organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­cyano-4-[(4-methyl­phenyl­sulfon­yl)­­oxy]phenyl 4-methyl­benzene­sulfonate

aSchool of Chemistry and Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: calm_tree@sohu.com, zhangxiaomei@sdu.edu.cn

(Received 28 February 2011; accepted 10 March 2011; online 15 March 2011)

In the title compound, C22H16N2O6S2, the dihedral angle formed by the mean planes of the two benzene rings of the 4-methyl­phenyl­sulfonate groups is 21.9 (1)° and these rings form dihedral angles of 48.26 (9) and 52.73 (9)° with the central benzene ring.

Related literature

For the applications of phthalocyanines, see: Kobayashi (2001[Kobayashi, N. (2001). Coord. Chem. Rev. 212, 99-103.]); Shirk & Pong (2000[Shirk, J. S. & Pong, R. G. S. (2000). J. Phys. Chem. 104, 1438-1440.]); Lukyanets (1999[Lukyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424-426.]). For the synthetic procedure, see: Rey et al. (1998[Rey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808-12817.]). For a related structure, see: Zhang et al. (2009[Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16N2O6S2

  • Mr = 468.49

  • Monoclinic, P 21 /c

  • a = 6.2484 (16) Å

  • b = 21.478 (6) Å

  • c = 16.331 (4) Å

  • β = 94.940 (4)°

  • V = 2183.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.42 × 0.31 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.929

  • 10754 measured reflections

  • 3848 independent reflections

  • 3237 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.098

  • S = 1.03

  • 3848 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Dicyano compounds have been widely used to synthesize many useful materials such as phthalocyanines. Phthalocyanines are an interesting class of compounds, with increasingly diverse industrial and biomedical applications, for instance as liquid crystals, materials for optical storage (Kobayashi, 2001), oxidation catalysts, solar cell functional materials, gas sensors, nonlinear optical limiting devices (Shirk & Pong, 2000), photodynamic therapy agents (Lukyanets, 1999) and phthalocyanine dyes (Zhang et al. 2009).

The crystal structure of the title compound is shown in Fig. 1. The dihedral angle formed by the the mean planes of the two benzene rings of the 4-methylphenylsulfonate groups is 21.9 (1)° and each of these rings forms didhedral angles of 48.26 (9)° [C9-C14] and 52.73 (9)° [C16-C21] with the central benzene ring [C1-C6]. The bond distances (Allen et al. 1987) and angles are as expected and similar to those which are related in 4,5-biaminobenzene-1,2-dicarbonitrile (Zhang et al., 2009).

Related literature top

For the applications of phthalocyanines, see: Kobayashi (2001); Shirk & Pong (2000); Lukyanets (1999). For the synthetic procedure, see: Rey et al. (1998). For a related structure, see: Zhang et al. (2009). For standard bond distances, see: Allen et al. (1987).

Experimental top

The title compound was prepared according to the method of Rey et al. (1998).

Refinement top

Hydrogen atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic H atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level.
2,3-Dicyano-4-[(4-methylphenylsulfonyl)oxy]phenyl 4-methylbenzenesulfonate top
Crystal data top
C22H16N2O6S2Z = 4
Mr = 468.49F(000) = 968
Monoclinic, P21/cDx = 1.425 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.2484 (16) ÅCell parameters from 3848 reflections
b = 21.478 (6) ŵ = 0.29 mm1
c = 16.331 (4) ÅT = 293 K
β = 94.940 (4)°Block, colorless
V = 2183.5 (10) Å30.42 × 0.31 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3848 independent reflections
Radiation source: fine-focus sealed tube3237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.889, Tmax = 0.929k = 2523
10754 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.6924P]
where P = (Fo2 + 2Fc2)/3
3848 reflections(Δ/σ)max = 0.018
291 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C22H16N2O6S2V = 2183.5 (10) Å3
Mr = 468.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2484 (16) ŵ = 0.29 mm1
b = 21.478 (6) ÅT = 293 K
c = 16.331 (4) Å0.42 × 0.31 × 0.26 mm
β = 94.940 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3848 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3237 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.929Rint = 0.021
10754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3848 reflectionsΔρmin = 0.28 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.13975 (8)0.52784 (2)0.81677 (3)0.04334 (16)
S20.32466 (8)0.28406 (2)0.95047 (3)0.04432 (16)
O11.3671 (2)0.52925 (8)0.82002 (10)0.0664 (5)
O21.0278 (3)0.55562 (7)0.87978 (8)0.0590 (4)
O31.0886 (2)0.45361 (6)0.81606 (8)0.0403 (3)
O40.33997 (19)0.35694 (6)0.92363 (8)0.0433 (3)
O50.4229 (2)0.24810 (7)0.89114 (9)0.0565 (4)
O60.1032 (2)0.27798 (8)0.96165 (9)0.0639 (5)
N10.2599 (3)0.33703 (9)0.70932 (11)0.0598 (5)
N20.7716 (3)0.41758 (10)0.62978 (11)0.0648 (6)
C10.5326 (3)0.37925 (9)0.89697 (11)0.0364 (4)
C20.5550 (3)0.38090 (8)0.81323 (10)0.0345 (4)
C30.7409 (3)0.40812 (8)0.78578 (10)0.0346 (4)
C40.8981 (3)0.43099 (8)0.84335 (11)0.0354 (4)
C50.8736 (3)0.42786 (9)0.92640 (11)0.0411 (4)
H50.98160.44270.96420.049*
C60.6896 (3)0.40281 (9)0.95348 (11)0.0419 (5)
H60.67090.40171.00930.050*
C70.3899 (3)0.35619 (9)0.75541 (11)0.0405 (4)
C80.7631 (3)0.41295 (9)0.69862 (11)0.0411 (4)
C91.0274 (3)0.55195 (8)0.72064 (11)0.0380 (4)
C101.1458 (3)0.54618 (10)0.65330 (12)0.0495 (5)
H101.28450.53010.65920.059*
C111.0549 (4)0.56462 (11)0.57751 (13)0.0585 (6)
H111.13420.56110.53210.070*
C120.8488 (4)0.58828 (10)0.56718 (13)0.0527 (5)
C130.7331 (4)0.59329 (10)0.63583 (13)0.0520 (5)
H130.59420.60910.62980.062*
C140.8195 (3)0.57529 (9)0.71285 (12)0.0440 (5)
H140.74050.57870.75840.053*
C150.7522 (5)0.60828 (14)0.48352 (15)0.0837 (9)
H15A0.82250.64540.46710.126*
H15B0.60180.61640.48580.126*
H15C0.77100.57580.44440.126*
C160.4794 (3)0.28074 (9)1.04487 (11)0.0389 (4)
C170.6793 (3)0.25268 (10)1.04910 (13)0.0481 (5)
H170.73070.23551.00230.058*
C180.8014 (3)0.25053 (10)1.12350 (13)0.0512 (5)
H180.93580.23171.12660.061*
C190.7272 (3)0.27601 (9)1.19388 (12)0.0446 (5)
C200.5257 (4)0.30354 (10)1.18779 (12)0.0527 (5)
H200.47360.32061.23450.063*
C210.4005 (3)0.30622 (10)1.11400 (12)0.0491 (5)
H210.26570.32481.11080.059*
C220.8603 (4)0.27260 (12)1.27527 (14)0.0618 (6)
H22A0.83300.30871.30750.093*
H22B1.00990.27121.26600.093*
H22C0.82270.23581.30410.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0492 (3)0.0430 (3)0.0363 (3)0.0115 (2)0.0055 (2)0.0044 (2)
S20.0403 (3)0.0553 (3)0.0370 (3)0.0110 (2)0.0015 (2)0.0056 (2)
O10.0470 (9)0.0735 (11)0.0752 (11)0.0216 (8)0.0154 (8)0.0208 (8)
O20.0942 (12)0.0491 (9)0.0331 (8)0.0083 (8)0.0020 (7)0.0044 (6)
O30.0385 (7)0.0393 (7)0.0430 (7)0.0032 (5)0.0033 (6)0.0055 (6)
O40.0350 (7)0.0556 (8)0.0396 (7)0.0001 (6)0.0038 (6)0.0105 (6)
O50.0697 (10)0.0563 (9)0.0436 (8)0.0083 (7)0.0052 (7)0.0055 (7)
O60.0414 (8)0.0942 (13)0.0556 (9)0.0221 (8)0.0014 (7)0.0152 (8)
N10.0575 (12)0.0685 (13)0.0504 (11)0.0097 (10)0.0119 (9)0.0008 (9)
N20.0778 (14)0.0821 (14)0.0347 (11)0.0164 (11)0.0057 (9)0.0001 (9)
C10.0366 (10)0.0391 (10)0.0331 (10)0.0001 (8)0.0011 (8)0.0066 (8)
C20.0362 (10)0.0362 (10)0.0302 (9)0.0023 (8)0.0026 (7)0.0026 (7)
C30.0413 (10)0.0335 (9)0.0287 (9)0.0015 (8)0.0011 (8)0.0024 (7)
C40.0380 (10)0.0341 (9)0.0339 (10)0.0021 (8)0.0015 (8)0.0048 (7)
C50.0462 (11)0.0443 (11)0.0310 (10)0.0069 (9)0.0067 (8)0.0038 (8)
C60.0493 (12)0.0502 (11)0.0258 (9)0.0044 (9)0.0014 (8)0.0047 (8)
C70.0409 (11)0.0460 (11)0.0339 (10)0.0020 (9)0.0007 (8)0.0031 (8)
C80.0447 (11)0.0455 (11)0.0326 (11)0.0052 (9)0.0008 (8)0.0005 (8)
C90.0446 (11)0.0363 (10)0.0330 (10)0.0047 (8)0.0025 (8)0.0025 (8)
C100.0468 (12)0.0575 (13)0.0453 (12)0.0033 (10)0.0101 (9)0.0053 (10)
C110.0711 (16)0.0677 (15)0.0386 (12)0.0055 (12)0.0165 (11)0.0062 (10)
C120.0712 (15)0.0490 (12)0.0367 (11)0.0026 (11)0.0028 (10)0.0027 (9)
C130.0516 (13)0.0485 (12)0.0546 (13)0.0065 (10)0.0033 (10)0.0034 (10)
C140.0475 (12)0.0456 (11)0.0398 (11)0.0019 (9)0.0089 (9)0.0021 (9)
C150.115 (2)0.088 (2)0.0452 (14)0.0199 (17)0.0107 (14)0.0095 (13)
C160.0400 (10)0.0415 (10)0.0355 (10)0.0049 (8)0.0047 (8)0.0084 (8)
C170.0434 (11)0.0595 (13)0.0423 (11)0.0019 (10)0.0085 (9)0.0015 (10)
C180.0387 (11)0.0584 (13)0.0558 (13)0.0042 (9)0.0005 (10)0.0078 (10)
C190.0485 (12)0.0408 (11)0.0436 (11)0.0064 (9)0.0019 (9)0.0091 (9)
C200.0623 (14)0.0578 (13)0.0381 (11)0.0120 (11)0.0041 (10)0.0009 (10)
C210.0454 (12)0.0556 (13)0.0465 (12)0.0130 (10)0.0044 (9)0.0039 (10)
C220.0658 (15)0.0642 (15)0.0523 (13)0.0046 (12)0.0126 (11)0.0068 (11)
Geometric parameters (Å, º) top
S1—O11.4176 (16)C10—H100.9300
S1—O21.4240 (16)C11—C121.381 (3)
S1—O31.6259 (14)C11—H110.9300
S1—C91.7422 (19)C12—C131.389 (3)
S2—O61.4173 (15)C12—C151.508 (3)
S2—O51.4193 (16)C13—C141.381 (3)
S2—O41.6303 (15)C13—H130.9300
S2—C161.7493 (19)C14—H140.9300
O3—C41.394 (2)C15—H15A0.9600
O4—C11.399 (2)C15—H15B0.9600
N1—C71.136 (2)C15—H15C0.9600
N2—C81.135 (2)C16—C211.383 (3)
C1—C61.383 (3)C16—C171.383 (3)
C1—C21.387 (2)C17—C181.379 (3)
C2—C31.408 (2)C17—H170.9300
C2—C71.439 (3)C18—C191.388 (3)
C3—C41.390 (2)C18—H180.9300
C3—C81.446 (2)C19—C201.387 (3)
C4—C51.380 (2)C19—C221.508 (3)
C5—C61.377 (3)C20—C211.380 (3)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—H210.9300
C9—C101.383 (3)C22—H22A0.9600
C9—C141.388 (3)C22—H22B0.9600
C10—C111.375 (3)C22—H22C0.9600
O1—S1—O2121.13 (10)C10—C11—H11119.2
O1—S1—O3102.52 (8)C12—C11—H11119.2
O2—S1—O3107.91 (8)C11—C12—C13118.31 (19)
O1—S1—C9110.63 (9)C11—C12—C15120.8 (2)
O2—S1—C9109.99 (9)C13—C12—C15120.9 (2)
O3—S1—C9102.78 (8)C14—C13—C12121.6 (2)
O6—S2—O5121.48 (10)C14—C13—H13119.2
O6—S2—O4101.75 (9)C12—C13—H13119.2
O5—S2—O4107.47 (8)C13—C14—C9118.30 (18)
O6—S2—C16110.75 (9)C13—C14—H14120.8
O5—S2—C16109.93 (10)C9—C14—H14120.8
O4—S2—C16103.61 (8)C12—C15—H15A109.5
C4—O3—S1120.81 (11)C12—C15—H15B109.5
C1—O4—S2118.97 (11)H15A—C15—H15B109.5
C6—C1—C2121.50 (17)C12—C15—H15C109.5
C6—C1—O4119.80 (16)H15A—C15—H15C109.5
C2—C1—O4118.56 (16)H15B—C15—H15C109.5
C1—C2—C3118.73 (16)C21—C16—C17121.02 (18)
C1—C2—C7120.66 (17)C21—C16—S2119.64 (15)
C3—C2—C7120.60 (16)C17—C16—S2119.34 (15)
C4—C3—C2119.08 (16)C18—C17—C16119.17 (19)
C4—C3—C8121.24 (16)C18—C17—H17120.4
C2—C3—C8119.67 (16)C16—C17—H17120.4
C5—C4—C3121.06 (17)C17—C18—C19121.17 (19)
C5—C4—O3120.10 (16)C17—C18—H18119.4
C3—C4—O3118.70 (15)C19—C18—H18119.4
C6—C5—C4120.09 (17)C20—C19—C18118.32 (18)
C6—C5—H5120.0C20—C19—C22120.83 (19)
C4—C5—H5120.0C18—C19—C22120.83 (19)
C5—C6—C1119.51 (17)C21—C20—C19121.53 (19)
C5—C6—H6120.2C21—C20—H20119.2
C1—C6—H6120.2C19—C20—H20119.2
N1—C7—C2179.5 (2)C20—C21—C16118.78 (19)
N2—C8—C3177.1 (2)C20—C21—H21120.6
C10—C9—C14121.33 (18)C16—C21—H21120.6
C10—C9—S1119.23 (15)C19—C22—H22A109.5
C14—C9—S1119.42 (14)C19—C22—H22B109.5
C11—C10—C9118.8 (2)H22A—C22—H22B109.5
C11—C10—H10120.6C19—C22—H22C109.5
C9—C10—H10120.6H22A—C22—H22C109.5
C10—C11—C12121.6 (2)H22B—C22—H22C109.5
O1—S1—O3—C4155.86 (13)O2—S1—C9—C10160.90 (16)
O2—S1—O3—C426.93 (15)O3—S1—C9—C1084.39 (17)
C9—S1—O3—C489.28 (14)O1—S1—C9—C14156.90 (16)
O6—S2—O4—C1172.14 (13)O2—S1—C9—C1420.45 (19)
O5—S2—O4—C143.49 (15)O3—S1—C9—C1494.26 (16)
C16—S2—O4—C172.86 (14)C14—C9—C10—C110.6 (3)
S2—O4—C1—C688.93 (19)S1—C9—C10—C11179.22 (17)
S2—O4—C1—C295.31 (17)C9—C10—C11—C120.4 (3)
C6—C1—C2—C31.0 (3)C10—C11—C12—C130.1 (4)
O4—C1—C2—C3174.72 (16)C10—C11—C12—C15179.9 (2)
C6—C1—C2—C7179.95 (18)C11—C12—C13—C140.0 (3)
O4—C1—C2—C74.3 (3)C15—C12—C13—C14179.9 (2)
C1—C2—C3—C41.6 (3)C12—C13—C14—C90.2 (3)
C7—C2—C3—C4179.39 (17)C10—C9—C14—C130.5 (3)
C1—C2—C3—C8177.15 (17)S1—C9—C14—C13179.14 (15)
C7—C2—C3—C81.8 (3)O6—S2—C16—C2135.2 (2)
C2—C3—C4—C50.6 (3)O5—S2—C16—C21172.16 (16)
C8—C3—C4—C5178.17 (17)O4—S2—C16—C2173.23 (17)
C2—C3—C4—O3175.24 (15)O6—S2—C16—C17144.94 (17)
C8—C3—C4—O36.0 (3)O5—S2—C16—C177.95 (19)
S1—O3—C4—C576.16 (19)O4—S2—C16—C17106.66 (16)
S1—O3—C4—C3107.97 (17)C21—C16—C17—C180.3 (3)
C3—C4—C5—C61.2 (3)S2—C16—C17—C18179.56 (16)
O3—C4—C5—C6176.94 (17)C16—C17—C18—C190.0 (3)
C4—C5—C6—C11.8 (3)C17—C18—C19—C200.4 (3)
C2—C1—C6—C50.8 (3)C17—C18—C19—C22179.1 (2)
O4—C1—C6—C5176.40 (17)C18—C19—C20—C210.3 (3)
C1—C2—C7—N1149 (100)C22—C19—C20—C21179.0 (2)
C3—C2—C7—N130 (31)C19—C20—C21—C160.0 (3)
C4—C3—C8—N2134 (4)C17—C16—C21—C200.4 (3)
C2—C3—C8—N244 (4)S2—C16—C21—C20179.53 (16)
O1—S1—C9—C1024.45 (19)

Experimental details

Crystal data
Chemical formulaC22H16N2O6S2
Mr468.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.2484 (16), 21.478 (6), 16.331 (4)
β (°) 94.940 (4)
V3)2183.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.42 × 0.31 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.889, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
10754, 3848, 3237
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.098, 1.03
No. of reflections3848
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Independent Innovation Foundation of Shandong University, IIFSDU.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKobayashi, N. (2001). Coord. Chem. Rev. 212, 99–103.  CrossRef Google Scholar
First citationLukyanets, E. A. (1999). J. Porphyrins Phthalocyanines, 3, 424–426.  CrossRef CAS Google Scholar
First citationRey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808–12817.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirk, J. S. & Pong, R. G. S. (2000). J. Phys. Chem. 104, 1438–1440.  CrossRef CAS Google Scholar
First citationZhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds