organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl­anilinium 3,4,5,6-tetra­bromo-2-(meth­­oxy­carbon­yl)benzoate methanol monosolvate

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ljwfu@163.com

(Received 13 February 2011; accepted 6 March 2011; online 15 March 2011)

In the anion of the title compound, C7H10N+·C9H3Br4O4·CH3O, the dihedral angles formed by the benzene ring and the mean planes of the carboxyl­ate and meth­oxy­carbonyl groups are 74.8 (5) and 75.0 (5)°, respectively. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the components into chains along [100]. Additional stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li (2011[Li, J. (2011). Acta Cryst. E67, o200.]); Liang (2008[Liang, Z.-P. (2008). Acta Cryst. E64, o2416.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N+·C9H3Br4O4·CH4O

  • Mr = 634.96

  • Monoclinic, P 21 /c

  • a = 8.1909 (8) Å

  • b = 13.5551 (12) Å

  • c = 19.5082 (16) Å

  • β = 90.371 (1)°

  • V = 2165.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.46 mm−1

  • T = 298 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.154, Tmax = 0.229

  • 10672 measured reflections

  • 3811 independent reflections

  • 2507 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.072

  • S = 1.07

  • 3811 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.89 1.87 2.756 (6) 178
N1—H1B⋯O4i 0.89 1.87 2.746 (5) 170
O5—H5⋯O3ii 0.82 1.83 2.645 (5) 173
C15—H15⋯O5i 0.93 2.55 3.281 (7) 135
C17—H17B⋯O2 0.96 2.47 3.296 (9) 144
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,5,6,7-Tetrabromo-2-ethylisoindoline-1,3-dione is an important flame retardant. 3,4,5,6-tetrabromo-2-(Methoxycarbonyl)benzoic acid is an intermediate in the sytnthesis of this flame retardant. In this paper, the structure of the title compound is reported. The asymmetric unit of the title compound (I) contains one o-toluidinium cation, one 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate anion and one methanol solvent molecule (Fig. 1). In the anion, the dihedral angles formed by the benzene ring and the mean-planes of the carboxylate and methoxycarbonyl groups are 74.8 (5) and 75.0 (5) °, respectively. The bond lengths and angles are in agreement with those which are related in ethylammonium 2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate methanol solvate (Li, 2011) and in ethane-1,2-diammonium bis(2-(methoxycarbonyl)-3,4,5,6-tetrabromobenzoate) methanol solvate (Liang, 2008). In the crystal, intermolecular N—H···O and O—H···O hydrogen bonds link the components of the structure into one-dimensional chains along [100] (Fig. 2). Additional stabilization is provided by weak intermolecular C-H···O hydrogen bonds.

Related literature top

For related structures, see: Li (2011); Liang (2008).

Experimental top

A mixture of 4,5,6,7-tetrabromoisobenzofuran-1,3-dione (4.64 g, 0.01 mol) and methanol (15 ml) was refluxed for 0.5 h and then o-toluidine (1.07 g, 0.01 mol) was added to the above solution. The solution was mixed 20 min at room temperature. This solution was kept at room temperature for 5 d. Natural evaporation gave colourless single crystals of the title compound, suitable for X-ray analysis.

Refinement top

H atoms were initially located from difference maps and then refined in a riding model with C—H = 0.93–0.96 Å, N—H = 0.89 Å, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, N, methyl C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines.
2-Methylanilinium 3,4,5,6-tetrabromo-2-(methoxycarbonyl)benzoate methanol monosolvate top
Crystal data top
C7H10N+·C9H3Br4O4·CH4OF(000) = 1224
Mr = 634.96Dx = 1.947 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2873 reflections
a = 8.1909 (8) Åθ = 2.6–23.9°
b = 13.5551 (12) ŵ = 7.46 mm1
c = 19.5082 (16) ÅT = 298 K
β = 90.371 (1)°Block, colorless
V = 2165.9 (3) Å30.40 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3811 independent reflections
Radiation source: fine-focus sealed tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 99
Tmin = 0.154, Tmax = 0.229k = 1316
10672 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0232P)2]
where P = (Fo2 + 2Fc2)/3
3811 reflections(Δ/σ)max < 0.001
248 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C7H10N+·C9H3Br4O4·CH4OV = 2165.9 (3) Å3
Mr = 634.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1909 (8) ŵ = 7.46 mm1
b = 13.5551 (12) ÅT = 298 K
c = 19.5082 (16) Å0.40 × 0.32 × 0.28 mm
β = 90.371 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3811 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2507 reflections with I > 2σ(I)
Tmin = 0.154, Tmax = 0.229Rint = 0.055
10672 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
3811 reflectionsΔρmin = 0.59 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.03655 (7)0.49170 (4)0.40325 (2)0.03923 (16)
Br20.02019 (8)0.40894 (4)0.24560 (2)0.05302 (19)
Br30.15610 (7)0.18668 (4)0.20996 (2)0.05158 (18)
Br40.29944 (7)0.04678 (4)0.33723 (3)0.05207 (19)
N10.3657 (5)0.8858 (3)0.05060 (18)0.0390 (11)
H1A0.30270.84810.02410.058*
H1B0.46590.88820.03330.058*
H1C0.32430.94640.05240.058*
O10.1935 (5)0.0866 (3)0.49814 (18)0.0577 (11)
O20.4329 (5)0.1646 (3)0.5033 (2)0.0712 (13)
O30.1279 (4)0.3275 (2)0.55173 (15)0.0374 (9)
O40.3365 (4)0.4141 (2)0.51013 (15)0.0386 (9)
O50.8267 (5)0.2644 (3)0.5294 (2)0.0714 (12)
H50.91660.28870.53730.107*
C10.3034 (8)0.1514 (4)0.4786 (2)0.0398 (14)
C20.2195 (6)0.3546 (3)0.5050 (2)0.0268 (11)
C30.2381 (5)0.2138 (3)0.4200 (2)0.0265 (11)
C40.1913 (5)0.3107 (3)0.4340 (2)0.0242 (11)
C50.1213 (6)0.3663 (3)0.3820 (2)0.0293 (12)
C60.1100 (6)0.3289 (3)0.3151 (2)0.0297 (12)
C70.1649 (6)0.2341 (4)0.3009 (2)0.0315 (12)
C80.2249 (6)0.1765 (3)0.3535 (2)0.0326 (12)
C90.2418 (9)0.0245 (5)0.5563 (3)0.104 (3)
H9A0.32770.01930.54250.156*
H9B0.14960.01340.57120.156*
H9C0.27980.06540.59320.156*
C100.3726 (6)0.8439 (4)0.1201 (3)0.0410 (14)
C110.4507 (7)0.8936 (4)0.1712 (3)0.0450 (15)
C120.4626 (8)0.8472 (5)0.2352 (3)0.0645 (19)
H120.51580.87900.27120.077*
C130.3973 (9)0.7565 (6)0.2453 (3)0.078 (2)
H130.40900.72630.28780.094*
C140.3140 (9)0.7084 (5)0.1937 (4)0.080 (2)
H140.26530.64750.20170.096*
C150.3040 (7)0.7521 (4)0.1297 (3)0.0584 (17)
H150.25170.71990.09360.070*
C160.5220 (7)0.9958 (4)0.1608 (3)0.0619 (17)
H16A0.59570.99470.12270.093*
H16B0.57991.01560.20150.093*
H16C0.43541.04180.15160.093*
C170.7840 (9)0.2058 (7)0.5817 (4)0.159 (5)
H17A0.83890.14350.57760.238*
H17B0.66810.19540.58060.238*
H17C0.81450.23650.62420.238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0555 (4)0.0286 (3)0.0336 (3)0.0129 (3)0.0007 (2)0.0035 (2)
Br20.0803 (5)0.0476 (4)0.0309 (3)0.0160 (3)0.0143 (3)0.0012 (3)
Br30.0688 (4)0.0524 (4)0.0334 (3)0.0099 (3)0.0113 (3)0.0209 (3)
Br40.0709 (5)0.0284 (3)0.0568 (4)0.0109 (3)0.0097 (3)0.0151 (3)
N10.037 (3)0.034 (3)0.046 (3)0.006 (2)0.002 (2)0.004 (2)
O10.076 (3)0.041 (2)0.056 (2)0.002 (2)0.000 (2)0.023 (2)
O20.066 (3)0.076 (3)0.071 (3)0.000 (3)0.030 (2)0.010 (2)
O30.046 (2)0.037 (2)0.0284 (18)0.0014 (17)0.0035 (17)0.0013 (16)
O40.042 (2)0.038 (2)0.0355 (19)0.0106 (19)0.0016 (16)0.0121 (16)
O50.055 (3)0.071 (3)0.088 (3)0.016 (2)0.018 (2)0.027 (3)
C10.053 (4)0.030 (3)0.036 (3)0.004 (3)0.009 (3)0.009 (3)
C20.031 (3)0.023 (3)0.026 (3)0.007 (3)0.004 (2)0.003 (2)
C30.029 (3)0.022 (3)0.029 (3)0.002 (2)0.005 (2)0.003 (2)
C40.023 (3)0.026 (3)0.023 (2)0.007 (2)0.003 (2)0.000 (2)
C50.029 (3)0.029 (3)0.029 (3)0.003 (2)0.005 (2)0.001 (2)
C60.034 (3)0.034 (3)0.021 (2)0.000 (2)0.003 (2)0.000 (2)
C70.038 (3)0.034 (3)0.022 (2)0.004 (3)0.005 (2)0.013 (2)
C80.035 (3)0.023 (3)0.039 (3)0.003 (2)0.003 (2)0.005 (2)
C90.150 (8)0.073 (5)0.088 (5)0.021 (5)0.012 (5)0.053 (4)
C100.036 (3)0.044 (4)0.043 (3)0.015 (3)0.012 (3)0.009 (3)
C110.041 (4)0.052 (4)0.042 (3)0.024 (3)0.005 (3)0.001 (3)
C120.081 (5)0.066 (5)0.047 (4)0.033 (4)0.008 (3)0.000 (3)
C130.104 (6)0.077 (6)0.054 (4)0.035 (5)0.016 (4)0.019 (4)
C140.085 (6)0.055 (5)0.100 (6)0.006 (4)0.031 (5)0.031 (4)
C150.066 (5)0.050 (4)0.060 (4)0.002 (3)0.011 (3)0.009 (3)
C160.061 (4)0.065 (4)0.060 (4)0.010 (3)0.006 (3)0.011 (3)
C170.097 (7)0.290 (13)0.089 (6)0.103 (8)0.040 (5)0.090 (7)
Geometric parameters (Å, º) top
Br1—C51.883 (5)C7—C81.376 (6)
Br2—C61.883 (4)C9—H9A0.9600
Br3—C71.889 (4)C9—H9B0.9600
Br4—C81.889 (5)C9—H9C0.9600
N1—C101.471 (6)C10—C111.359 (7)
N1—H1A0.8900C10—C151.379 (7)
N1—H1B0.8900C11—C121.402 (7)
N1—H1C0.8900C11—C161.518 (7)
O1—C11.315 (6)C12—C131.356 (8)
O1—C91.464 (6)C12—H120.9300
O2—C11.176 (6)C13—C141.377 (9)
O3—C21.239 (5)C13—H130.9300
O4—C21.256 (5)C14—C151.383 (8)
O5—C171.341 (7)C14—H140.9300
O5—H50.8200C15—H150.9300
C1—C31.517 (6)C16—H16A0.9600
C2—C41.525 (6)C16—H16B0.9600
C3—C41.395 (6)C16—H16C0.9600
C3—C81.397 (6)C17—H17A0.9600
C4—C51.385 (6)C17—H17B0.9600
C5—C61.403 (6)C17—H17C0.9600
C6—C71.390 (6)
C10—N1—H1A109.5H9A—C9—H9B109.5
C10—N1—H1B109.5O1—C9—H9C109.5
H1A—N1—H1B109.5H9A—C9—H9C109.5
C10—N1—H1C109.5H9B—C9—H9C109.5
H1A—N1—H1C109.5C11—C10—C15122.6 (5)
H1B—N1—H1C109.5C11—C10—N1120.0 (5)
C1—O1—C9115.2 (5)C15—C10—N1117.4 (5)
C17—O5—H5109.5C10—C11—C12117.4 (5)
O2—C1—O1126.9 (5)C10—C11—C16122.3 (5)
O2—C1—C3122.4 (5)C12—C11—C16120.3 (6)
O1—C1—C3110.6 (5)C13—C12—C11120.7 (6)
O3—C2—O4126.6 (4)C13—C12—H12119.7
O3—C2—C4117.7 (4)C11—C12—H12119.7
O4—C2—C4115.7 (4)C12—C13—C14121.2 (6)
C4—C3—C8120.1 (4)C12—C13—H13119.4
C4—C3—C1118.3 (4)C14—C13—H13119.4
C8—C3—C1121.6 (4)C13—C14—C15118.9 (6)
C5—C4—C3118.9 (4)C13—C14—H14120.6
C5—C4—C2120.8 (4)C15—C14—H14120.6
C3—C4—C2120.3 (4)C10—C15—C14119.2 (6)
C4—C5—C6120.6 (4)C10—C15—H15120.4
C4—C5—Br1118.8 (3)C14—C15—H15120.4
C6—C5—Br1120.6 (3)C11—C16—H16A109.5
C7—C6—C5120.0 (4)C11—C16—H16B109.5
C7—C6—Br2121.0 (3)H16A—C16—H16B109.5
C5—C6—Br2119.0 (3)C11—C16—H16C109.5
C8—C7—C6119.4 (4)H16A—C16—H16C109.5
C8—C7—Br3121.2 (4)H16B—C16—H16C109.5
C6—C7—Br3119.4 (3)O5—C17—H17A109.5
C7—C8—C3120.8 (4)O5—C17—H17B109.5
C7—C8—Br4121.1 (3)H17A—C17—H17B109.5
C3—C8—Br4118.0 (3)O5—C17—H17C109.5
O1—C9—H9A109.5H17A—C17—H17C109.5
O1—C9—H9B109.5H17B—C17—H17C109.5
C9—O1—C1—O20.9 (8)Br2—C6—C7—C8177.9 (4)
C9—O1—C1—C3178.0 (4)C5—C6—C7—Br3177.7 (3)
O2—C1—C3—C472.0 (7)Br2—C6—C7—Br32.2 (6)
O1—C1—C3—C4105.2 (5)C6—C7—C8—C32.9 (7)
O2—C1—C3—C8107.7 (6)Br3—C7—C8—C3177.0 (3)
O1—C1—C3—C875.1 (6)C6—C7—C8—Br4179.5 (3)
C8—C3—C4—C54.5 (7)Br3—C7—C8—Br40.6 (6)
C1—C3—C4—C5175.7 (4)C4—C3—C8—C70.5 (7)
C8—C3—C4—C2174.5 (4)C1—C3—C8—C7179.8 (5)
C1—C3—C4—C25.2 (7)C4—C3—C8—Br4177.2 (3)
O3—C2—C4—C5106.2 (5)C1—C3—C8—Br42.5 (6)
O4—C2—C4—C574.8 (6)C15—C10—C11—C121.1 (8)
O3—C2—C4—C374.8 (6)N1—C10—C11—C12176.0 (4)
O4—C2—C4—C3104.2 (5)C15—C10—C11—C16178.3 (5)
C3—C4—C5—C65.2 (7)N1—C10—C11—C164.6 (8)
C2—C4—C5—C6173.8 (4)C10—C11—C12—C130.4 (8)
C3—C4—C5—Br1173.1 (3)C16—C11—C12—C13179.1 (6)
C2—C4—C5—Br17.8 (6)C11—C12—C13—C141.7 (10)
C4—C5—C6—C71.9 (7)C12—C13—C14—C153.0 (10)
Br1—C5—C6—C7176.4 (3)C11—C10—C15—C140.2 (8)
C4—C5—C6—Br2178.0 (3)N1—C10—C15—C14177.4 (5)
Br1—C5—C6—Br23.7 (5)C13—C14—C15—C102.2 (9)
C5—C6—C7—C82.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.891.872.756 (6)178
N1—H1B···O4i0.891.872.746 (5)170
O5—H5···O3ii0.821.832.645 (5)173
C15—H15···O5i0.932.553.281 (7)135
C17—H17B···O20.962.473.296 (9)144
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC7H10N+·C9H3Br4O4·CH4O
Mr634.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.1909 (8), 13.5551 (12), 19.5082 (16)
β (°) 90.371 (1)
V3)2165.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.46
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.154, 0.229
No. of measured, independent and
observed [I > 2σ(I)] reflections
10672, 3811, 2507
Rint0.055
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.072, 1.07
No. of reflections3811
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.59

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.891.872.756 (6)178
N1—H1B···O4i0.891.872.746 (5)170
O5—H5···O3ii0.821.832.645 (5)173
C15—H15···O5i0.932.553.281 (7)135
C17—H17B···O20.962.473.296 (9)144
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The author thanks Shandong Provincial Natural Science Foundation, China (ZR2009BL027) for support.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, J. (2011). Acta Cryst. E67, o200.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLiang, Z.-P. (2008). Acta Cryst. E64, o2416.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds