organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o945-o946

rac-(3S,4S)-3-Hy­dr­oxy-4-phenyl-1-[(S)-(3-phenyl-4,5-di­hydro-1,2-oxazol-5-yl)meth­yl]-4,5-di­hydro-1H-1,5-benzo­diazepin-2(3H)-one

aLaboratoire de Chimie Hétérocyclique, Pole de Compétence PHARCHIM, Université Mohammed V-Agdal, BP 1014 Rabat, Morocco, bInstitut of Nanomaterials and Nanotechnology (INANOTECH), Avenue de l Armée Royale, Rabat, Morocco, cLaboratoire de Chimie Physique et Minérale, Service de Cristallographie, Université Victor Ségalen Bordeaux 2, Bordeaux Cedex, France, dLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco, and eLaboratoires Diffraction des Rayons X sur Monocristal, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: rida_mohamed_ac@yahoo.fr

(Received 23 February 2011; accepted 17 March 2011; online 23 March 2011)

In the title compound, C25H23N3O3, the seven-membered diazepine ring adopts a boat conformation with the hydroxy-substituted C atom at the prow and fused-ring C atoms at the stern. The crystal packing features C—H⋯O, C—H⋯π and N—H ⋯π inter­actions

Related literature

For the preparation and biological activity of benzodiazepines, see: Ahabchane et al. (1999[Ahabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519-523.]), Grunewald et al. (1996[Grunewald, G. L., Dahanukar, V. H., Ching, P. & Criscione, K. R. (1996). J. Med. Chem. 39, 3539-3946.]); Ding et al., (1999[Ding, C. Z., Batorsky, R., Bhide, R., Chao, H. J., Cho, Y., Chong, S., GulloBrown, J., Guo, P., Kim, S. H., Lee, F., Leftheris, K., Miller, A., Mitt, T., Patel, M., Penhallow, B. A., et al. (1999). J. Med. Chem. 42, 5241-5253.]). For related structures, see: Saber et al. (2010a[Saber, A., Al Subari, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o1093.],b[Saber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o1409.]); Ballo et al. (2010[Ballo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O3

  • Mr = 413.46

  • Triclinic, [P \overline 1]

  • a = 8.981 (2) Å

  • b = 9.044 (2) Å

  • c = 13.685 (1) Å

  • α = 95.373 (10)°

  • β = 102.433 (10)°

  • γ = 100.03 (2)°

  • V = 1058.9 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.903, Tmax = 0.946

  • 3584 measured reflections

  • 3584 independent reflections

  • 3232 reflections with I > 2σ(I)

  • Rint = 0.000

  • 2 standard reflections every 90 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.05

  • 3584 reflections

  • 286 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C26–C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O22 0.93 2.44 3.206 (3) 140
C25—H25a⋯O14i 0.97 2.59 3.493 (3) 154
C27—H27⋯O15ii 0.93 2.40 3.302 (3) 162
C28—H28⋯O22i 0.93 2.52 3.152 (2) 125
C19—H19⋯Cg4iii 0.93 2.78 3.534 (3) 139
N13—H13⋯Cg4iii 0.93 (2) 2.77 (2) 3.671 (3) 164
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) x-1, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzodiazipines have found wide-spread clinical use as inhibitors of phenylethanolamine N-methyltransferase [Grunewald et al., 1996] and inhibitors of farnesyltransferase [Ding et al., 1999]. In view of their importance and to ascertain molecular conformation [Ahabchane et al., 1999. Saber et al. (2010a and 2010b) and Ballo et al. (2010)], a crystallographic study of the title compound has been carried out.

The molecular structure of the title compound is depicted in Fig.1. The seven-membred ring adopts a boat conformation with equatorial orientations of both phenyl and hydroxyl substituents. Its puckering parameters [Cremer & Pople, 1975] are q2 = 0.997 (2) Å, q3 = 0.1541 (19) Å, ϕ2 = 317.05 (11)°, ϕ3 = 185.2 (8)°.

Phenyl substituent at C24 atom is rotated out of the plane of the 4,5-dihydro-1,2-oxazole ring by 20.1 (1)°.

The crystal packing is controlled by C—H···O H-bonds and C—H ···π and N—H ···π interactions involving the C26-C31 (Cg4) benzene ring (Table 1).

Related literature top

For the preparation and biological activity of benzodiazepines, see: Ahabchane et al. (1999), Grunewald et al. (1996); Ding et al., (1999). For related structures, see: Saber et al. (2010a,b); Ballo et al. (2010). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of NaOCl (10 ml) was added to a mixture of 1-allylmethyl-3-hydroxy-4-phenyltetrahydro-1,5-benzodiazepin-2-one (2.58 g, 0.01 mmol) and benzaldoxime (1.21 g, 0.01 mmol) in chloroform (30 ml) under vigorous stirring. After 3 h, the organic layer was washed with water and dried by addition of anhydrous MgSO4. After removal of the solvent by evaporation, the crude residual mixture obtained was purified by column chromatography on a silica gel column and eluted with an eluent composed of ether/petroleum ether (1/9). Crystals was obtained when solvent was allowed to evaporate.

Refinement top

All O–H and C—H H-atoms were placed in calculated positions (C—H: 0.93 to 0.98 Å and O–H = 0.82) and allowed to ride on their parent atoms, with U (H) set to 1.2 U(C) and 1.5 U(O). Torsion angle for the hydroxyl group was optimized from electron density.

The amino H-atom was located in a difference Fourier map and was refined independently.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of an arbitrary radius.
[Figure 2] Fig. 2. Partial packing view showing chains formed by C—H···O hydrogen bondings. H atoms not involved in the hydrogen bonds have been omitted for clarity.
rac-(3S,4S)-3-Hydroxy-4-phenyl-1-[(S)-(3-phenyl- 4,5-dihydro-1,2-oxazol-5-yl)methyl]-4,5-dihydro-1H-1,5-benzodiazepin- 2(3H)-one top
Crystal data top
C25H23N3O3Z = 2
Mr = 413.46F(000) = 436
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.981 (2) ÅCell parameters from 25 reflections
b = 9.044 (2) Åθ = 25–35°
c = 13.685 (1) ŵ = 0.70 mm1
α = 95.373 (10)°T = 293 K
β = 102.433 (10)°Prism, colourless
γ = 100.03 (2)°0.15 × 0.10 × 0.08 mm
V = 1058.9 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3232 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 64.9°, θmin = 5.0°
ω–2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.903, Tmax = 0.946l = 016
3584 measured reflections2 standard reflections every 90 min
3584 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0902P)2 + 0.363P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.005
3584 reflectionsΔρmax = 0.20 e Å3
286 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (5)
Crystal data top
C25H23N3O3γ = 100.03 (2)°
Mr = 413.46V = 1058.9 (3) Å3
Triclinic, P1Z = 2
a = 8.981 (2) ÅCu Kα radiation
b = 9.044 (2) ŵ = 0.70 mm1
c = 13.685 (1) ÅT = 293 K
α = 95.373 (10)°0.15 × 0.10 × 0.08 mm
β = 102.433 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3232 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.903, Tmax = 0.9462 standard reflections every 90 min
3584 measured reflections intensity decay: none
3584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
3584 reflectionsΔρmin = 0.17 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O140.14283 (18)0.8107 (2)0.54940 (13)0.0717 (5)
O150.1367 (2)0.8258 (3)0.51556 (12)0.0931 (7)
O220.45964 (14)1.08367 (16)0.74426 (11)0.0562 (4)
N100.25123 (17)0.78999 (18)0.67247 (11)0.0479 (4)
N130.0378 (2)0.52139 (19)0.67025 (15)0.0621 (5)
N230.61410 (18)1.11628 (19)0.80393 (13)0.0534 (4)
C10.2338 (2)0.5566 (2)0.66492 (17)0.0546 (5)
C20.2327 (3)0.6165 (3)0.76241 (19)0.0742 (7)
C30.3594 (3)0.5798 (4)0.8033 (2)0.0860 (8)
C40.4916 (3)0.4842 (3)0.7485 (3)0.0888 (9)
C50.4981 (3)0.4269 (3)0.6516 (3)0.0944 (10)
C60.3691 (3)0.4630 (3)0.6095 (2)0.0768 (7)
C70.0924 (2)0.5884 (2)0.62070 (16)0.0550 (5)
C80.0343 (2)0.7579 (2)0.62179 (15)0.0521 (5)
C90.1256 (2)0.7912 (2)0.59864 (14)0.0560 (5)
C110.2384 (2)0.7330 (2)0.76507 (14)0.0478 (5)
C120.1330 (2)0.5989 (2)0.76299 (17)0.0543 (5)
C160.3373 (3)0.8063 (3)0.85519 (15)0.0599 (5)
C170.3345 (3)0.7461 (4)0.94383 (18)0.0787 (8)
C180.2311 (4)0.6129 (4)0.9423 (2)0.0884 (9)
C190.1311 (3)0.5418 (3)0.8540 (2)0.0733 (7)
C200.4057 (2)0.8317 (2)0.65084 (14)0.0497 (5)
C210.4573 (2)0.9998 (2)0.64844 (14)0.0492 (5)
C240.7062 (2)1.0913 (2)0.74752 (14)0.0455 (4)
C250.6252 (2)1.0381 (2)0.63910 (14)0.0505 (5)
C260.8751 (2)1.1172 (2)0.78925 (14)0.0460 (4)
C270.9750 (2)1.1281 (2)0.72391 (16)0.0529 (5)
C281.1338 (2)1.1536 (3)0.76154 (19)0.0634 (6)
C291.1953 (3)1.1658 (3)0.8629 (2)0.0721 (7)
C301.0978 (3)1.1550 (3)0.92885 (19)0.0741 (7)
C310.9385 (3)1.1308 (3)0.89236 (16)0.0611 (5)
H20.14430.68290.80100.089*
H30.35480.62080.86910.103*
H40.57620.45840.77680.107*
H50.58860.36350.61310.113*
H60.37520.42300.54330.092*
H70.12440.54200.54980.066*
H80.02830.81090.68880.062*
H130.001 (3)0.421 (2)0.677 (2)0.090 (8)*
H140.10160.83990.50480.108*
H160.40580.89640.85590.072*
H170.40160.79471.00420.094*
H180.22960.57141.00180.106*
H190.06030.45380.85460.088*
H20a0.40420.77700.58610.060*
H20b0.48170.79940.70180.060*
H210.38791.03360.59320.059*
H25a0.65900.94960.61260.061*
H25b0.64031.11740.59710.061*
H270.93421.11810.65460.064*
H281.19961.16260.71750.076*
H291.30251.18130.88770.086*
H301.13971.16410.99800.089*
H310.87351.12350.93700.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O140.0543 (9)0.0779 (11)0.0738 (11)0.0015 (7)0.0006 (7)0.0224 (8)
O150.0587 (10)0.1559 (19)0.0490 (9)0.0199 (10)0.0048 (7)0.0315 (10)
O220.0372 (7)0.0582 (8)0.0719 (9)0.0069 (6)0.0176 (6)0.0036 (6)
N100.0436 (8)0.0540 (9)0.0424 (8)0.0008 (7)0.0114 (6)0.0051 (6)
N130.0544 (10)0.0427 (9)0.0903 (13)0.0053 (7)0.0271 (9)0.0003 (9)
N230.0422 (9)0.0560 (9)0.0592 (10)0.0041 (7)0.0155 (7)0.0031 (7)
C10.0456 (10)0.0480 (10)0.0690 (13)0.0034 (8)0.0147 (9)0.0102 (9)
C20.0495 (12)0.1070 (19)0.0675 (14)0.0148 (12)0.0178 (10)0.0111 (13)
C30.0662 (16)0.125 (2)0.0872 (18)0.0373 (16)0.0352 (14)0.0422 (17)
C40.0687 (17)0.0772 (17)0.146 (3)0.0275 (14)0.0540 (18)0.0518 (18)
C50.0519 (14)0.0548 (14)0.171 (3)0.0052 (11)0.0279 (17)0.0121 (17)
C60.0554 (13)0.0520 (12)0.113 (2)0.0036 (10)0.0177 (13)0.0087 (12)
C70.0489 (11)0.0520 (11)0.0580 (11)0.0035 (8)0.0162 (9)0.0055 (9)
C80.0445 (10)0.0541 (11)0.0518 (11)0.0007 (8)0.0082 (8)0.0049 (8)
C90.0467 (11)0.0674 (12)0.0446 (10)0.0082 (9)0.0066 (8)0.0070 (9)
C110.0475 (10)0.0532 (10)0.0479 (10)0.0138 (8)0.0178 (8)0.0106 (8)
C120.0527 (11)0.0506 (11)0.0713 (13)0.0198 (9)0.0284 (10)0.0173 (9)
C160.0611 (12)0.0728 (13)0.0478 (11)0.0184 (10)0.0133 (9)0.0085 (9)
C170.0833 (17)0.113 (2)0.0503 (13)0.0401 (16)0.0175 (11)0.0187 (13)
C180.103 (2)0.115 (2)0.0788 (18)0.0539 (19)0.0466 (17)0.0552 (17)
C190.0775 (16)0.0741 (15)0.0921 (19)0.0343 (13)0.0428 (14)0.0422 (14)
C200.0439 (10)0.0563 (11)0.0471 (10)0.0031 (8)0.0152 (8)0.0016 (8)
C210.0375 (9)0.0577 (11)0.0511 (10)0.0055 (8)0.0104 (8)0.0083 (8)
C240.0401 (9)0.0447 (9)0.0519 (10)0.0050 (7)0.0147 (8)0.0056 (7)
C250.0389 (10)0.0609 (11)0.0508 (10)0.0030 (8)0.0136 (8)0.0092 (8)
C260.0398 (9)0.0439 (9)0.0531 (10)0.0051 (7)0.0110 (8)0.0069 (8)
C270.0437 (10)0.0561 (11)0.0585 (11)0.0078 (8)0.0141 (9)0.0046 (9)
C280.0406 (10)0.0675 (13)0.0827 (15)0.0112 (9)0.0182 (10)0.0046 (11)
C290.0412 (11)0.0707 (14)0.0983 (19)0.0137 (10)0.0022 (11)0.0102 (13)
C300.0646 (14)0.0812 (16)0.0663 (14)0.0123 (12)0.0075 (11)0.0163 (12)
C310.0546 (12)0.0712 (13)0.0562 (12)0.0088 (10)0.0104 (9)0.0155 (10)
Geometric parameters (Å, º) top
O14—C81.412 (3)C11—C161.386 (3)
O14—H140.8200C12—C191.395 (3)
O15—C91.227 (3)C16—C171.379 (4)
O22—N231.415 (2)C16—H160.9300
O22—C211.446 (2)C17—C181.383 (5)
N10—C91.345 (2)C17—H170.9300
N10—C111.432 (2)C18—C191.366 (4)
N10—C201.473 (2)C18—H180.9300
N13—C71.475 (3)C19—H190.9300
N13—C121.411 (3)C20—C211.516 (3)
N13—H130.931 (19)C20—H20a0.9700
N23—C241.280 (3)C20—H20b0.9700
C1—C21.390 (3)C21—C251.523 (3)
C1—C61.376 (3)C21—H210.9800
C1—C71.516 (3)C24—C251.497 (3)
C2—C31.377 (4)C24—C261.470 (3)
C2—H20.9300C25—H25a0.9700
C3—C41.363 (4)C25—H25b0.9700
C3—H30.9300C26—C271.395 (3)
C4—C51.363 (5)C26—C311.388 (3)
C4—H40.9300C27—C281.378 (3)
C5—C61.404 (4)C27—H270.9300
C5—H50.9300C28—C291.364 (4)
C6—H60.9300C28—H280.9300
C7—C81.529 (3)C29—C301.385 (4)
C7—H70.9800C29—H290.9300
C8—C91.522 (3)C30—C311.381 (4)
C8—H80.9800C30—H300.9300
C11—C121.396 (3)C31—H310.9300
C8—O14—H14109.00C17—C16—H16120.00
N23—O22—C21108.51 (14)C16—C17—C18119.5 (2)
C9—N10—C11122.14 (16)C16—C17—H17120.00
C9—N10—C20117.82 (15)C18—C17—H17120.00
C11—N10—C20119.62 (15)C17—C18—C19120.5 (3)
C7—N13—C12117.66 (16)C17—C18—H18120.00
C7—N13—H13109.8 (17)C19—C18—H18120.00
C12—N13—H13110.1 (16)C12—C19—C18121.2 (3)
O22—N23—C24108.88 (16)C12—C19—H19119.00
C2—C1—C6117.1 (2)C18—C19—H19119.00
C2—C1—C7122.4 (2)N10—C20—C21114.08 (15)
C6—C1—C7120.5 (2)N10—C20—H20a109.00
C1—C2—C3121.6 (2)N10—C20—H20b109.00
C1—C2—H2119.00C21—C20—H20a109.00
C3—C2—H2119.00C21—C20—H20b109.00
C2—C3—C4120.8 (3)H20a—C20—H20b108.00
C2—C3—H3120.00O22—C21—C20109.67 (15)
C4—C3—H3120.00O22—C21—C25103.98 (14)
C3—C4—C5119.1 (3)O22—C21—H21110.00
C3—C4—H4120.00C20—C21—C25111.47 (15)
C5—C4—H4120.00C20—C21—H21111.00
C4—C5—C6120.5 (3)C25—C21—H21111.00
C4—C5—H5120.00N23—C24—C25113.70 (17)
C6—C5—H5120.00N23—C24—C26120.91 (17)
C1—C6—C5120.9 (3)C25—C24—C26125.39 (16)
C1—C6—H6120.00C21—C25—C24100.10 (15)
C5—C6—H6120.00C21—C25—H25a112.00
N13—C7—C1113.45 (17)C21—C25—H25b112.00
N13—C7—C8109.22 (16)C24—C25—H25a112.00
N13—C7—H7107.00C24—C25—H25b112.00
C1—C7—C8112.31 (15)H25a—C25—H25b109.00
C1—C7—H7107.00C24—C26—C27119.42 (17)
C8—C7—H7107.00C24—C26—C31121.77 (19)
O14—C8—C7108.40 (16)C27—C26—C31118.82 (19)
O14—C8—C9109.81 (16)C26—C27—C28120.3 (2)
O14—C8—H8109.00C26—C27—H27120.00
C7—C8—C9112.00 (15)C28—C27—H27120.00
C7—C8—H8109.00C27—C28—C29120.5 (2)
C9—C8—H8109.00C27—C28—H28120.00
O15—C9—N10122.11 (18)C29—C28—H28120.00
O15—C9—C8119.30 (18)C28—C29—C30119.9 (2)
N10—C9—C8118.48 (16)C28—C29—H29120.00
N10—C11—C12119.65 (17)C30—C29—H29120.00
N10—C11—C16119.64 (18)C29—C30—C31120.3 (2)
C12—C11—C16120.59 (19)C29—C30—H30120.00
N13—C12—C11120.15 (19)C31—C30—H30120.00
N13—C12—C19121.85 (19)C26—C31—C30120.2 (2)
C11—C12—C19117.9 (2)C26—C31—H31120.00
C11—C16—C17120.3 (2)C30—C31—H31120.00
C11—C16—H16120.00
O14—C8—C9—O1515.0 (3)C7—C8—C9—O15105.5 (2)
O14—C8—C9—N10161.30 (17)C7—C8—C9—N1078.2 (2)
O22—N23—C24—C250.4 (2)C9—N10—C11—C1242.8 (3)
O22—N23—C24—C26179.36 (16)C9—N10—C11—C16141.1 (2)
O22—C21—C25—C2420.06 (17)C9—N10—C20—C2174.2 (2)
N10—C11—C12—N131.1 (3)C11—N10—C9—O15172.6 (2)
N10—C11—C12—C19175.89 (19)C11—N10—C9—C811.3 (3)
N10—C11—C16—C17174.9 (2)C11—N10—C20—C21113.19 (18)
N10—C20—C21—O2258.2 (2)C11—C12—C19—C181.2 (4)
N10—C20—C21—C25172.78 (15)C11—C16—C17—C180.7 (4)
N13—C7—C8—O14162.39 (16)C12—N13—C7—C179.9 (2)
N13—C7—C8—C941.1 (2)C12—N13—C7—C846.2 (2)
N13—C12—C19—C18175.7 (3)C12—C11—C16—C171.1 (4)
N23—O22—C21—C2097.71 (17)C16—C11—C12—N13177.1 (2)
N23—O22—C21—C2521.61 (18)C16—C11—C12—C190.1 (3)
N23—C24—C25—C2113.3 (2)C16—C17—C18—C190.7 (5)
N23—C24—C26—C27163.20 (18)C17—C18—C19—C121.7 (5)
N23—C24—C26—C3117.0 (3)C20—N10—C9—O150.1 (3)
C1—C2—C3—C40.8 (5)C20—N10—C9—C8176.28 (15)
C1—C7—C8—O1470.8 (2)C20—N10—C11—C12129.51 (19)
C1—C7—C8—C9167.85 (17)C20—N10—C11—C1646.5 (3)
C2—C1—C6—C51.8 (4)C20—C21—C25—C2498.02 (17)
C2—C1—C7—N1367.0 (3)C21—O22—N23—C2413.9 (2)
C2—C1—C7—C857.4 (3)C24—C26—C27—C28179.47 (19)
C2—C3—C4—C51.1 (5)C24—C26—C31—C30180.0 (2)
C3—C4—C5—C61.5 (4)C25—C24—C26—C2715.6 (3)
C4—C5—C6—C10.0 (4)C25—C24—C26—C31164.2 (2)
C6—C1—C2—C32.2 (4)C26—C24—C25—C21167.78 (17)
C6—C1—C7—N13111.5 (2)C26—C27—C28—C291.2 (4)
C6—C1—C7—C8124.0 (2)C27—C26—C31—C300.1 (3)
C7—N13—C12—C1173.2 (2)C27—C28—C29—C301.1 (4)
C7—N13—C12—C19110.0 (2)C28—C29—C30—C310.5 (4)
C7—C1—C2—C3176.4 (2)C29—C30—C31—C260.0 (4)
C7—C1—C6—C5176.8 (2)C31—C26—C27—C280.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
O14—H14···O150.822.142.632 (3)118
C16—H16···O220.932.443.206 (3)140
C25—H25a···O14i0.972.593.493 (3)154
C27—H27···O15ii0.932.403.302 (3)162
C28—H28···O22i0.932.523.152 (2)125
C19—H19···Cg4iii0.932.783.534 (3)139
N13—H13···Cg4iii0.93 (2)2.77 (2)3.671 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC25H23N3O3
Mr413.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.981 (2), 9.044 (2), 13.685 (1)
α, β, γ (°)95.373 (10), 102.433 (10), 100.03 (2)
V3)1058.9 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.903, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
3584, 3584, 3232
Rint0.000
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.05
No. of reflections3584
No. of parameters286
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
O14—H14···O150.822.142.632 (3)118
C16—H16···O220.932.443.206 (3)140
C25—H25a···O14i0.972.593.493 (3)154
C27—H27···O15ii0.932.403.302 (3)162
C28—H28···O22i0.932.523.152 (2)125
C19—H19···Cg4iii0.932.783.534 (3)139
N13—H13···Cg4iii0.931 (19)2.766 (19)3.671 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z+1; (iii) x1, y1, z.
 

References

First citationAhabchane, A. H., Keita, A. & Essassi, E. M. (1999). Compt. Rend. Ser. IIC, 2, 519–523.  CAS Google Scholar
First citationBallo, D., Ahabchane, N. H., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o1277.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDing, C. Z., Batorsky, R., Bhide, R., Chao, H. J., Cho, Y., Chong, S., GulloBrown, J., Guo, P., Kim, S. H., Lee, F., Leftheris, K., Miller, A., Mitt, T., Patel, M., Penhallow, B. A., et al. (1999). J. Med. Chem. 42, 5241–5253.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGrunewald, G. L., Dahanukar, V. H., Ching, P. & Criscione, K. R. (1996). J. Med. Chem. 39, 3539–3946.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSaber, A., Al Subari, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010a). Acta Cryst. E66, o1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaber, A., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010b). Acta Cryst. E66, o1409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o945-o946
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds