organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o953-o954

Bis(2-amino-3-carb­­oxy­pyridinium) sulfate trihydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 9 March 2011; accepted 17 March 2011; online 23 March 2011)

In the title compound, 2C6H7N2O2+·SO42−·3H2O, there are two independent cations which are connected into N—H⋯O hydrogen-bonded dimers. In the crystal, O—H⋯O hydrogen-bonded sulfate–water sheets run parallel to (001) and are linked into a three-dimensional network via inter­molecular N—H⋯O and O—H⋯O hydrogen bonds through the 2-amino­nicotinium dimers. Further stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds. R43(10) and R22(8) graph-set rings are observed. The crystal studied was an inversion twin with refined components of 0.45 (6) and 0.55 (6).

Related literature

For related compounds, see: Athimoolam & Rajaram (2005[Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.]); Berrah et al. (2005,[Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005). Acta Cryst. E61, o210-o212.] 2011a[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525-o526.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677-o678.]); Dobson & Gerkin (1997[Dobson, A. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1427-1429.]); Giantsidis & Turnbull (2000[Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334-335.]); Pawlukojc et al. (2007[Pawlukojc, A., Starosta, W., Leciejewicz, J., Natkaniec, I. & Nowak, D. (2007). Chem. Phys. Lett. 437, 32-37.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For background to hydrogen bonding, see: Desiraju (2003[Desiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons Ltd.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H7N2O2+·SO42−·3H2O

  • Mr = 428.39

  • Orthorhombic, P 21 21 21

  • a = 6.5372 (5) Å

  • b = 12.3141 (10) Å

  • c = 23.0274 (19) Å

  • V = 1853.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 150 K

  • 0.58 × 0.13 × 0.04 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.845, Tmax = 0.970

  • 23588 measured reflections

  • 4229 independent reflections

  • 3669 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.06

  • 4229 reflections

  • 274 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1790 Friedel pairs

  • Flack parameter: 0.45 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O3Wi 0.84 1.69 2.5152 (18) 167
O1B—H1B⋯O1W 0.84 1.69 2.5138 (18) 168
O1W—H1W⋯O2Wii 0.82 (4) 1.93 (3) 2.754 (2) 177 (4)
O3W—H5W⋯O2W 0.77 (3) 1.98 (3) 2.750 (2) 176 (3)
O1W—H2W⋯O4 0.75 (4) 2.03 (4) 2.752 (2) 164 (3)
O2W—H3W⋯O3iii 0.80 (3) 1.92 (3) 2.7151 (19) 169 (3)
O2W—H4W⋯O4 0.90 (3) 1.87 (3) 2.7675 (19) 175 (3)
O3W—H6W⋯O2iv 0.84 (2) 1.88 (2) 2.720 (2) 171 (3)
N2A—H2A⋯O1 0.88 1.92 2.7681 (18) 163
N2B—H2B⋯O1v 0.88 1.88 2.7419 (19) 167
N1A—H11A⋯O4 0.88 2.05 2.915 (2) 166
N1B—H11B⋯O2v 0.88 1.94 2.817 (2) 173
N1A—H12A⋯O2A 0.88 2.09 2.726 (2) 129
N1A—H12A⋯O2B 0.88 2.27 2.979 (2) 138
N1B—H12B⋯O2A 0.88 2.25 2.963 (2) 138
N1B—H12B⋯O2B 0.88 2.10 2.733 (2) 128
C4A—H4A⋯O3vi 0.95 2.46 3.143 (2) 129
C4B—H4B⋯O3vii 0.95 2.31 3.169 (2) 150
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hydrogen bonds are the object of several studies, which aim to elucidate their influence on crystal construction and compounds propreties (Desiraju, 2003). Pyridine and its derivatives well known for their various chemical and biological activities, have proved their aptitude to built new edifices involving original hydrogen-bonding patterns due to their variety of potential hydrogen donors and acceptors (Athimoolam et al., 2005; Dobson & Gerkin, 1997; Giantsidis & Turnbull, 2000). The title compound was obtained from 2-aminonicotinic acid and is a part of our search for new hybrid compounds based on protonated N-heterocyclic compounds and inorganic acids (Berrah et al., 2005;2011a,b).

As shown in figure 1, the asymmetric unit includes two crystallographically independent 2-aminonicotinium cations (A and B), one sulfate anion and three water molecules. The cation geometry is similar to that reported for the structure of 2-aminonicotinic acid (Dobson & Gerkin, 1997; Pawlukojc et al., 2007) except for C—O distances in the carboxylic group. In the 2-aminonicotinic acid structure, the two C—O distances are 1.234 (2) and 1.266 (2)Å since the carboxylic group transfers its proton to the hetero-ring nitrogen atom leading to a zwitterionic molecule.

The crystal packing of the title compound (Fig. 2) results from sulfate-water sheets extending parallel to (001) (Fig. 3) and linked together via 2-aminonicotinium dimers (Fig. 4). In one sheet, sulfate anions and H2O2W molecules alternate, leading to infinite chains running parallel to the a axis. These chains are further connected through H2O1W and H2O3W molecules in a way that R34(10) rings are formed (Fig. 3). The structure is stabilized via N—H···O, O—H···O and C—H···O Hydrogen bonds that link each dimer to its neighbors (Table 1, Fig. 4). R34 (10) and R22(8) graph-set rings are observed (Fig. 4)(Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For related compounds, see: Athimoolam & Rajaram (2005); Berrah et al. (2005, 2011a,b); Dobson & Gerkin (1997); Giantsidis & Turnbull (2000); Pawlukojc et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For background to hydrogen bonding, see: Desiraju (2003).

Experimental top

Colorless crystal of the title compound was obtained by slow evaporation of an aqueous solution of 2-amino-pyridine-3-carboxylic acid and sulfuric acid in 2:1 stoichiometric ratio.

Refinement top

The H atoms of the water molecules were located in difference Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. (Farrugia, 1997) The asymmetric unit of the title compound. Displacement are drawn at the 50% probability level.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the three-dimentonal packing of (I) viewed along [010]. Hydrogen bonds are shown as dashed lines
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) A view of one sulfate-water sheet parallel to (001) and the R34(10) rings. Hydrogen bonds are shown as dashed lines.
[Figure 4] Fig. 4. (Brandenburg & Berndt, 2001) Part of crystal packing showing cation dimers and R34(10) and R22(8) rings. Hydrogen bonds are shown as dashed lines.
Bis(2-amino-3-carboxypyridinium) sulfate trihydrate top
Crystal data top
2C6H7N2O2+·SO42·3H2ODx = 1.535 Mg m3
Mr = 428.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8735 reflections
a = 6.5372 (5) Åθ = 2.4–27.2°
b = 12.3141 (10) ŵ = 0.24 mm1
c = 23.0274 (19) ÅT = 150 K
V = 1853.7 (3) Å3Needle, colourless
Z = 40.58 × 0.13 × 0.04 mm
F(000) = 896
Data collection top
Bruker APEXII
diffractometer
3669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 85
Tmin = 0.845, Tmax = 0.970k = 1515
23588 measured reflectionsl = 2929
4229 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4264P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4229 reflectionsΔρmax = 0.27 e Å3
274 parametersΔρmin = 0.28 e Å3
0 restraintsAbsolute structure: Flack (1983), 1790 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.45 (6)
Crystal data top
2C6H7N2O2+·SO42·3H2OV = 1853.7 (3) Å3
Mr = 428.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5372 (5) ŵ = 0.24 mm1
b = 12.3141 (10) ÅT = 150 K
c = 23.0274 (19) Å0.58 × 0.13 × 0.04 mm
Data collection top
Bruker APEXII
diffractometer
4229 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3669 reflections with I > 2σ(I)
Tmin = 0.845, Tmax = 0.970Rint = 0.042
23588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.27 e Å3
S = 1.06Δρmin = 0.28 e Å3
4229 reflectionsAbsolute structure: Flack (1983), 1790 Friedel pairs
274 parametersAbsolute structure parameter: 0.45 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.7166 (3)0.27959 (15)0.00318 (8)0.0216 (4)
C1B0.6471 (3)0.70977 (15)0.03679 (8)0.0200 (4)
C2A0.7181 (3)0.23143 (14)0.06245 (7)0.0207 (4)
C2B0.6478 (3)0.75822 (15)0.02254 (7)0.0190 (4)
C3A0.7116 (3)0.29935 (14)0.11251 (7)0.0201 (3)
C3B0.6631 (3)0.68958 (14)0.07242 (7)0.0190 (4)
C4A0.7238 (3)0.14018 (15)0.17195 (8)0.0263 (4)
H4A0.7260.11020.210.032*
C4B0.6481 (3)0.84839 (16)0.13233 (8)0.0262 (4)
H4B0.64790.87820.17040.031*
C5A0.7264 (3)0.07309 (16)0.12519 (8)0.0312 (5)
H5A0.7280.00360.12970.037*
C5B0.6322 (3)0.91558 (16)0.08559 (8)0.0282 (4)
H5B0.62110.9920.09040.034*
C6A0.7268 (3)0.12083 (16)0.07029 (9)0.0279 (4)
H6A0.73330.07520.03710.034*
C6B0.6326 (3)0.86880 (16)0.03039 (8)0.0247 (4)
H6B0.62220.91450.00270.03*
N1A0.7020 (3)0.40640 (12)0.11129 (7)0.0278 (3)
H11A0.70.44340.1440.033*
H12A0.69760.44070.07780.033*
N1B0.6788 (3)0.58296 (12)0.07142 (7)0.0270 (4)
H11B0.68940.54650.10410.032*
H12B0.67850.54820.0380.032*
N2A0.7181 (2)0.24906 (12)0.16507 (6)0.0215 (3)
H2A0.71870.28990.19640.026*
N2B0.6642 (2)0.73990 (13)0.12524 (6)0.0225 (3)
H2B0.67610.69920.15650.027*
O10.7971 (2)0.35697 (10)0.26811 (5)0.0259 (3)
O1A0.7192 (2)0.20503 (10)0.03781 (5)0.0294 (3)
H1A0.7140.23520.07050.044*
O1B0.6533 (2)0.78383 (10)0.07796 (5)0.0277 (3)
H1B0.63980.75380.11050.042*
O20.7597 (2)0.52317 (11)0.32163 (5)0.0311 (3)
O1W0.6295 (3)0.71875 (14)0.18121 (6)0.0467 (5)
H1W0.652 (5)0.765 (3)0.2061 (14)0.07*
H2W0.653 (5)0.664 (3)0.1933 (14)0.07*
O2A0.7137 (2)0.37665 (11)0.00595 (5)0.0296 (3)
O2B0.6414 (2)0.61242 (10)0.04572 (5)0.0266 (3)
O30.9930 (2)0.51502 (12)0.24034 (6)0.0301 (3)
O2W0.3026 (2)0.36878 (11)0.23220 (6)0.0270 (3)
H3W0.201 (4)0.405 (2)0.2347 (11)0.04*
H4W0.405 (4)0.417 (2)0.2307 (11)0.04*
O40.6310 (2)0.50965 (11)0.22342 (5)0.0259 (3)
O3W0.2063 (3)0.23235 (12)0.14171 (6)0.0325 (3)
H5W0.239 (4)0.271 (2)0.1664 (11)0.049*
H6W0.227 (4)0.170 (2)0.1557 (11)0.049*
S10.79804 (7)0.47766 (4)0.263808 (18)0.01992 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0196 (8)0.0255 (10)0.0197 (8)0.0003 (8)0.0009 (7)0.0008 (7)
C1B0.0188 (9)0.0236 (10)0.0176 (8)0.0009 (7)0.0004 (7)0.0013 (7)
C2A0.0205 (9)0.0210 (9)0.0207 (8)0.0023 (7)0.0018 (7)0.0009 (7)
C2B0.0192 (9)0.0212 (9)0.0165 (8)0.0012 (7)0.0016 (7)0.0003 (7)
C3A0.0203 (8)0.0203 (8)0.0196 (8)0.0009 (8)0.0001 (8)0.0007 (7)
C3B0.0205 (9)0.0199 (9)0.0167 (8)0.0008 (7)0.0006 (7)0.0007 (7)
C4A0.0318 (10)0.0239 (9)0.0232 (9)0.0002 (8)0.0036 (8)0.0062 (8)
C4B0.0300 (11)0.0261 (10)0.0225 (9)0.0020 (8)0.0008 (8)0.0081 (8)
C5A0.0451 (12)0.0192 (9)0.0293 (10)0.0003 (9)0.0034 (9)0.0025 (8)
C5B0.0336 (11)0.0214 (10)0.0294 (10)0.0018 (8)0.0012 (8)0.0047 (8)
C6A0.0354 (11)0.0218 (9)0.0266 (10)0.0000 (8)0.0017 (9)0.0036 (8)
C6B0.0278 (10)0.0221 (9)0.0241 (9)0.0003 (8)0.0007 (8)0.0021 (8)
N1A0.0465 (9)0.0181 (8)0.0188 (7)0.0007 (8)0.0003 (8)0.0004 (6)
N1B0.0436 (10)0.0204 (8)0.0171 (7)0.0013 (8)0.0001 (7)0.0006 (6)
N2A0.0256 (8)0.0214 (7)0.0175 (7)0.0004 (7)0.0014 (6)0.0000 (6)
N2B0.0270 (8)0.0243 (8)0.0162 (7)0.0004 (6)0.0004 (6)0.0011 (6)
O10.0404 (7)0.0191 (6)0.0181 (6)0.0016 (6)0.0021 (6)0.0004 (5)
O1A0.0454 (8)0.0252 (7)0.0176 (6)0.0011 (7)0.0006 (6)0.0015 (5)
O1B0.0414 (8)0.0250 (7)0.0166 (6)0.0008 (6)0.0005 (6)0.0018 (5)
O20.0508 (9)0.0240 (7)0.0184 (6)0.0046 (6)0.0021 (6)0.0021 (6)
O1W0.0970 (15)0.0245 (8)0.0185 (7)0.0102 (9)0.0078 (8)0.0008 (6)
O2A0.0453 (8)0.0226 (7)0.0208 (6)0.0020 (6)0.0017 (6)0.0026 (5)
O2B0.0363 (8)0.0224 (7)0.0212 (7)0.0017 (6)0.0004 (6)0.0031 (6)
O30.0274 (7)0.0295 (8)0.0332 (8)0.0038 (6)0.0025 (6)0.0054 (7)
O2W0.0264 (7)0.0248 (7)0.0297 (7)0.0016 (6)0.0013 (7)0.0017 (6)
O40.0284 (7)0.0260 (7)0.0234 (7)0.0015 (6)0.0034 (5)0.0041 (6)
O3W0.0538 (9)0.0244 (8)0.0193 (7)0.0026 (7)0.0042 (7)0.0014 (6)
S10.0259 (2)0.0184 (2)0.01552 (19)0.00133 (19)0.00044 (18)0.00021 (17)
Geometric parameters (Å, º) top
C1A—O2A1.214 (2)C5B—C6B1.395 (3)
C1A—O1A1.317 (2)C5B—H5B0.95
C1A—C2A1.488 (2)C6A—H6A0.95
C1B—O2B1.217 (2)C6B—H6B0.95
C1B—O1B1.316 (2)N1A—H11A0.88
C1B—C2B1.491 (2)N1A—H12A0.88
C2A—C6A1.375 (3)N1B—H11B0.88
C2A—C3A1.425 (2)N1B—H12B0.88
C2B—C6B1.377 (3)N2A—H2A0.88
C2B—C3B1.430 (2)N2B—H2B0.88
C3A—N1A1.320 (2)O1—S11.4895 (13)
C3A—N2A1.360 (2)O1A—H1A0.84
C3B—N1B1.317 (2)O1B—H1B0.84
C3B—N2B1.365 (2)O2—S11.4662 (13)
C4A—N2A1.351 (2)O1W—H1W0.82 (3)
C4A—C5A1.357 (3)O1W—H2W0.75 (3)
C4A—H4A0.95O3—S11.4591 (14)
C4B—N2B1.350 (2)O2W—H3W0.80 (3)
C4B—C5B1.362 (3)O2W—H4W0.89 (3)
C4B—H4B0.95O4—S11.4877 (13)
C5A—C6A1.394 (3)O3W—H5W0.77 (3)
C5A—H5A0.95O3W—H6W0.85 (3)
O2A—C1A—O1A124.23 (16)C2A—C6A—C5A122.46 (18)
O2A—C1A—C2A123.47 (16)C2A—C6A—H6A118.8
O1A—C1A—C2A112.30 (15)C5A—C6A—H6A118.8
O2B—C1B—O1B124.18 (16)C2B—C6B—C5B121.86 (18)
O2B—C1B—C2B123.32 (16)C2B—C6B—H6B119.1
O1B—C1B—C2B112.51 (15)C5B—C6B—H6B119.1
C6A—C2A—C3A118.44 (16)C3A—N1A—H11A120
C6A—C2A—C1A121.03 (16)C3A—N1A—H12A120
C3A—C2A—C1A120.52 (15)H11A—N1A—H12A120
C6B—C2B—C3B118.95 (16)C3B—N1B—H11B120
C6B—C2B—C1B121.05 (16)C3B—N1B—H12B120
C3B—C2B—C1B120.00 (15)H11B—N1B—H12B120
N1A—C3A—N2A118.38 (15)C4A—N2A—C3A123.86 (15)
N1A—C3A—C2A124.77 (15)C4A—N2A—H2A118.1
N2A—C3A—C2A116.85 (15)C3A—N2A—H2A118.1
N1B—C3B—N2B117.89 (16)C4B—N2B—C3B123.82 (16)
N1B—C3B—C2B125.49 (15)C4B—N2B—H2B118.1
N2B—C3B—C2B116.61 (15)C3B—N2B—H2B118.1
N2A—C4A—C5A120.77 (17)C1A—O1A—H1A109.5
N2A—C4A—H4A119.6C1B—O1B—H1B109.5
C5A—C4A—H4A119.6H1W—O1W—H2W109 (3)
N2B—C4B—C5B120.77 (17)H3W—O2W—H4W105 (2)
N2B—C4B—H4B119.6H5W—O3W—H6W104 (3)
C5B—C4B—H4B119.6O3—S1—O2111.42 (9)
C4A—C5A—C6A117.56 (18)O3—S1—O4109.05 (8)
C4A—C5A—H5A121.2O2—S1—O4109.93 (8)
C6A—C5A—H5A121.2O3—S1—O1110.06 (9)
C4B—C5B—C6B117.98 (18)O2—S1—O1108.68 (7)
C4B—C5B—H5B121O4—S1—O1107.62 (8)
C6B—C5B—H5B121
O2A—C1A—C2A—C6A178.3 (2)C1B—C2B—C3B—N2B179.57 (16)
O1A—C1A—C2A—C6A1.6 (3)N2A—C4A—C5A—C6A1.1 (3)
O2A—C1A—C2A—C3A1.3 (3)N2B—C4B—C5B—C6B0.1 (3)
O1A—C1A—C2A—C3A178.75 (18)C3A—C2A—C6A—C5A1.0 (3)
O2B—C1B—C2B—C6B173.11 (18)C1A—C2A—C6A—C5A179.38 (18)
O1B—C1B—C2B—C6B6.9 (2)C4A—C5A—C6A—C2A2.1 (3)
O2B—C1B—C2B—C3B6.5 (3)C3B—C2B—C6B—C5B0.1 (3)
O1B—C1B—C2B—C3B173.45 (16)C1B—C2B—C6B—C5B179.72 (17)
C6A—C2A—C3A—N1A179.65 (19)C4B—C5B—C6B—C2B0.2 (3)
C1A—C2A—C3A—N1A0.7 (3)C5A—C4A—N2A—C3A1.0 (3)
C6A—C2A—C3A—N2A1.1 (3)N1A—C3A—N2A—C4A178.57 (18)
C1A—C2A—C3A—N2A178.53 (16)C2A—C3A—N2A—C4A2.1 (3)
C6B—C2B—C3B—N1B179.90 (18)C5B—C4B—N2B—C3B0.9 (3)
C1B—C2B—C3B—N1B0.5 (3)N1B—C3B—N2B—C4B179.60 (18)
C6B—C2B—C3B—N2B0.8 (3)C2B—C3B—N2B—C4B1.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3Wi0.841.692.5152 (18)167
O1B—H1B···O1W0.841.692.5138 (18)168
O1W—H1W···O2Wii0.82 (4)1.93 (3)2.754 (2)177 (4)
O3W—H5W···O2W0.77 (3)1.98 (3)2.750 (2)176 (3)
O1W—H2W···O40.75 (4)2.03 (4)2.752 (2)164 (3)
O2W—H3W···O3iii0.80 (3)1.92 (3)2.7151 (19)169 (3)
O2W—H4W···O40.90 (3)1.87 (3)2.7675 (19)175 (3)
O3W—H6W···O2iv0.84 (2)1.88 (2)2.720 (2)171 (3)
N2A—H2A···O10.881.922.7681 (18)163
N2B—H2B···O1v0.881.882.7419 (19)167
N1A—H11A···O40.882.052.915 (2)166
N1B—H11B···O2v0.881.942.817 (2)173
N1A—H12A···O2A0.882.092.726 (2)129
N1A—H12A···O2B0.882.272.979 (2)138
N1B—H12B···O2A0.882.252.963 (2)138
N1B—H12B···O2B0.882.102.733 (2)128
C4A—H4A···O3vi0.952.463.143 (2)129
C4B—H4B···O3vii0.952.313.169 (2)150
C6A—H6A···O1A0.952.352.697 (2)101
C6B—H6B···O1B0.952.372.709 (2)100
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+3/2, y+1, z1/2; (vi) x+2, y1/2, z+1/2; (vii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula2C6H7N2O2+·SO42·3H2O
Mr428.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)6.5372 (5), 12.3141 (10), 23.0274 (19)
V3)1853.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.58 × 0.13 × 0.04
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.845, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
23588, 4229, 3669
Rint0.042
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections4229
No. of parameters274
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28
Absolute structureFlack (1983), 1790 Friedel pairs
Absolute structure parameter0.45 (6)

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3Wi0.841.692.5152 (18)167
O1B—H1B···O1W0.841.692.5138 (18)168
O1W—H1W···O2Wii0.82 (4)1.93 (3)2.754 (2)177 (4)
O3W—H5W···O2W0.77 (3)1.98 (3)2.750 (2)176 (3)
O1W—H2W···O40.75 (4)2.03 (4)2.752 (2)164 (3)
O2W—H3W···O3iii0.80 (3)1.92 (3)2.7151 (19)169 (3)
O2W—H4W···O40.90 (3)1.87 (3)2.7675 (19)175 (3)
O3W—H6W···O2iv0.84 (2)1.88 (2)2.720 (2)171 (3)
N2A—H2A···O10.881.922.7681 (18)163
N2B—H2B···O1v0.881.882.7419 (19)167
N1A—H11A···O40.882.052.915 (2)166
N1B—H11B···O2v0.881.942.817 (2)173
N1A—H12A···O2A0.882.092.726 (2)129
N1A—H12A···O2B0.882.272.979 (2)138
N1B—H12B···O2A0.882.252.963 (2)138
N1B—H12B···O2B0.882.102.733 (2)128
C4A—H4A···O3vi0.952.463.143 (2)129
C4B—H4B···O3vii0.952.313.169 (2)150
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2; (v) x+3/2, y+1, z1/2; (vi) x+2, y1/2, z+1/2; (vii) x1/2, y+3/2, z.
 

Footnotes

Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationAthimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerrah, F., Lamraoui, H. & Benali-Cherif, N. (2005). Acta Cryst. E61, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationDobson, A. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1427–1429.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGiantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPawlukojc, A., Starosta, W., Leciejewicz, J., Natkaniec, I. & Nowak, D. (2007). Chem. Phys. Lett. 437, 32–37.  CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o953-o954
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds