organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-7-[2-(1H-1,2,4-triazol-1-yl)eth­­oxy]-2H-chromen-2-one

aLaboratory of Bioorganic and Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 3 March 2011; accepted 10 March 2011; online 15 March 2011)

In the title mol­ecule, C14H13N3O3, the dihedral angle between the triazole ring and coumarin ring system is 73.01 (4)°. The crystal structure is stabilized by weak inter­molecular C—H⋯N and C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of coumarins, see: Wu et al. (2009[Wu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236-4260.]). For details of the synthesis, see: Shi & Zhou (2011[Shi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956-960.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Monoclinic, P 21 /n

  • a = 11.9861 (17) Å

  • b = 7.7090 (11) Å

  • c = 14.132 (2) Å

  • β = 101.034 (2)°

  • V = 1281.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.24 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 6501 measured reflections

  • 2390 independent reflections

  • 2134 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.04

  • 2390 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N2i 0.95 2.56 3.453 (2) 157
C9—H9⋯N3ii 0.95 2.49 3.380 (2) 157
C13—H13⋯O1iii 0.95 2.48 3.408 (2) 165
C13—H13⋯O2iii 0.95 2.59 3.410 (2) 144
C14—H14⋯O3iv 0.95 2.55 3.481 (2) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coumarins and their derivatives have attracted considerable attention due to their extensively biological activities such as antibacterial, antifungal, antiviral, anti-tubercular, anti-malarial, anticoagulant, anti-inflammatory, anticancer and antioxidant properties (Wu, et al., 2009; Shi, et al., 2011). In view of the therapeutic potentials of coumarins, we synthesized the title compound (I). Herein we report its crystal structure.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the triazole ring and coumarin ring system is 73.01 (4)°. The crystal structure is stabilized by weak intermolecular C—H···N and C—H···O hydrogen bonds.

Related literature top

For the pharmacological activity of coumarins, see: Wu et al. (2009). For details of the synthesis, see: Shi & Zhou (2011).

Experimental top

Compound (I) was synthesized according to the procedure of Shi & Zhou (2011). Single crystals were grown by slow evaporation of a solution of (I) in CDCl3 at room temperature.

Refinement top

Hydrogen atoms were placed in idealized positions and treated as riding, with C—H = 0.95 Å (CH), 0.99 Å (CH2) Uiso(H) = 1.2 Ueq(CH, CH2) and 0.98 Å (CH3), Uiso(H) = 1.5Ueq(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at the 50% probability level.
4-Methyl-7-[2-(1H-1,2,4-triazol-1-yl)ethoxy]-2H-chromen-2-one top
Crystal data top
C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3660 reflections
a = 11.9861 (17) Åθ = 2.5–28.1°
b = 7.7090 (11) ŵ = 0.10 mm1
c = 14.132 (2) ÅT = 173 K
β = 101.034 (2)°Block, colourless
V = 1281.7 (3) Å30.40 × 0.30 × 0.24 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2134 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.5°, θmin = 2.0°
ϕ and ω scansh = 1414
6501 measured reflectionsk = 99
2390 independent reflectionsl = 1714
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0489P)2 + 0.3468P]
where P = (Fo2 + 2Fc2)/3
2390 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C14H13N3O3V = 1281.7 (3) Å3
Mr = 271.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.9861 (17) ŵ = 0.10 mm1
b = 7.7090 (11) ÅT = 173 K
c = 14.132 (2) Å0.40 × 0.30 × 0.24 mm
β = 101.034 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2134 reflections with I > 2σ(I)
6501 measured reflectionsRint = 0.025
2390 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.16 e Å3
2390 reflectionsΔρmin = 0.23 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34092 (11)0.63715 (16)1.03382 (10)0.0285 (3)
C20.44570 (12)0.61742 (16)1.10231 (10)0.0291 (3)
H20.44480.55531.16020.035*
C30.54494 (11)0.68343 (16)1.08755 (9)0.0261 (3)
C40.54683 (10)0.77458 (15)0.99847 (9)0.0228 (3)
C50.44581 (10)0.78927 (15)0.93081 (9)0.0222 (3)
C60.43918 (10)0.87313 (15)0.84385 (9)0.0233 (3)
H60.36920.87960.79920.028*
C70.53705 (11)0.94803 (15)0.82283 (9)0.0232 (3)
C80.64008 (10)0.93534 (16)0.88806 (10)0.0258 (3)
H80.70710.98520.87320.031*
C90.64365 (11)0.84983 (16)0.97420 (10)0.0258 (3)
H90.71400.84181.01840.031*
C100.65229 (12)0.66473 (19)1.16165 (10)0.0351 (3)
H10A0.63750.59221.21490.053*
H10B0.67830.77951.18640.053*
H10C0.71110.61031.13200.053*
C110.62329 (11)1.10015 (17)0.70725 (10)0.0296 (3)
H11A0.67761.00540.70240.036*
H11B0.66121.18590.75490.036*
C120.58548 (13)1.18489 (17)0.61091 (10)0.0326 (3)
H12A0.65251.20380.58070.039*
H12B0.53301.10580.56870.039*
C130.42086 (12)1.3931 (2)0.58744 (11)0.0379 (4)
H130.36311.31520.55810.046*
C140.50929 (12)1.61203 (18)0.64494 (10)0.0328 (3)
H140.52521.72840.66510.039*
N10.52866 (9)1.35020 (14)0.61733 (8)0.0256 (3)
N20.58838 (9)1.49167 (14)0.65533 (8)0.0308 (3)
N30.40436 (11)1.55923 (18)0.60384 (10)0.0440 (3)
O10.24796 (9)0.58794 (14)1.04329 (8)0.0415 (3)
O20.34566 (7)0.71985 (11)0.94832 (6)0.0267 (2)
O30.52351 (8)1.03232 (12)0.73646 (6)0.0278 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (7)0.0207 (6)0.0344 (8)0.0007 (5)0.0152 (6)0.0017 (5)
C20.0418 (8)0.0215 (6)0.0263 (7)0.0029 (5)0.0123 (6)0.0015 (5)
C30.0347 (7)0.0188 (6)0.0253 (7)0.0038 (5)0.0067 (5)0.0041 (5)
C40.0271 (6)0.0177 (6)0.0240 (6)0.0019 (5)0.0060 (5)0.0036 (5)
C50.0232 (6)0.0173 (6)0.0281 (7)0.0012 (5)0.0097 (5)0.0029 (5)
C60.0228 (6)0.0220 (6)0.0247 (7)0.0005 (5)0.0035 (5)0.0021 (5)
C70.0290 (6)0.0181 (6)0.0243 (7)0.0014 (5)0.0094 (5)0.0020 (5)
C80.0227 (6)0.0231 (6)0.0335 (7)0.0014 (5)0.0100 (5)0.0023 (5)
C90.0233 (6)0.0229 (6)0.0302 (7)0.0017 (5)0.0031 (5)0.0035 (5)
C100.0429 (8)0.0334 (8)0.0268 (7)0.0034 (6)0.0009 (6)0.0019 (6)
C110.0320 (7)0.0241 (6)0.0371 (8)0.0015 (5)0.0175 (6)0.0023 (6)
C120.0465 (8)0.0242 (7)0.0321 (8)0.0010 (6)0.0205 (6)0.0015 (6)
C130.0297 (7)0.0448 (9)0.0377 (8)0.0036 (6)0.0025 (6)0.0003 (7)
C140.0435 (8)0.0268 (7)0.0289 (7)0.0043 (6)0.0090 (6)0.0007 (6)
N10.0294 (6)0.0252 (5)0.0238 (6)0.0027 (4)0.0093 (4)0.0006 (4)
N20.0309 (6)0.0274 (6)0.0341 (6)0.0019 (5)0.0061 (5)0.0039 (5)
N30.0365 (7)0.0479 (8)0.0460 (8)0.0129 (6)0.0040 (6)0.0032 (6)
O10.0359 (6)0.0416 (6)0.0514 (7)0.0049 (5)0.0192 (5)0.0119 (5)
O20.0243 (5)0.0264 (5)0.0305 (5)0.0035 (4)0.0083 (4)0.0031 (4)
O30.0305 (5)0.0279 (5)0.0266 (5)0.0017 (4)0.0094 (4)0.0039 (4)
Geometric parameters (Å, º) top
C1—O11.2085 (16)C10—H10A0.9800
C1—O21.3769 (16)C10—H10B0.9800
C1—C21.439 (2)C10—H10C0.9800
C2—C31.3463 (19)C11—O31.4364 (15)
C2—H20.9500C11—C121.500 (2)
C3—C41.4457 (18)C11—H11A0.9900
C3—C101.5023 (19)C11—H11B0.9900
C4—C51.3964 (18)C12—N11.4560 (17)
C4—C91.3975 (17)C12—H12A0.9900
C5—C61.3774 (18)C12—H12B0.9900
C5—O21.3793 (14)C13—N11.3223 (18)
C6—C71.3896 (17)C13—N31.323 (2)
C6—H60.9500C13—H130.9500
C7—O31.3647 (15)C14—N21.3145 (17)
C7—C81.3960 (18)C14—N31.344 (2)
C8—C91.3778 (19)C14—H140.9500
C8—H80.9500N1—N21.3576 (15)
C9—H90.9500
O1—C1—O2115.86 (12)H10A—C10—H10B109.5
O1—C1—C2126.63 (13)C3—C10—H10C109.5
O2—C1—C2117.50 (11)H10A—C10—H10C109.5
C3—C2—C1122.62 (12)H10B—C10—H10C109.5
C3—C2—H2118.7O3—C11—C12107.20 (11)
C1—C2—H2118.7O3—C11—H11A110.3
C2—C3—C4118.69 (12)C12—C11—H11A110.3
C2—C3—C10121.34 (13)O3—C11—H11B110.3
C4—C3—C10119.97 (12)C12—C11—H11B110.3
C5—C4—C9116.76 (12)H11A—C11—H11B108.5
C5—C4—C3118.66 (11)N1—C12—C11112.86 (11)
C9—C4—C3124.58 (12)N1—C12—H12A109.0
C6—C5—O2116.01 (11)C11—C12—H12A109.0
C6—C5—C4122.92 (11)N1—C12—H12B109.0
O2—C5—C4121.07 (11)C11—C12—H12B109.0
C5—C6—C7118.60 (11)H12A—C12—H12B107.8
C5—C6—H6120.7N1—C13—N3110.86 (13)
C7—C6—H6120.7N1—C13—H13124.6
O3—C7—C6115.36 (11)N3—C13—H13124.6
O3—C7—C8124.24 (11)N2—C14—N3115.46 (13)
C6—C7—C8120.40 (12)N2—C14—H14122.3
C9—C8—C7119.40 (11)N3—C14—H14122.3
C9—C8—H8120.3C13—N1—N2109.53 (11)
C7—C8—H8120.3C13—N1—C12129.74 (12)
C8—C9—C4121.91 (12)N2—N1—C12120.68 (11)
C8—C9—H9119.0C14—N2—N1102.03 (11)
C4—C9—H9119.0C13—N3—C14102.12 (12)
C3—C10—H10A109.5C1—O2—C5121.37 (10)
C3—C10—H10B109.5C7—O3—C11117.86 (10)
O1—C1—C2—C3176.91 (13)C5—C4—C9—C80.34 (18)
O2—C1—C2—C33.28 (19)C3—C4—C9—C8179.93 (11)
C1—C2—C3—C41.36 (19)O3—C11—C12—N174.23 (14)
C1—C2—C3—C10178.33 (12)N3—C13—N1—N20.17 (17)
C2—C3—C4—C50.56 (17)N3—C13—N1—C12177.64 (13)
C10—C3—C4—C5179.75 (11)C11—C12—N1—C13111.33 (16)
C2—C3—C4—C9179.72 (12)C11—C12—N1—N271.44 (15)
C10—C3—C4—C90.02 (18)N3—C14—N2—N10.17 (16)
C9—C4—C5—C60.06 (18)C13—N1—N2—C140.00 (15)
C3—C4—C5—C6179.80 (11)C12—N1—N2—C14177.75 (11)
C9—C4—C5—O2179.74 (10)N1—C13—N3—C140.25 (16)
C3—C4—C5—O20.51 (17)N2—C14—N3—C130.26 (17)
O2—C5—C6—C7179.02 (10)O1—C1—O2—C5176.87 (11)
C4—C5—C6—C70.68 (18)C2—C1—O2—C53.29 (17)
C5—C6—C7—O3178.52 (10)C6—C5—O2—C1178.20 (11)
C5—C6—C7—C81.15 (18)C4—C5—O2—C11.50 (17)
O3—C7—C8—C9178.75 (11)C6—C7—O3—C11175.04 (10)
C6—C7—C8—C90.89 (18)C8—C7—O3—C115.30 (17)
C7—C8—C9—C40.13 (19)C12—C11—O3—C7179.81 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N2i0.952.563.453 (2)157
C9—H9···N3ii0.952.493.380 (2)157
C13—H13···O1iii0.952.483.408 (2)165
C13—H13···O2iii0.952.593.410 (2)144
C14—H14···O3iv0.952.553.481 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)11.9861 (17), 7.7090 (11), 14.132 (2)
β (°) 101.034 (2)
V3)1281.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.30 × 0.24
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6501, 2390, 2134
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.04
No. of reflections2390
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.23

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···N2i0.952.563.453 (2)157
C9—H9···N3ii0.952.493.380 (2)157
C13—H13···O1iii0.952.483.408 (2)165
C13—H13···O2iii0.952.593.410 (2)144
C14—H14···O3iv0.952.553.481 (2)166
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank Southwest University (grant Nos. SWUB2006018, XSGX0602 and SWUF2007023) and the Natural Science Foundation of Chongqing (grant No. 2007BB5369) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. & Zhou, C. H. (2011). Bioorg. Med. Chem. Lett. 21, 956–960.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWu, L., Wang, X., Xu, W., Farzaneh, F. & Xu, R. (2009). Curr. Med. Chem. 16, 4236–4260.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds