organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o762-o763

7-(4-Meth­­oxy­phen­yl)-4,9-di­methyl-N-(4-methyl­phen­yl)-5,12-di­aza­tetra­phen-6-amine

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: dvelmurugan@unom.ac.in

(Received 3 January 2011; accepted 18 February 2011; online 2 March 2011)

In the title compound, C32H27N3O, the fused tetra­cycilc ring system is essentially planar [r.m.s. deviation = 0.07 (7) Å]. An intra­molecular N—H⋯π(arene) inter­action and a weak intra­molecular C—H⋯N hydrogen bond may influence the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R22(14) motifs. In addition, weak ππ stacking inter­actions with centroid–centroid distances in the range 3.578 (1)–3.739 (1) Å provide further stabilization.

Related literature

For the biological activity of naphthyridine derivatives, see: Gopalsamy et al. (2007[Gopalsamy, A., Shi, M., Boschelli, D. H., Williamson, R., Olland, A., Hu, Y., Krishnamurthy, G., Han, X., Arndt, K. & Guo, B. (2007). J. Med. Chem. 50, 5547-5549.]); Kim et al. (2009[Kim, K. H., Wissner, A., Floyd, B. M., Fraser, L. H., Wang, Y. D., Dushin, R. G., Hu, Y., Olland, A., Guo, B. & Arndt, K. (2009). Bioorg. Med. Chem. Lett. 19, 5225-5228.]); Nittoli et al. (2010[Nittoli, T., Dushin, R. G., Ingalls, C., Cheung, K., Floyd, M. B., Fraser, H., Olland, A., Hu, Y., Grosu, G., Han, X., Arndt, K., Guo, B. & Wissner, A. (2010). Eur. J. Med. Chem. 45, 1379-1386.]); Bedard et al. (2000[Bedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929-937.]). For the structures of related naphthrydine derivatives, see: Peng et al. (2009[Peng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109-o1110.]); Seebacher et al . (2010)[Seebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.]; Vennila et al. (2010a[Vennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010a). Acta Cryst. E66, o2426-o2427.],b[Vennila, K. N., Manoj, M., Prabha, K., Prasad, K. J. R. & Velmurugan, D. (2011b). Acta Cryst. E67, o102-o103.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C32H27N3O

  • Mr = 469.57

  • Monoclinic, P 21 /c

  • a = 8.3816 (6) Å

  • b = 23.1651 (13) Å

  • c = 12.8548 (7) Å

  • β = 91.171 (3)°

  • V = 2495.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.29 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) Tmin = 0.978, Tmax = 0.983

  • 24206 measured reflections

  • 6239 independent reflections

  • 3904 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.181

  • S = 0.95

  • 6239 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cg 0.86 2.48 3.336 (3) 176
C28—H28⋯N1 0.93 2.37 2.927 (3) 118
C18—H18⋯N2i 0.93 2.55 3.435 (2) 159
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Dibenzo-naphthyridine analogs have been reported to be good Phosphoinositide-Dependent Kinase (PDK-1) inhibitors. Gopalsamy et al. (2007) and Kim et al. (2009) have described the synthesis and structure activity relationship analysis of a novel series of benzo[c][2,7]naphthyridines as potent PDK-1 inhibitors. Recently a few X-ray crystal structures of PDK-1 and dibenzo[2,7] naphthyridine analog complexes have been reported (Gopalsamy et al., 2007; Nittoli et al., 2010). A series of dibenzo-naphthyridines were sucessfully tested for anticancer assays (Gopalsamy et al., 2007; Nittoli et al., 2010). The naphthyridine compounds were also proven to exhibit potent activity against human cytomegalovirus (Bedard et al. , 2000). As we are focussing on heterocyclic naphthyridine derivatives with potential biological properties, the crystal structure of the title compound was determined.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths and angles are in the normal ranges (Allen et al., 1987). The fused tetracyclic ring system is essentially planar in geometry as was previously reported for a related compounds (Vennila et al., 2010, 2011; Seebacher et al. 2010; Peng et al. 2009). An intramolecular N—H···π(arene) interaction and a weak intramolecular C—H···N hydrogen bond may influence the molecular conformation. In the crystal, weak intermolecular C—H···N hydrogen bonds link the molecules into centrosymmetric dimers forming R22(14) motifs (Bernstein et al., 1995) (see Fig. 2). In addition, weak ππ stacking interactions with centroid to centroid distances in the range 3.578 (1) - 3.739 (1) Å provide additional stabilization.

Related literature top

For the biological activity of naphthyridine derivatives, see: Gopalsamy et al. (2007); Kim et al. (2009); Nittoli et al. (2010); Bedard et al. (2000). For the structures of related naphthrydine derivatives, see: Peng et al. (2009); Seebacher et al . (2010); Vennila et al. (2010, 2011). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4',4''-dimethyl-2,4-bis-(N-phenylamino) quinoline (0.0010 mol) and p-methoxybenzoic acid (0.0011 mol) was added to polyphosphoric acid (3 g of P2O5 in 1.5 mL of H3PO4) and kept at 323-328K for 5 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction mixture was poured into ice water and neutralised with saturated NaHCO3 solution to remove the excess of p-methoxy benzoic acid. The precipitate was filtered, dried and purified by column chromatography over silica gel using petroleum ether : ethyl acetate (98 : 2). The product was recrystallised using ethyl acetate.

Refinement top

The H-atoms were positioned geometrically and treated as riding atoms: C—H =0.93 Å H-aromatic, C—H = 0.96 Å H-methyl, and N—H = 0.86 Å, with Uiso = k×Ueq(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing thermal ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines.
7-(4-Methoxyphenyl)-4,9-dimethyl-N-(4-methylphenyl)-5,12- diazabenz[a]anthracen-6-amine top
Crystal data top
C32H27N3OF(000) = 992
Mr = 469.57Dx = 1.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6327 reflections
a = 8.3816 (6) Åθ = 1.8–28.5°
b = 23.1651 (13) ŵ = 0.08 mm1
c = 12.8548 (7) ÅT = 293 K
β = 91.171 (3)°Block, yellow
V = 2495.4 (3) Å30.29 × 0.24 × 0.23 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6239 independent reflections
Radiation source: fine-focus sealed tube3904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.978, Tmax = 0.983k = 2930
24206 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0992P)2 + 0.5542P]
where P = (Fo2 + 2Fc2)/3
6239 reflections(Δ/σ)max = 0.001
329 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C32H27N3OV = 2495.4 (3) Å3
Mr = 469.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3816 (6) ŵ = 0.08 mm1
b = 23.1651 (13) ÅT = 293 K
c = 12.8548 (7) Å0.29 × 0.24 × 0.23 mm
β = 91.171 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3904 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.029
24206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 0.95Δρmax = 0.27 e Å3
6239 reflectionsΔρmin = 0.23 e Å3
329 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.27001 (18)0.47982 (7)0.01559 (12)0.0415 (4)
N20.38310 (17)0.54757 (6)0.14162 (11)0.0481 (3)
C90.44758 (19)0.50366 (7)0.19420 (12)0.0437 (4)
C80.43129 (19)0.44464 (7)0.16148 (12)0.0419 (4)
C170.29497 (18)0.37335 (7)0.03664 (12)0.0416 (4)
C60.6097 (2)0.47172 (8)0.34423 (13)0.0506 (4)
C100.29963 (19)0.53681 (7)0.05320 (13)0.0452 (4)
C120.33652 (18)0.43309 (6)0.07278 (12)0.0411 (4)
C70.52499 (19)0.40261 (7)0.22420 (12)0.0445 (4)
C140.11930 (19)0.51950 (8)0.13214 (13)0.0488 (4)
N10.60278 (17)0.41521 (6)0.30973 (11)0.0509 (4)
C130.1761 (2)0.47325 (7)0.07674 (13)0.0471 (4)
H130.15240.43620.10040.056*
C50.5387 (2)0.51709 (7)0.28813 (13)0.0508 (4)
N30.53552 (18)0.34709 (6)0.18772 (12)0.0527 (4)
H30.46770.33880.13890.063*
C220.1889 (2)0.34023 (7)0.09339 (13)0.0467 (4)
H220.14250.35600.15200.056*
O10.1768 (2)0.20499 (5)0.04304 (11)0.0739 (4)
C200.2205 (2)0.26068 (7)0.02185 (14)0.0523 (4)
C160.2387 (2)0.58410 (7)0.00458 (15)0.0534 (4)
H160.25650.62150.01940.064*
C190.3250 (2)0.29293 (7)0.08088 (14)0.0548 (5)
H190.37050.27700.13970.066*
C180.3608 (2)0.34901 (7)0.05119 (13)0.0493 (4)
H180.43020.37070.09090.059*
C150.1548 (2)0.57559 (8)0.09457 (16)0.0551 (5)
H150.11950.60740.13260.066*
C230.6376 (2)0.30140 (7)0.21616 (14)0.0517 (4)
C10.6987 (3)0.48302 (9)0.43698 (15)0.0646 (5)
C210.1515 (2)0.28481 (7)0.06463 (14)0.0529 (4)
H210.07980.26350.10330.063*
C330.0213 (2)0.51229 (9)0.23006 (15)0.0622 (5)
H33A0.04610.47590.26160.093*
H33B0.04490.54300.27740.093*
H33C0.09000.51330.21390.093*
C40.5588 (3)0.57407 (9)0.32314 (16)0.0680 (6)
H40.51250.60450.28610.082*
C260.8354 (2)0.20560 (8)0.25512 (18)0.0661 (5)
C280.7225 (3)0.29651 (9)0.30897 (17)0.0732 (6)
H280.71500.32500.35960.088*
C240.6517 (3)0.25781 (8)0.14459 (18)0.0736 (6)
H240.59440.26000.08200.088*
C250.7489 (3)0.21103 (9)0.1638 (2)0.0809 (7)
H250.75620.18230.11370.097*
C270.8194 (3)0.24844 (10)0.3259 (2)0.0813 (7)
H270.87570.24560.38880.098*
C290.7759 (3)0.43458 (11)0.49655 (17)0.0853 (7)
H29A0.82830.44960.55790.128*
H29B0.85290.41590.45370.128*
H29C0.69610.40720.51620.128*
C20.7139 (3)0.53922 (11)0.46798 (18)0.0831 (7)
H20.77130.54730.52890.100*
C300.9433 (3)0.15394 (10)0.2742 (2)0.0919 (8)
H30A1.02150.15210.22080.138*
H30B0.88060.11930.27310.138*
H30C0.99610.15780.34080.138*
C30.6470 (3)0.58475 (11)0.41220 (19)0.0859 (7)
H3A0.66190.62250.43510.103*
C320.2335 (5)0.18004 (10)0.13340 (19)0.1118 (11)
H32A0.20880.20460.19170.168*
H32B0.18390.14310.14390.168*
H32C0.34700.17520.12710.168*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0348 (8)0.0400 (8)0.0498 (8)0.0001 (6)0.0044 (7)0.0023 (6)
N20.0441 (8)0.0410 (7)0.0595 (8)0.0014 (6)0.0068 (7)0.0046 (6)
C90.0387 (8)0.0436 (8)0.0490 (9)0.0023 (7)0.0078 (7)0.0036 (7)
C80.0372 (8)0.0406 (8)0.0480 (8)0.0009 (6)0.0036 (7)0.0003 (6)
C170.0391 (8)0.0385 (8)0.0467 (8)0.0003 (6)0.0060 (7)0.0025 (6)
C60.0475 (10)0.0572 (10)0.0473 (9)0.0041 (8)0.0044 (8)0.0061 (7)
C100.0363 (8)0.0414 (8)0.0582 (10)0.0002 (7)0.0083 (7)0.0000 (7)
C120.0359 (8)0.0388 (8)0.0488 (8)0.0003 (6)0.0045 (7)0.0000 (6)
C70.0388 (8)0.0462 (9)0.0484 (9)0.0013 (7)0.0007 (7)0.0010 (7)
C140.0356 (8)0.0539 (10)0.0571 (10)0.0041 (7)0.0052 (7)0.0107 (7)
N10.0479 (8)0.0564 (9)0.0483 (8)0.0009 (7)0.0005 (7)0.0016 (6)
C130.0409 (9)0.0447 (9)0.0557 (9)0.0004 (7)0.0028 (7)0.0011 (7)
C50.0494 (10)0.0535 (10)0.0497 (9)0.0064 (8)0.0061 (8)0.0097 (7)
N30.0519 (9)0.0453 (8)0.0603 (9)0.0034 (6)0.0162 (7)0.0024 (6)
C220.0419 (9)0.0458 (9)0.0522 (9)0.0014 (7)0.0011 (7)0.0018 (7)
O10.1046 (12)0.0424 (7)0.0739 (9)0.0111 (7)0.0147 (8)0.0056 (6)
C200.0616 (11)0.0377 (8)0.0567 (10)0.0031 (7)0.0163 (8)0.0017 (7)
C160.0444 (9)0.0409 (9)0.0751 (12)0.0041 (7)0.0066 (9)0.0035 (8)
C190.0659 (12)0.0489 (10)0.0494 (9)0.0032 (8)0.0044 (8)0.0061 (7)
C180.0534 (10)0.0451 (9)0.0496 (9)0.0033 (7)0.0024 (8)0.0002 (7)
C150.0403 (9)0.0505 (10)0.0746 (12)0.0077 (8)0.0063 (9)0.0160 (8)
C230.0469 (10)0.0455 (9)0.0623 (10)0.0013 (7)0.0075 (8)0.0051 (8)
C10.0648 (13)0.0780 (14)0.0509 (10)0.0048 (10)0.0003 (9)0.0100 (9)
C210.0513 (10)0.0452 (9)0.0621 (10)0.0072 (8)0.0033 (8)0.0074 (8)
C330.0490 (11)0.0744 (13)0.0630 (12)0.0031 (9)0.0017 (9)0.0145 (9)
C40.0821 (15)0.0560 (11)0.0660 (12)0.0063 (10)0.0021 (11)0.0150 (9)
C260.0553 (12)0.0505 (11)0.0919 (15)0.0047 (9)0.0111 (11)0.0118 (10)
C280.0827 (15)0.0653 (13)0.0705 (13)0.0191 (11)0.0235 (11)0.0045 (10)
C240.0892 (16)0.0523 (11)0.0778 (13)0.0153 (10)0.0311 (12)0.0069 (10)
C250.0951 (18)0.0512 (12)0.0953 (16)0.0183 (11)0.0236 (14)0.0100 (11)
C270.0821 (16)0.0747 (14)0.0857 (15)0.0190 (12)0.0317 (13)0.0073 (12)
C290.0919 (18)0.1044 (19)0.0587 (12)0.0039 (14)0.0180 (12)0.0034 (12)
C20.0952 (19)0.0912 (18)0.0624 (13)0.0107 (14)0.0125 (12)0.0218 (12)
C300.0839 (17)0.0659 (14)0.125 (2)0.0222 (12)0.0138 (15)0.0159 (13)
C30.109 (2)0.0742 (15)0.0737 (14)0.0156 (14)0.0092 (14)0.0303 (12)
C320.209 (4)0.0567 (14)0.0696 (14)0.0158 (17)0.0010 (18)0.0162 (11)
Geometric parameters (Å, º) top
C11—C121.416 (2)C19—H190.9300
C11—C131.419 (2)C18—H180.9300
C11—C101.426 (2)C15—H150.9300
N2—C91.330 (2)C23—C241.373 (3)
N2—C101.346 (2)C23—C281.381 (3)
C9—C81.436 (2)C1—C21.367 (3)
C9—C51.449 (2)C1—C291.498 (3)
C8—C121.402 (2)C21—H210.9300
C8—C71.479 (2)C33—H33A0.9600
C17—C181.386 (2)C33—H33B0.9600
C17—C221.392 (2)C33—H33C0.9600
C17—C121.498 (2)C4—C31.372 (3)
C6—N11.383 (2)C4—H40.9300
C6—C51.400 (3)C26—C271.355 (3)
C6—C11.418 (3)C26—C251.373 (3)
C10—C161.413 (2)C26—C301.517 (3)
C7—N11.300 (2)C28—C271.393 (3)
C7—N31.372 (2)C28—H280.9300
C14—C131.367 (2)C24—C251.375 (3)
C14—C151.416 (3)C24—H240.9300
C14—C331.498 (3)C25—H250.9300
C13—H130.9300C27—H270.9300
C5—C41.403 (2)C29—H29A0.9600
N3—C231.405 (2)C29—H29B0.9600
N3—H30.8600C29—H29C0.9600
C22—C211.371 (2)C2—C31.387 (4)
C22—H220.9300C2—H20.9300
O1—C201.367 (2)C30—H30A0.9600
O1—C321.390 (3)C30—H30B0.9600
C20—C191.388 (3)C30—H30C0.9600
C20—C211.381 (3)C3—H3A0.9300
C16—C151.356 (3)C32—H32A0.9600
C16—H160.9300C32—H32B0.9600
C19—C181.385 (2)C32—H32C0.9600
C12—C11—C13123.91 (14)C24—C23—C28117.96 (17)
C12—C11—C10117.89 (15)C24—C23—N3116.10 (16)
C13—C11—C10118.20 (14)C28—C23—N3125.94 (17)
C9—N2—C10119.11 (14)C2—C1—C6117.7 (2)
N2—C9—C8122.97 (15)C2—C1—C29121.8 (2)
N2—C9—C5117.45 (15)C6—C1—C29120.41 (19)
C8—C9—C5119.59 (15)C22—C21—C20119.92 (16)
C12—C8—C9117.95 (15)C22—C21—H21120.0
C12—C8—C7127.10 (14)C20—C21—H21120.0
C9—C8—C7114.88 (14)C14—C33—H33A109.5
C18—C17—C22118.13 (15)C14—C33—H33B109.5
C18—C17—C12122.29 (14)H33A—C33—H33B109.5
C22—C17—C12119.57 (14)C14—C33—H33C109.5
N1—C6—C5122.05 (16)H33A—C33—H33C109.5
N1—C6—C1117.53 (17)H33B—C33—H33C109.5
C5—C6—C1120.34 (17)C3—C4—C5119.7 (2)
N2—C10—C16118.44 (15)C3—C4—H4120.1
N2—C10—C11122.79 (15)C5—C4—H4120.1
C16—C10—C11118.76 (16)C27—C26—C25116.68 (19)
C8—C12—C11119.12 (14)C27—C26—C30122.4 (2)
C8—C12—C17123.54 (14)C25—C26—C30120.9 (2)
C11—C12—C17117.28 (14)C23—C28—C27119.3 (2)
N1—C7—N3117.69 (15)C23—C28—H28120.4
N1—C7—C8124.38 (15)C27—C28—H28120.4
N3—C7—C8117.88 (15)C23—C24—C25121.2 (2)
C13—C14—C15118.26 (17)C23—C24—H24119.4
C13—C14—C33121.96 (17)C25—C24—H24119.4
C15—C14—C33119.78 (16)C26—C25—C24121.8 (2)
C7—N1—C6120.05 (15)C26—C25—H25119.1
C14—C13—C11122.22 (16)C24—C25—H25119.1
C14—C13—H13118.9C26—C27—C28123.1 (2)
C11—C13—H13118.9C26—C27—H27118.5
C6—C5—C4119.60 (17)C28—C27—H27118.5
C6—C5—C9118.62 (15)C1—C29—H29A109.5
C4—C5—C9121.78 (18)C1—C29—H29B109.5
C7—N3—C23131.31 (15)H29A—C29—H29B109.5
C7—N3—H3114.3C1—C29—H29C109.5
C23—N3—H3114.3H29A—C29—H29C109.5
C21—C22—C17121.33 (16)H29B—C29—H29C109.5
C21—C22—H22119.3C1—C2—C3122.6 (2)
C17—C22—H22119.3C1—C2—H2118.7
C20—O1—C32117.64 (18)C3—C2—H2118.7
O1—C20—C19124.64 (17)C26—C30—H30A109.5
O1—C20—C21115.29 (16)C26—C30—H30B109.5
C19—C20—C21120.07 (15)H30A—C30—H30B109.5
C15—C16—C10120.74 (16)C26—C30—H30C109.5
C15—C16—H16119.6H30A—C30—H30C109.5
C10—C16—H16119.6H30B—C30—H30C109.5
C20—C19—C18119.30 (16)C4—C3—C2119.9 (2)
C20—C19—H19120.3C4—C3—H3A120.0
C18—C19—H19120.3C2—C3—H3A120.0
C17—C18—C19121.22 (16)O1—C32—H32A109.5
C17—C18—H18119.4O1—C32—H32B109.5
C19—C18—H18119.4H32A—C32—H32B109.5
C16—C15—C14121.74 (16)O1—C32—H32C109.5
C16—C15—H15119.1H32A—C32—H32C109.5
C14—C15—H15119.1H32B—C32—H32C109.5
C10—N2—C9—C80.6 (2)C8—C9—C5—C4179.71 (16)
C10—N2—C9—C5179.02 (13)N1—C7—N3—C2312.1 (3)
N2—C9—C8—C123.1 (2)C8—C7—N3—C23165.47 (16)
C5—C9—C8—C12177.28 (13)C18—C17—C22—C210.9 (2)
N2—C9—C8—C7174.06 (14)C12—C17—C22—C21178.05 (15)
C5—C9—C8—C75.5 (2)C32—O1—C20—C194.0 (3)
C9—N2—C10—C16176.83 (14)C32—O1—C20—C21175.4 (2)
C9—N2—C10—C113.3 (2)N2—C10—C16—C15179.56 (15)
C12—C11—C10—N22.1 (2)C11—C10—C16—C150.5 (2)
C13—C11—C10—N2177.95 (14)O1—C20—C19—C18179.70 (17)
C12—C11—C10—C16177.95 (14)C21—C20—C19—C180.9 (3)
C13—C11—C10—C162.0 (2)C22—C17—C18—C191.3 (3)
C9—C8—C12—C114.1 (2)C12—C17—C18—C19177.59 (16)
C7—C8—C12—C11172.70 (14)C20—C19—C18—C170.4 (3)
C9—C8—C12—C17173.20 (14)C10—C16—C15—C142.5 (3)
C7—C8—C12—C1710.0 (2)C13—C14—C15—C161.9 (2)
C13—C11—C12—C8178.23 (14)C33—C14—C15—C16177.88 (16)
C10—C11—C12—C81.7 (2)C7—N3—C23—C24160.3 (2)
C13—C11—C12—C174.3 (2)C7—N3—C23—C2820.4 (3)
C10—C11—C12—C17175.80 (13)N1—C6—C1—C2176.14 (18)
C18—C17—C12—C8107.91 (19)C5—C6—C1—C20.9 (3)
C22—C17—C12—C871.0 (2)N1—C6—C1—C292.4 (3)
C18—C17—C12—C1174.7 (2)C5—C6—C1—C29179.42 (18)
C22—C17—C12—C11106.41 (17)C17—C22—C21—C200.5 (3)
C12—C8—C7—N1175.40 (15)O1—C20—C21—C22179.22 (16)
C9—C8—C7—N17.7 (2)C19—C20—C21—C221.4 (3)
C12—C8—C7—N37.2 (2)C6—C5—C4—C30.3 (3)
C9—C8—C7—N3169.75 (14)C9—C5—C4—C3179.60 (19)
N3—C7—N1—C6173.38 (15)C24—C23—C28—C270.7 (3)
C8—C7—N1—C64.1 (2)N3—C23—C28—C27180.0 (2)
C5—C6—N1—C71.9 (2)C28—C23—C24—C250.9 (3)
C1—C6—N1—C7178.88 (16)N3—C23—C24—C25179.7 (2)
C15—C14—C13—C110.7 (2)C27—C26—C25—C240.5 (4)
C33—C14—C13—C11179.49 (14)C30—C26—C25—C24179.3 (2)
C12—C11—C13—C14177.29 (15)C23—C24—C25—C260.3 (4)
C10—C11—C13—C142.6 (2)C25—C26—C27—C280.7 (4)
N1—C6—C5—C4175.65 (17)C30—C26—C27—C28179.1 (2)
C1—C6—C5—C41.2 (3)C23—C28—C27—C260.1 (4)
N1—C6—C5—C93.7 (2)C6—C1—C2—C30.4 (4)
C1—C6—C5—C9179.45 (15)C29—C1—C2—C3178.1 (2)
N2—C9—C5—C6179.17 (14)C5—C4—C3—C20.9 (4)
C8—C9—C5—C60.4 (2)C1—C2—C3—C41.3 (4)
N2—C9—C5—C40.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···Cg0.862.483.336 (3)176
C28—H28···N10.932.372.927 (3)118
C18—H18···N2i0.932.553.435 (2)159
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H27N3O
Mr469.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.3816 (6), 23.1651 (13), 12.8548 (7)
β (°) 91.171 (3)
V3)2495.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.29 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
24206, 6239, 3904
Rint0.029
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.181, 0.95
No. of reflections6239
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···Cg0.862.483.336 (3)176
C28—H28···N10.932.372.927 (3)118
C18—H18···N2i0.932.553.435 (2)159
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

KNV thanks the CSIR, New Delhi, for financial assistance in the form of a Senior Research Fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data-collection facilities under the TBI program and also thanks the DST for financial support under the UGC–SAP and DST–FIST programs.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedard, J., May, S., Heureux, L. L., Stamminger, T., Copsey, A., Drach, G., Huffman, J., Chan, L., Jin, H. & Rando, F. R. (2000). Antimicrob. Agents Chemother. 44, 929–937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGopalsamy, A., Shi, M., Boschelli, D. H., Williamson, R., Olland, A., Hu, Y., Krishnamurthy, G., Han, X., Arndt, K. & Guo, B. (2007). J. Med. Chem. 50, 5547–5549.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, K. H., Wissner, A., Floyd, B. M., Fraser, L. H., Wang, Y. D., Dushin, R. G., Hu, Y., Olland, A., Guo, B. & Arndt, K. (2009). Bioorg. Med. Chem. Lett. 19, 5225–5228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNittoli, T., Dushin, R. G., Ingalls, C., Cheung, K., Floyd, M. B., Fraser, H., Olland, A., Hu, Y., Grosu, G., Han, X., Arndt, K., Guo, B. & Wissner, A. (2010). Eur. J. Med. Chem. 45, 1379–1386.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPeng, J., Han, Z., Ma, N. & Tu, S. (2009). Acta Cryst. E65, o1109–o1110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeebacher, W., Weis, R., Saf, R. & Belaj, F. (2010). Acta Cryst. E66, o1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVennila, K. N., Prabha, K., Manoj, M., Prasad, K. J. R. & Velmurugan, D. (2010a). Acta Cryst. E66, o2426–o2427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVennila, K. N., Manoj, M., Prabha, K., Prasad, K. J. R. & Velmurugan, D. (2011b). Acta Cryst. E67, o102–o103.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o762-o763
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds