C15—C161.381 (2)
C2—C1—C6121.35 (15)C11—C16—H16119.4
C2—C1—H1119.3C15—C16—H16119.4
C6—C1—H1119.3C14—C17—H17A109.5
C1—C2—C3120.19 (16)C14—C17—H17B109.5
C1—C2—H2119.9H17A—C17—H17B109.5
C3—C2—H2119.9C14—C17—H17C109.5
C4—C3—C2120.44 (15)H17A—C17—H17C109.5
C4—C3—H3119.8H17B—C17—H17C109.5
C2—C3—H3119.8C19—C18—C23117.61 (13)
C3—C4—C5121.18 (15)C19—C18—C7120.27 (13)
C3—C4—H4119.4C23—C18—C7121.98 (13)
C5—C4—H4119.4C20—C19—C18121.00 (15)
C4—C5—C6118.41 (13)C20—C19—H19119.5
C4—C5—C10121.88 (13)C18—C19—H19119.5
C6—C5—C10119.71 (12)C19—C20—C21121.50 (15)
C1—C6—C5118.38 (13)C19—C20—H20119.2
C1—C6—C7122.13 (13)C21—C20—H20119.2
C5—C6—C7119.49 (13)C22—C21—C20117.16 (14)
C8—C7—C6119.68 (12)C22—C21—C24121.58 (17)
C8—C7—C18120.20 (12)C20—C21—C24121.26 (17)
C6—C7—C18120.08 (12)C23—C22—C21121.83 (16)
C7—C8—C9120.66 (12)C23—C22—H22119.1
C7—C8—C25120.67 (12)C21—C22—H22119.1
C9—C8—C25118.67 (12)C22—C23—C18120.85 (15)
C10—C9—C8120.84 (12)C22—C23—H23119.6
C10—C9—C26120.62 (12)C18—C23—H23119.6
C8—C9—C26118.53 (12)C21—C24—H24A109.5
C9—C10—C5119.59 (12)C21—C24—H24B109.5
C9—C10—C11120.34 (12)H24A—C24—H24B109.5
C5—C10—C11120.06 (12)C21—C24—H24C109.5
C16—C11—C12117.24 (13)H24A—C24—H24C109.5
C16—C11—C10121.55 (12)H24B—C24—H24C109.5
C12—C11—C10121.11 (13)O1—C25—C8110.26 (11)
C13—C12—C11121.04 (15)O1—C25—H25A109.6
C13—C12—H12119.5C8—C25—H25A109.6
C11—C12—H12119.5O1—C25—H25B109.6
C12—C13—C14121.84 (15)C8—C25—H25B109.6
C12—C13—H13119.1H25A—C25—H25B108.1
C14—C13—H13119.1O2—C26—C9112.15 (12)
C15—C14—C13116.83 (14)O2—C26—H26A109.2
C15—C14—C17121.72 (17)C9—C26—H26A109.2
C13—C14—C17121.45 (16)O2—C26—H26B109.2
C14—C15—C16121.78 (15)C9—C26—H26B109.2
C14—C15—H15119.1H26A—C26—H26B107.9
C16—C15—H15119.1C25—O1—H1A109.5
C11—C16—C15121.19 (14)C26—O2—H2A109.5
C6—C1—C2—C30.5 (3)C5—C10—C11—C16108.92 (17)
C1—C2—C3—C41.0 (3)C9—C10—C11—C12104.47 (17)
C2—C3—C4—C50.3 (3)C5—C10—C11—C1274.69 (19)
C3—C4—C5—C62.1 (3)C16—C11—C12—C132.3 (3)
C3—C4—C5—C10178.42 (16)C10—C11—C12—C13174.20 (16)
C2—C1—C6—C51.3 (3)C11—C12—C13—C140.1 (3)
C2—C1—C6—C7179.13 (16)C12—C13—C14—C151.8 (3)
C4—C5—C6—C12.6 (2)C12—C13—C14—C17178.12 (18)
C10—C5—C6—C1177.94 (14)C13—C14—C15—C161.5 (3)
C4—C5—C6—C7177.87 (14)C17—C14—C15—C16178.43 (17)
C10—C5—C6—C71.6 (2)C12—C11—C16—C152.6 (2)
C1—C6—C7—C8178.39 (14)C10—C11—C16—C15173.88 (15)
C5—C6—C7—C81.1 (2)C14—C15—C16—C110.8 (3)
C1—C6—C7—C183.8 (2)C8—C7—C18—C19107.46 (17)
C5—C6—C7—C18176.70 (13)C6—C7—C18—C1970.37 (19)
C6—C7—C8—C90.4 (2)C8—C7—C18—C2368.19 (19)
C18—C7—C8—C9178.24 (12)C6—C7—C18—C23113.98 (16)
C6—C7—C8—C25178.83 (12)C23—C18—C19—C202.2 (2)
C18—C7—C8—C251.0 (2)C7—C18—C19—C20173.59 (15)
C7—C8—C9—C101.5 (2)C18—C19—C20—C210.5 (3)
C25—C8—C9—C10177.73 (12)C19—C20—C21—C221.2 (3)
C7—C8—C9—C26179.01 (13)C19—C20—C21—C24177.79 (17)
C25—C8—C9—C261.75 (18)C20—C21—C22—C231.3 (3)
C8—C9—C10—C51.0 (2)C24—C21—C22—C23177.75 (17)
C26—C9—C10—C5179.50 (13)C21—C22—C23—C180.5 (3)
C8—C9—C10—C11179.79 (12)C19—C18—C23—C222.2 (2)
C26—C9—C10—C110.3 (2)C7—C18—C23—C22173.55 (14)
C4—C5—C10—C9178.93 (14)C7—C8—C25—O1104.66 (15)
C6—C5—C10—C90.5 (2)C9—C8—C25—O176.09 (16)
C4—C5—C10—C111.9 (2)C10—C9—C26—O2105.53 (15)
C6—C5—C10—C11178.65 (13)C8—C9—C26—O273.95 (16)
C9—C10—C11—C1671.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.892.7065 (18)175
O2—H2A···O1ii0.822.022.7235 (17)143
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H24O2
Mr368.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.3525 (3), 10.0192 (4), 16.4654 (7)
α, β, γ (°)77.723 (2), 81.870 (2), 78.108 (2)
V3)996.80 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19109, 3910, 3061
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.04
No. of reflections3910
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.892.7065 (18)175
O2—H2A···O1ii0.822.022.7235 (17)143
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z.
 

Acknowledgements

PN and KS thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Í., Akkurt, M., Şenocak, A., Çakmak, O., Torre-Fernández, L. & García-Granda, S. (2009). Acta Cryst. E65, o1376.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298919.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukada, H., Tajiri, T., Fukuzumi, T. & Yoshida, J. (1994). Jpn Patent JP 06 298918.  Google Scholar
First citationWang, Y.-T., Tang, G.-M. & Wan, W.-Z. (2008). Acta Cryst. E64, o1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds