organic compounds
Bis(2-amino-3-carboxypyridinium) sulfate trihydrate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr
In the title compound, 2C6H7N2O2+·SO42−·3H2O, there are two independent cations which are connected into N—H⋯O hydrogen-bonded dimers. In the crystal, O—H⋯O hydrogen-bonded sulfate–water sheets run parallel to (001) and are linked into a three-dimensional network via intermolecular N—H⋯O and O—H⋯O hydrogen bonds through the 2-aminonicotinium dimers. Further stabilization is provided by weak intermolecular C—H⋯O hydrogen bonds. R43(10) and R22(8) graph-set rings are observed. The crystal studied was an with refined components of 0.45 (6) and 0.55 (6).
Related literature
For related compounds, see: Athimoolam & Rajaram (2005); Berrah et al. (2005, 2011a,b); Dobson & Gerkin (1997); Giantsidis & Turnbull (2000); Pawlukojc et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For background to hydrogen bonding, see: Desiraju (2003).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811010191/lh5219sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010191/lh5219Isup2.hkl
Colorless crystal of the title compound was obtained by slow evaporation of an aqueous solution of 2-amino-pyridine-3-carboxylic acid and sulfuric acid in 2:1 stoichiometric ratio.
The H atoms of the water molecules were located in difference Fourier maps and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located in differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.95 Å, O—H = 0.84 Å and N—H = 0.88 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. (Farrugia, 1997) The asymmetric unit of the title compound. Displacement are drawn at the 50% probability level. | |
Fig. 2. (Brandenburg & Berndt, 2001) A diagram of the three-dimentonal packing of (I) viewed along [010]. Hydrogen bonds are shown as dashed lines | |
Fig. 3. (Brandenburg & Berndt, 2001) A view of one sulfate-water sheet parallel to (001) and the R34(10) rings. Hydrogen bonds are shown as dashed lines. | |
Fig. 4. (Brandenburg & Berndt, 2001) Part of crystal packing showing cation dimers and R34(10) and R22(8) rings. Hydrogen bonds are shown as dashed lines. |
2C6H7N2O2+·SO42−·3H2O | Dx = 1.535 Mg m−3 |
Mr = 428.39 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 8735 reflections |
a = 6.5372 (5) Å | θ = 2.4–27.2° |
b = 12.3141 (10) Å | µ = 0.24 mm−1 |
c = 23.0274 (19) Å | T = 150 K |
V = 1853.7 (3) Å3 | Needle, colourless |
Z = 4 | 0.58 × 0.13 × 0.04 mm |
F(000) = 896 |
Bruker APEXII diffractometer | 3669 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
CCD rotation images, thin slices scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −8→5 |
Tmin = 0.845, Tmax = 0.970 | k = −15→15 |
23588 measured reflections | l = −29→29 |
4229 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4264P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4229 reflections | Δρmax = 0.27 e Å−3 |
274 parameters | Δρmin = −0.28 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 1790 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.45 (6) |
2C6H7N2O2+·SO42−·3H2O | V = 1853.7 (3) Å3 |
Mr = 428.39 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.5372 (5) Å | µ = 0.24 mm−1 |
b = 12.3141 (10) Å | T = 150 K |
c = 23.0274 (19) Å | 0.58 × 0.13 × 0.04 mm |
Bruker APEXII diffractometer | 4229 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3669 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.970 | Rint = 0.042 |
23588 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.079 | Δρmax = 0.27 e Å−3 |
S = 1.06 | Δρmin = −0.28 e Å−3 |
4229 reflections | Absolute structure: Flack (1983), 1790 Friedel pairs |
274 parameters | Absolute structure parameter: 0.45 (6) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.7166 (3) | 0.27959 (15) | 0.00318 (8) | 0.0216 (4) | |
C1B | 0.6471 (3) | 0.70977 (15) | 0.03679 (8) | 0.0200 (4) | |
C2A | 0.7181 (3) | 0.23143 (14) | 0.06245 (7) | 0.0207 (4) | |
C2B | 0.6478 (3) | 0.75822 (15) | −0.02254 (7) | 0.0190 (4) | |
C3A | 0.7116 (3) | 0.29935 (14) | 0.11251 (7) | 0.0201 (3) | |
C3B | 0.6631 (3) | 0.68958 (14) | −0.07242 (7) | 0.0190 (4) | |
C4A | 0.7238 (3) | 0.14018 (15) | 0.17195 (8) | 0.0263 (4) | |
H4A | 0.726 | 0.1102 | 0.21 | 0.032* | |
C4B | 0.6481 (3) | 0.84839 (16) | −0.13233 (8) | 0.0262 (4) | |
H4B | 0.6479 | 0.8782 | −0.1704 | 0.031* | |
C5A | 0.7264 (3) | 0.07309 (16) | 0.12519 (8) | 0.0312 (5) | |
H5A | 0.728 | −0.0036 | 0.1297 | 0.037* | |
C5B | 0.6322 (3) | 0.91558 (16) | −0.08559 (8) | 0.0282 (4) | |
H5B | 0.6211 | 0.992 | −0.0904 | 0.034* | |
C6A | 0.7268 (3) | 0.12083 (16) | 0.07029 (9) | 0.0279 (4) | |
H6A | 0.7333 | 0.0752 | 0.0371 | 0.034* | |
C6B | 0.6326 (3) | 0.86880 (16) | −0.03039 (8) | 0.0247 (4) | |
H6B | 0.6222 | 0.9145 | 0.0027 | 0.03* | |
N1A | 0.7020 (3) | 0.40640 (12) | 0.11129 (7) | 0.0278 (3) | |
H11A | 0.7 | 0.4434 | 0.144 | 0.033* | |
H12A | 0.6976 | 0.4407 | 0.0778 | 0.033* | |
N1B | 0.6788 (3) | 0.58296 (12) | −0.07142 (7) | 0.0270 (4) | |
H11B | 0.6894 | 0.5465 | −0.1041 | 0.032* | |
H12B | 0.6785 | 0.5482 | −0.038 | 0.032* | |
N2A | 0.7181 (2) | 0.24906 (12) | 0.16507 (6) | 0.0215 (3) | |
H2A | 0.7187 | 0.2899 | 0.1964 | 0.026* | |
N2B | 0.6642 (2) | 0.73990 (13) | −0.12524 (6) | 0.0225 (3) | |
H2B | 0.6761 | 0.6992 | −0.1565 | 0.027* | |
O1 | 0.7971 (2) | 0.35697 (10) | 0.26811 (5) | 0.0259 (3) | |
O1A | 0.7192 (2) | 0.20503 (10) | −0.03781 (5) | 0.0294 (3) | |
H1A | 0.714 | 0.2352 | −0.0705 | 0.044* | |
O1B | 0.6533 (2) | 0.78383 (10) | 0.07796 (5) | 0.0277 (3) | |
H1B | 0.6398 | 0.7538 | 0.1105 | 0.042* | |
O2 | 0.7597 (2) | 0.52317 (11) | 0.32163 (5) | 0.0311 (3) | |
O1W | 0.6295 (3) | 0.71875 (14) | 0.18121 (6) | 0.0467 (5) | |
H1W | 0.652 (5) | 0.765 (3) | 0.2061 (14) | 0.07* | |
H2W | 0.653 (5) | 0.664 (3) | 0.1933 (14) | 0.07* | |
O2A | 0.7137 (2) | 0.37665 (11) | −0.00595 (5) | 0.0296 (3) | |
O2B | 0.6414 (2) | 0.61242 (10) | 0.04572 (5) | 0.0266 (3) | |
O3 | 0.9930 (2) | 0.51502 (12) | 0.24034 (6) | 0.0301 (3) | |
O2W | 0.3026 (2) | 0.36878 (11) | 0.23220 (6) | 0.0270 (3) | |
H3W | 0.201 (4) | 0.405 (2) | 0.2347 (11) | 0.04* | |
H4W | 0.405 (4) | 0.417 (2) | 0.2307 (11) | 0.04* | |
O4 | 0.6310 (2) | 0.50965 (11) | 0.22342 (5) | 0.0259 (3) | |
O3W | 0.2063 (3) | 0.23235 (12) | 0.14171 (6) | 0.0325 (3) | |
H5W | 0.239 (4) | 0.271 (2) | 0.1664 (11) | 0.049* | |
H6W | 0.227 (4) | 0.170 (2) | 0.1557 (11) | 0.049* | |
S1 | 0.79804 (7) | 0.47766 (4) | 0.263808 (18) | 0.01992 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0196 (8) | 0.0255 (10) | 0.0197 (8) | −0.0003 (8) | −0.0009 (7) | −0.0008 (7) |
C1B | 0.0188 (9) | 0.0236 (10) | 0.0176 (8) | 0.0009 (7) | −0.0004 (7) | −0.0013 (7) |
C2A | 0.0205 (9) | 0.0210 (9) | 0.0207 (8) | −0.0023 (7) | −0.0018 (7) | −0.0009 (7) |
C2B | 0.0192 (9) | 0.0212 (9) | 0.0165 (8) | −0.0012 (7) | −0.0016 (7) | −0.0003 (7) |
C3A | 0.0203 (8) | 0.0203 (8) | 0.0196 (8) | −0.0009 (8) | −0.0001 (8) | 0.0007 (7) |
C3B | 0.0205 (9) | 0.0199 (9) | 0.0167 (8) | 0.0008 (7) | −0.0006 (7) | 0.0007 (7) |
C4A | 0.0318 (10) | 0.0239 (9) | 0.0232 (9) | 0.0002 (8) | −0.0036 (8) | 0.0062 (8) |
C4B | 0.0300 (11) | 0.0261 (10) | 0.0225 (9) | 0.0020 (8) | −0.0008 (8) | 0.0081 (8) |
C5A | 0.0451 (12) | 0.0192 (9) | 0.0293 (10) | −0.0003 (9) | −0.0034 (9) | 0.0025 (8) |
C5B | 0.0336 (11) | 0.0214 (10) | 0.0294 (10) | 0.0018 (8) | −0.0012 (8) | 0.0047 (8) |
C6A | 0.0354 (11) | 0.0218 (9) | 0.0266 (10) | 0.0000 (8) | −0.0017 (9) | −0.0036 (8) |
C6B | 0.0278 (10) | 0.0221 (9) | 0.0241 (9) | 0.0003 (8) | −0.0007 (8) | −0.0021 (8) |
N1A | 0.0465 (9) | 0.0181 (8) | 0.0188 (7) | 0.0007 (8) | −0.0003 (8) | −0.0004 (6) |
N1B | 0.0436 (10) | 0.0204 (8) | 0.0171 (7) | 0.0013 (8) | −0.0001 (7) | −0.0006 (6) |
N2A | 0.0256 (8) | 0.0214 (7) | 0.0175 (7) | 0.0004 (7) | −0.0014 (6) | 0.0000 (6) |
N2B | 0.0270 (8) | 0.0243 (8) | 0.0162 (7) | 0.0004 (6) | 0.0004 (6) | −0.0011 (6) |
O1 | 0.0404 (7) | 0.0191 (6) | 0.0181 (6) | −0.0016 (6) | −0.0021 (6) | 0.0004 (5) |
O1A | 0.0454 (8) | 0.0252 (7) | 0.0176 (6) | 0.0011 (7) | −0.0006 (6) | −0.0015 (5) |
O1B | 0.0414 (8) | 0.0250 (7) | 0.0166 (6) | 0.0008 (6) | −0.0005 (6) | −0.0018 (5) |
O2 | 0.0508 (9) | 0.0240 (7) | 0.0184 (6) | 0.0046 (6) | 0.0021 (6) | −0.0021 (6) |
O1W | 0.0970 (15) | 0.0245 (8) | 0.0185 (7) | 0.0102 (9) | −0.0078 (8) | −0.0008 (6) |
O2A | 0.0453 (8) | 0.0226 (7) | 0.0208 (6) | 0.0020 (6) | 0.0017 (6) | 0.0026 (5) |
O2B | 0.0363 (8) | 0.0224 (7) | 0.0212 (7) | 0.0017 (6) | 0.0004 (6) | 0.0031 (6) |
O3 | 0.0274 (7) | 0.0295 (8) | 0.0332 (8) | −0.0038 (6) | 0.0025 (6) | 0.0054 (7) |
O2W | 0.0264 (7) | 0.0248 (7) | 0.0297 (7) | −0.0016 (6) | 0.0013 (7) | −0.0017 (6) |
O4 | 0.0284 (7) | 0.0260 (7) | 0.0234 (7) | −0.0015 (6) | −0.0034 (5) | 0.0041 (6) |
O3W | 0.0538 (9) | 0.0244 (8) | 0.0193 (7) | −0.0026 (7) | −0.0042 (7) | −0.0014 (6) |
S1 | 0.0259 (2) | 0.0184 (2) | 0.01552 (19) | −0.00133 (19) | −0.00044 (18) | 0.00021 (17) |
C1A—O2A | 1.214 (2) | C5B—C6B | 1.395 (3) |
C1A—O1A | 1.317 (2) | C5B—H5B | 0.95 |
C1A—C2A | 1.488 (2) | C6A—H6A | 0.95 |
C1B—O2B | 1.217 (2) | C6B—H6B | 0.95 |
C1B—O1B | 1.316 (2) | N1A—H11A | 0.88 |
C1B—C2B | 1.491 (2) | N1A—H12A | 0.88 |
C2A—C6A | 1.375 (3) | N1B—H11B | 0.88 |
C2A—C3A | 1.425 (2) | N1B—H12B | 0.88 |
C2B—C6B | 1.377 (3) | N2A—H2A | 0.88 |
C2B—C3B | 1.430 (2) | N2B—H2B | 0.88 |
C3A—N1A | 1.320 (2) | O1—S1 | 1.4895 (13) |
C3A—N2A | 1.360 (2) | O1A—H1A | 0.84 |
C3B—N1B | 1.317 (2) | O1B—H1B | 0.84 |
C3B—N2B | 1.365 (2) | O2—S1 | 1.4662 (13) |
C4A—N2A | 1.351 (2) | O1W—H1W | 0.82 (3) |
C4A—C5A | 1.357 (3) | O1W—H2W | 0.75 (3) |
C4A—H4A | 0.95 | O3—S1 | 1.4591 (14) |
C4B—N2B | 1.350 (2) | O2W—H3W | 0.80 (3) |
C4B—C5B | 1.362 (3) | O2W—H4W | 0.89 (3) |
C4B—H4B | 0.95 | O4—S1 | 1.4877 (13) |
C5A—C6A | 1.394 (3) | O3W—H5W | 0.77 (3) |
C5A—H5A | 0.95 | O3W—H6W | 0.85 (3) |
O2A—C1A—O1A | 124.23 (16) | C2A—C6A—C5A | 122.46 (18) |
O2A—C1A—C2A | 123.47 (16) | C2A—C6A—H6A | 118.8 |
O1A—C1A—C2A | 112.30 (15) | C5A—C6A—H6A | 118.8 |
O2B—C1B—O1B | 124.18 (16) | C2B—C6B—C5B | 121.86 (18) |
O2B—C1B—C2B | 123.32 (16) | C2B—C6B—H6B | 119.1 |
O1B—C1B—C2B | 112.51 (15) | C5B—C6B—H6B | 119.1 |
C6A—C2A—C3A | 118.44 (16) | C3A—N1A—H11A | 120 |
C6A—C2A—C1A | 121.03 (16) | C3A—N1A—H12A | 120 |
C3A—C2A—C1A | 120.52 (15) | H11A—N1A—H12A | 120 |
C6B—C2B—C3B | 118.95 (16) | C3B—N1B—H11B | 120 |
C6B—C2B—C1B | 121.05 (16) | C3B—N1B—H12B | 120 |
C3B—C2B—C1B | 120.00 (15) | H11B—N1B—H12B | 120 |
N1A—C3A—N2A | 118.38 (15) | C4A—N2A—C3A | 123.86 (15) |
N1A—C3A—C2A | 124.77 (15) | C4A—N2A—H2A | 118.1 |
N2A—C3A—C2A | 116.85 (15) | C3A—N2A—H2A | 118.1 |
N1B—C3B—N2B | 117.89 (16) | C4B—N2B—C3B | 123.82 (16) |
N1B—C3B—C2B | 125.49 (15) | C4B—N2B—H2B | 118.1 |
N2B—C3B—C2B | 116.61 (15) | C3B—N2B—H2B | 118.1 |
N2A—C4A—C5A | 120.77 (17) | C1A—O1A—H1A | 109.5 |
N2A—C4A—H4A | 119.6 | C1B—O1B—H1B | 109.5 |
C5A—C4A—H4A | 119.6 | H1W—O1W—H2W | 109 (3) |
N2B—C4B—C5B | 120.77 (17) | H3W—O2W—H4W | 105 (2) |
N2B—C4B—H4B | 119.6 | H5W—O3W—H6W | 104 (3) |
C5B—C4B—H4B | 119.6 | O3—S1—O2 | 111.42 (9) |
C4A—C5A—C6A | 117.56 (18) | O3—S1—O4 | 109.05 (8) |
C4A—C5A—H5A | 121.2 | O2—S1—O4 | 109.93 (8) |
C6A—C5A—H5A | 121.2 | O3—S1—O1 | 110.06 (9) |
C4B—C5B—C6B | 117.98 (18) | O2—S1—O1 | 108.68 (7) |
C4B—C5B—H5B | 121 | O4—S1—O1 | 107.62 (8) |
C6B—C5B—H5B | 121 | ||
O2A—C1A—C2A—C6A | −178.3 (2) | C1B—C2B—C3B—N2B | −179.57 (16) |
O1A—C1A—C2A—C6A | 1.6 (3) | N2A—C4A—C5A—C6A | 1.1 (3) |
O2A—C1A—C2A—C3A | 1.3 (3) | N2B—C4B—C5B—C6B | −0.1 (3) |
O1A—C1A—C2A—C3A | −178.75 (18) | C3A—C2A—C6A—C5A | 1.0 (3) |
O2B—C1B—C2B—C6B | 173.11 (18) | C1A—C2A—C6A—C5A | −179.38 (18) |
O1B—C1B—C2B—C6B | −6.9 (2) | C4A—C5A—C6A—C2A | −2.1 (3) |
O2B—C1B—C2B—C3B | −6.5 (3) | C3B—C2B—C6B—C5B | −0.1 (3) |
O1B—C1B—C2B—C3B | 173.45 (16) | C1B—C2B—C6B—C5B | −179.72 (17) |
C6A—C2A—C3A—N1A | −179.65 (19) | C4B—C5B—C6B—C2B | −0.2 (3) |
C1A—C2A—C3A—N1A | 0.7 (3) | C5A—C4A—N2A—C3A | 1.0 (3) |
C6A—C2A—C3A—N2A | 1.1 (3) | N1A—C3A—N2A—C4A | 178.57 (18) |
C1A—C2A—C3A—N2A | −178.53 (16) | C2A—C3A—N2A—C4A | −2.1 (3) |
C6B—C2B—C3B—N1B | 179.90 (18) | C5B—C4B—N2B—C3B | 0.9 (3) |
C1B—C2B—C3B—N1B | −0.5 (3) | N1B—C3B—N2B—C4B | 179.60 (18) |
C6B—C2B—C3B—N2B | 0.8 (3) | C2B—C3B—N2B—C4B | −1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O3Wi | 0.84 | 1.69 | 2.5152 (18) | 167 |
O1B—H1B···O1W | 0.84 | 1.69 | 2.5138 (18) | 168 |
O1W—H1W···O2Wii | 0.82 (4) | 1.93 (3) | 2.754 (2) | 177 (4) |
O3W—H5W···O2W | 0.77 (3) | 1.98 (3) | 2.750 (2) | 176 (3) |
O1W—H2W···O4 | 0.75 (4) | 2.03 (4) | 2.752 (2) | 164 (3) |
O2W—H3W···O3iii | 0.80 (3) | 1.92 (3) | 2.7151 (19) | 169 (3) |
O2W—H4W···O4 | 0.90 (3) | 1.87 (3) | 2.7675 (19) | 175 (3) |
O3W—H6W···O2iv | 0.84 (2) | 1.88 (2) | 2.720 (2) | 171 (3) |
N2A—H2A···O1 | 0.88 | 1.92 | 2.7681 (18) | 163 |
N2B—H2B···O1v | 0.88 | 1.88 | 2.7419 (19) | 167 |
N1A—H11A···O4 | 0.88 | 2.05 | 2.915 (2) | 166 |
N1B—H11B···O2v | 0.88 | 1.94 | 2.817 (2) | 173 |
N1A—H12A···O2A | 0.88 | 2.09 | 2.726 (2) | 129 |
N1A—H12A···O2B | 0.88 | 2.27 | 2.979 (2) | 138 |
N1B—H12B···O2A | 0.88 | 2.25 | 2.963 (2) | 138 |
N1B—H12B···O2B | 0.88 | 2.10 | 2.733 (2) | 128 |
C4A—H4A···O3vi | 0.95 | 2.46 | 3.143 (2) | 129 |
C4B—H4B···O3vii | 0.95 | 2.31 | 3.169 (2) | 150 |
C6A—H6A···O1A | 0.95 | 2.35 | 2.697 (2) | 101 |
C6B—H6B···O1B | 0.95 | 2.37 | 2.709 (2) | 100 |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+3/2, −y+1, z−1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) x−1/2, −y+3/2, −z. |
Experimental details
Crystal data | |
Chemical formula | 2C6H7N2O2+·SO42−·3H2O |
Mr | 428.39 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 150 |
a, b, c (Å) | 6.5372 (5), 12.3141 (10), 23.0274 (19) |
V (Å3) | 1853.7 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.24 |
Crystal size (mm) | 0.58 × 0.13 × 0.04 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.845, 0.970 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 23588, 4229, 3669 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.079, 1.06 |
No. of reflections | 4229 |
No. of parameters | 274 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.28 |
Absolute structure | Flack (1983), 1790 Friedel pairs |
Absolute structure parameter | 0.45 (6) |
Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···O3Wi | 0.84 | 1.69 | 2.5152 (18) | 167 |
O1B—H1B···O1W | 0.84 | 1.69 | 2.5138 (18) | 168 |
O1W—H1W···O2Wii | 0.82 (4) | 1.93 (3) | 2.754 (2) | 177 (4) |
O3W—H5W···O2W | 0.77 (3) | 1.98 (3) | 2.750 (2) | 176 (3) |
O1W—H2W···O4 | 0.75 (4) | 2.03 (4) | 2.752 (2) | 164 (3) |
O2W—H3W···O3iii | 0.80 (3) | 1.92 (3) | 2.7151 (19) | 169 (3) |
O2W—H4W···O4 | 0.90 (3) | 1.87 (3) | 2.7675 (19) | 175 (3) |
O3W—H6W···O2iv | 0.84 (2) | 1.88 (2) | 2.720 (2) | 171 (3) |
N2A—H2A···O1 | 0.88 | 1.92 | 2.7681 (18) | 163 |
N2B—H2B···O1v | 0.88 | 1.88 | 2.7419 (19) | 167 |
N1A—H11A···O4 | 0.88 | 2.05 | 2.915 (2) | 166 |
N1B—H11B···O2v | 0.88 | 1.94 | 2.817 (2) | 173 |
N1A—H12A···O2A | 0.88 | 2.09 | 2.726 (2) | 129 |
N1A—H12A···O2B | 0.88 | 2.27 | 2.979 (2) | 138 |
N1B—H12B···O2A | 0.88 | 2.25 | 2.963 (2) | 138 |
N1B—H12B···O2B | 0.88 | 2.10 | 2.733 (2) | 128 |
C4A—H4A···O3vi | 0.95 | 2.46 | 3.143 (2) | 129 |
C4B—H4B···O3vii | 0.95 | 2.31 | 3.169 (2) | 150 |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z+1/2; (v) −x+3/2, −y+1, z−1/2; (vi) −x+2, y−1/2, −z+1/2; (vii) x−1/2, −y+3/2, −z. |
Footnotes
‡Current address: Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.
Acknowledgements
We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.
References
Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o2764–o2767. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berrah, F., Lamraoui, H. & Benali-Cherif, N. (2005). Acta Cryst. E61, o210–o212. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o677–o678. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Desiraju, G. R. (2003). Crystal Design: Structure and Function Perspectives in Supramolecular Chemistry, Vol. 7. Chichester: John Wiley & Sons Ltd. Google Scholar
Dobson, A. J. & Gerkin, R. E. (1997). Acta Cryst. C53, 1427–1429. CSD CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Giantsidis, J. & Turnbull, M. M. (2000). Acta Cryst. C56, 334–335. CSD CrossRef CAS IUCr Journals Google Scholar
Pawlukojc, A., Starosta, W., Leciejewicz, J., Natkaniec, I. & Nowak, D. (2007). Chem. Phys. Lett. 437, 32–37. CAS Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonds are the object of several studies, which aim to elucidate their influence on crystal construction and compounds propreties (Desiraju, 2003). Pyridine and its derivatives well known for their various chemical and biological activities, have proved their aptitude to built new edifices involving original hydrogen-bonding patterns due to their variety of potential hydrogen donors and acceptors (Athimoolam et al., 2005; Dobson & Gerkin, 1997; Giantsidis & Turnbull, 2000). The title compound was obtained from 2-aminonicotinic acid and is a part of our search for new hybrid compounds based on protonated N-heterocyclic compounds and inorganic acids (Berrah et al., 2005;2011a,b).
As shown in figure 1, the asymmetric unit includes two crystallographically independent 2-aminonicotinium cations (A and B), one sulfate anion and three water molecules. The cation geometry is similar to that reported for the structure of 2-aminonicotinic acid (Dobson & Gerkin, 1997; Pawlukojc et al., 2007) except for C—O distances in the carboxylic group. In the 2-aminonicotinic acid structure, the two C—O distances are 1.234 (2) and 1.266 (2)Å since the carboxylic group transfers its proton to the hetero-ring nitrogen atom leading to a zwitterionic molecule.
The crystal packing of the title compound (Fig. 2) results from sulfate-water sheets extending parallel to (001) (Fig. 3) and linked together via 2-aminonicotinium dimers (Fig. 4). In one sheet, sulfate anions and H2O2W molecules alternate, leading to infinite chains running parallel to the a axis. These chains are further connected through H2O1W and H2O3W molecules in a way that R34(10) rings are formed (Fig. 3). The structure is stabilized via N—H···O, O—H···O and C—H···O Hydrogen bonds that link each dimer to its neighbors (Table 1, Fig. 4). R34 (10) and R22(8) graph-set rings are observed (Fig. 4)(Etter et al., 1990; Bernstein et al., 1995).