organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexa­naminium 3,4,5,6-tetra­chloro-2-(meth­­oxy­carbon­yl)benzoate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 13 February 2011; accepted 6 March 2011; online 12 March 2011)

In the title compound, C6H14N+·C9H3Cl4O4, the cyclo­hexane ring of the cation adopts a chair conformation. In the anion, the mean planes of the meth­oxy­carbonyl and carboxyl­ate groups form dihedral angles of 67.3 (3) and 55.7 (3)°, respectively, with the benzene ring. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the components into chains along [100].

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·C9H3Cl4O4

  • Mr = 417.10

  • Triclinic, [P \overline 1]

  • a = 5.9435 (4) Å

  • b = 11.3494 (12) Å

  • c = 14.3414 (15) Å

  • α = 90.755 (1)°

  • β = 97.901 (1)°

  • γ = 101.651 (2)°

  • V = 937.64 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 298 K

  • 0.45 × 0.42 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.781

  • 4881 measured reflections

  • 3239 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 1.03

  • 3239 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.89 1.87 2.743 (4) 168
N1—H1B⋯O4ii 0.89 1.97 2.819 (3) 159
N1—H1C⋯O3iii 0.89 1.89 2.766 (4) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

From our reaction (see experimental section) we expected to form 4,5,6,7-tetrachloro-2-propylisoindoline-1,3-dione but instead formed the title compound. This may have happened because of the short time and cool temperature for the reaction. The asymmetric unit of the title compound (I) contains one cyclohexanaminium cation and one 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate anion (Fig. 1). The cyclohexane ring of the cation adopts a chair conformation. In the anion, the mean planes of the methoxycarbonyl and carboxylate groups form dihedral angles of 112.7 (3) and 55.7 (3) °, respectively with the benzene ring. The bond lengths and angles are in agreement with those which are related in in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal, intermolecular N—H···O hydrogen bonds connect the components of the structure to form one-dimensional chains along [100] (Fig. 2).

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrachloroisobenzofuran-1,3-dione (2.86 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h. Then cyclohexanamine (0.99 g, 0.01 mol) was added to the above solution and mixed for 20 min at room temperature. The solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located in difference maps and then refined in a riding model with C—H = 0.96–0.98 Å, N—H = 0.89 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Hydrogen bonds are indicated by dashed lines.
Cyclohexanaminium 3,4,5,6-tetrachloro-2-(methoxycarbonyl)benzoate top
Crystal data top
C6H14N+·C9H3Cl4O4Z = 2
Mr = 417.10F(000) = 428
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9435 (4) ÅCell parameters from 1650 reflections
b = 11.3494 (12) Åθ = 2.3–24.6°
c = 14.3414 (15) ŵ = 0.65 mm1
α = 90.755 (1)°T = 298 K
β = 97.901 (1)°Block, colorless
γ = 101.651 (2)°0.45 × 0.42 × 0.40 mm
V = 937.64 (15) Å3
Data collection top
Bruker SMART CCD
diffractometer
3239 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 76
Tmin = 0.759, Tmax = 0.781k = 913
4881 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.7109P]
where P = (Fo2 + 2Fc2)/3
3239 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H14N+·C9H3Cl4O4γ = 101.651 (2)°
Mr = 417.10V = 937.64 (15) Å3
Triclinic, P1Z = 2
a = 5.9435 (4) ÅMo Kα radiation
b = 11.3494 (12) ŵ = 0.65 mm1
c = 14.3414 (15) ÅT = 298 K
α = 90.755 (1)°0.45 × 0.42 × 0.40 mm
β = 97.901 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2041 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.781Rint = 0.017
4881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3239 reflectionsΔρmin = 0.32 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.0817 (2)0.80648 (10)0.03785 (7)0.0826 (4)
Cl20.1463 (2)0.97241 (11)0.14937 (11)0.1099 (5)
Cl30.0240 (3)1.00178 (11)0.36695 (12)0.1385 (7)
Cl40.3042 (3)0.85179 (12)0.47324 (8)0.1157 (5)
N10.2196 (4)0.5077 (3)0.90782 (18)0.0543 (7)
H1A0.06890.47440.89830.081*
H1B0.26510.52580.96900.081*
H1C0.29960.45610.88830.081*
O10.6531 (5)0.7188 (3)0.40242 (19)0.0921 (10)
O20.3683 (5)0.5620 (3)0.3543 (2)0.0804 (8)
O30.5961 (4)0.6704 (2)0.16858 (18)0.0648 (7)
O40.2495 (4)0.5752 (2)0.09970 (15)0.0538 (6)
C10.4495 (6)0.6663 (4)0.3552 (2)0.0596 (9)
C20.3833 (6)0.6552 (3)0.1529 (2)0.0440 (7)
C30.3263 (6)0.7536 (3)0.3036 (2)0.0521 (8)
C40.2755 (5)0.7423 (3)0.2053 (2)0.0452 (8)
C50.1354 (6)0.8134 (3)0.1590 (2)0.0528 (8)
C60.0384 (7)0.8919 (3)0.2082 (3)0.0665 (11)
C70.0916 (8)0.9040 (3)0.3046 (3)0.0759 (12)
C80.2351 (7)0.8370 (3)0.3518 (3)0.0673 (11)
C90.7685 (9)0.6398 (6)0.4622 (4)0.125 (2)
H9A0.65490.58380.48960.188*
H9B0.87630.68710.51130.188*
H9C0.85030.59660.42510.188*
C100.2615 (6)0.6191 (3)0.8543 (3)0.0621 (10)
H100.15720.67020.87080.075*
C110.5086 (7)0.6870 (4)0.8821 (3)0.0747 (11)
H11A0.61500.63550.87090.090*
H11B0.53440.70960.94880.090*
C120.5552 (9)0.7989 (4)0.8256 (4)0.1079 (17)
H12A0.46230.85450.84310.130*
H12B0.71740.83810.84090.130*
C130.4999 (10)0.7705 (5)0.7218 (4)0.121 (2)
H13A0.60650.72350.70280.145*
H13B0.52080.84490.68850.145*
C140.2526 (10)0.7006 (5)0.6948 (4)0.1153 (19)
H14A0.14520.75140.70630.138*
H14B0.22610.67810.62810.138*
C150.2075 (8)0.5892 (4)0.7506 (3)0.0829 (13)
H15A0.04590.54910.73510.100*
H15B0.30230.53430.73360.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0978 (8)0.0969 (8)0.0616 (6)0.0438 (7)0.0045 (5)0.0168 (5)
Cl20.1097 (10)0.0726 (7)0.1708 (13)0.0512 (7)0.0501 (9)0.0356 (8)
Cl30.2122 (17)0.0708 (8)0.1644 (14)0.0421 (9)0.1197 (13)0.0101 (8)
Cl40.1700 (14)0.1050 (9)0.0601 (7)0.0151 (9)0.0422 (8)0.0307 (6)
N10.0421 (16)0.0685 (19)0.0515 (16)0.0113 (14)0.0050 (13)0.0072 (14)
O10.0748 (19)0.109 (2)0.0676 (18)0.0237 (17)0.0154 (15)0.0083 (17)
O20.0749 (19)0.0667 (18)0.085 (2)0.0021 (15)0.0154 (15)0.0157 (15)
O30.0399 (14)0.0735 (17)0.0796 (17)0.0094 (12)0.0088 (12)0.0134 (13)
O40.0450 (13)0.0612 (14)0.0530 (13)0.0098 (11)0.0028 (11)0.0159 (11)
C10.060 (2)0.070 (3)0.0400 (19)0.005 (2)0.0039 (17)0.0014 (18)
C20.047 (2)0.0497 (19)0.0373 (17)0.0120 (16)0.0086 (15)0.0040 (15)
C30.057 (2)0.0472 (19)0.0468 (19)0.0069 (16)0.0145 (16)0.0050 (15)
C40.0432 (18)0.0445 (18)0.0466 (18)0.0042 (15)0.0092 (14)0.0022 (14)
C50.055 (2)0.050 (2)0.055 (2)0.0082 (17)0.0171 (17)0.0047 (16)
C60.073 (3)0.041 (2)0.094 (3)0.0166 (18)0.037 (2)0.012 (2)
C70.101 (3)0.045 (2)0.090 (3)0.010 (2)0.054 (3)0.006 (2)
C80.090 (3)0.053 (2)0.056 (2)0.008 (2)0.033 (2)0.0106 (18)
C90.085 (4)0.173 (6)0.091 (4)0.006 (4)0.035 (3)0.038 (4)
C100.053 (2)0.066 (2)0.067 (2)0.0155 (19)0.0009 (18)0.0006 (19)
C110.061 (3)0.071 (3)0.083 (3)0.004 (2)0.008 (2)0.007 (2)
C120.093 (4)0.084 (3)0.129 (5)0.006 (3)0.013 (3)0.026 (3)
C130.115 (5)0.116 (4)0.117 (5)0.006 (4)0.002 (4)0.053 (4)
C140.117 (4)0.121 (4)0.091 (4)0.006 (4)0.021 (3)0.038 (3)
C150.077 (3)0.091 (3)0.069 (3)0.003 (2)0.011 (2)0.010 (2)
Geometric parameters (Å, º) top
Cl1—C51.721 (3)C9—H9A0.9600
Cl2—C61.710 (4)C9—H9B0.9600
Cl3—C71.718 (4)C9—H9C0.9600
Cl4—C81.732 (4)C10—C151.497 (5)
N1—C101.483 (4)C10—C111.511 (5)
N1—H1A0.8900C10—H100.9800
N1—H1B0.8900C11—C121.514 (6)
N1—H1C0.8900C11—H11A0.9700
O1—C11.323 (4)C11—H11B0.9700
O1—C91.454 (5)C12—C131.496 (7)
O2—C11.185 (4)C12—H12A0.9700
O3—C21.230 (4)C12—H12B0.9700
O4—C21.250 (4)C13—C141.518 (7)
C1—C31.492 (5)C13—H13A0.9700
C2—C41.523 (4)C13—H13B0.9700
C3—C41.399 (4)C14—C151.503 (6)
C3—C81.400 (5)C14—H14A0.9700
C4—C51.386 (4)C14—H14B0.9700
C5—C61.388 (5)C15—H15A0.9700
C6—C71.374 (6)C15—H15B0.9700
C7—C81.371 (6)
C10—N1—H1A109.5N1—C10—C15110.3 (3)
C10—N1—H1B109.5N1—C10—C11109.9 (3)
H1A—N1—H1B109.5C15—C10—C11111.8 (3)
C10—N1—H1C109.5N1—C10—H10108.2
H1A—N1—H1C109.5C15—C10—H10108.2
H1B—N1—H1C109.5C11—C10—H10108.2
C1—O1—C9114.8 (3)C10—C11—C12110.3 (3)
O2—C1—O1124.7 (4)C10—C11—H11A109.6
O2—C1—C3122.5 (3)C12—C11—H11A109.6
O1—C1—C3112.7 (3)C10—C11—H11B109.6
O3—C2—O4126.4 (3)C12—C11—H11B109.6
O3—C2—C4115.8 (3)H11A—C11—H11B108.1
O4—C2—C4117.8 (3)C13—C12—C11112.0 (4)
C4—C3—C8118.9 (3)C13—C12—H12A109.2
C4—C3—C1119.3 (3)C11—C12—H12A109.2
C8—C3—C1121.3 (3)C13—C12—H12B109.2
C5—C4—C3118.9 (3)C11—C12—H12B109.2
C5—C4—C2122.4 (3)H12A—C12—H12B107.9
C3—C4—C2118.7 (3)C12—C13—C14111.5 (5)
C4—C5—C6121.4 (3)C12—C13—H13A109.3
C4—C5—Cl1119.8 (2)C14—C13—H13A109.3
C6—C5—Cl1118.8 (3)C12—C13—H13B109.3
C7—C6—C5119.4 (4)C14—C13—H13B109.3
C7—C6—Cl2120.3 (3)H13A—C13—H13B108.0
C5—C6—Cl2120.3 (3)C15—C14—C13111.0 (4)
C8—C7—C6120.2 (3)C15—C14—H14A109.4
C8—C7—Cl3119.6 (3)C13—C14—H14A109.4
C6—C7—Cl3120.3 (4)C15—C14—H14B109.4
C7—C8—C3121.2 (3)C13—C14—H14B109.4
C7—C8—Cl4120.6 (3)H14A—C14—H14B108.0
C3—C8—Cl4118.2 (3)C10—C15—C14111.3 (4)
O1—C9—H9A109.5C10—C15—H15A109.4
O1—C9—H9B109.5C14—C15—H15A109.4
H9A—C9—H9B109.5C10—C15—H15B109.4
O1—C9—H9C109.5C14—C15—H15B109.4
H9A—C9—H9C109.5H15A—C15—H15B108.0
H9B—C9—H9C109.5
C9—O1—C1—O25.2 (6)Cl1—C5—C6—Cl24.3 (4)
C9—O1—C1—C3173.5 (4)C5—C6—C7—C81.5 (6)
O2—C1—C3—C463.1 (5)Cl2—C6—C7—C8178.3 (3)
O1—C1—C3—C4118.2 (3)C5—C6—C7—Cl3179.4 (3)
O2—C1—C3—C8108.9 (4)Cl2—C6—C7—Cl30.9 (5)
O1—C1—C3—C869.8 (4)C6—C7—C8—C31.3 (6)
C8—C3—C4—C50.5 (5)Cl3—C7—C8—C3177.9 (3)
C1—C3—C4—C5171.7 (3)C6—C7—C8—Cl4179.8 (3)
C8—C3—C4—C2177.4 (3)Cl3—C7—C8—Cl41.0 (5)
C1—C3—C4—C210.4 (4)C4—C3—C8—C72.3 (5)
O3—C2—C4—C5122.9 (3)C1—C3—C8—C7169.7 (3)
O4—C2—C4—C558.1 (4)C4—C3—C8—Cl4178.8 (2)
O3—C2—C4—C354.9 (4)C1—C3—C8—Cl49.1 (5)
O4—C2—C4—C3124.1 (3)N1—C10—C11—C12178.3 (4)
C3—C4—C5—C62.3 (5)C15—C10—C11—C1255.4 (5)
C2—C4—C5—C6179.8 (3)C10—C11—C12—C1354.7 (6)
C3—C4—C5—Cl1176.9 (2)C11—C12—C13—C1454.7 (6)
C2—C4—C5—Cl11.0 (4)C12—C13—C14—C1554.6 (7)
C4—C5—C6—C73.3 (5)N1—C10—C15—C14179.0 (4)
Cl1—C5—C6—C7175.9 (3)C11—C10—C15—C1456.4 (5)
C4—C5—C6—Cl2176.5 (3)C13—C14—C15—C1055.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.872.743 (4)168
N1—H1B···O4ii0.891.972.819 (3)159
N1—H1C···O3iii0.891.892.766 (4)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H14N+·C9H3Cl4O4
Mr417.10
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.9435 (4), 11.3494 (12), 14.3414 (15)
α, β, γ (°)90.755 (1), 97.901 (1), 101.651 (2)
V3)937.64 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.45 × 0.42 × 0.40
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.759, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
4881, 3239, 2041
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.03
No. of reflections3239
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.891.872.743 (4)168
N1—H1B···O4ii0.891.972.819 (3)159
N1—H1C···O3iii0.891.892.766 (4)167
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds