organic compounds
2,4,6-Trinitro-N-[4-(phenyldiazenyl)phenyl]aniline
aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au
The title compound, C18H12N6O6, was prepared from the reaction of 4-(phenyldiazenyl)aniline (aniline yellow) with picrylsulfonic acid. The dihedral angle formed by the two benzene rings of the diphenyldiazenyl ring system is 6.55 (13)° and that formed by the rings of the picrate–aniline ring system is 48.76 (12)°. The molecule contains an intramolecular aniline–nitro N—H⋯O hydrogen bond.
Related literature
For the reaction of picryl chloride with isomeric aminobenzoic acids, see: Crocker & Matthews (1911). For the application of the title compound in dyeing technology, see: Beretta (1926);. For structural data on N-picryl-substituted anilines, see: Forlani et al. (1992); Pan et al. (2007); Smith et al. (2007); Braun et al. (2008); Smith et al. (2009). For diazenyl-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001); Smith et al. (2009, 2011).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
10.1107/S160053681101004X/lh5220sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681101004X/lh5220Isup2.hkl
The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-(phenyldiazenyl)aniline (aniline yellow) and 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave orange-red prisms of (I) from which a specimen was cleaved for the X-ray analysis.
All H-atoms were included in the
in calculated positions and were allowed to ride with C—H = 0.93 Å or N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). In the absence of significant effects Friedel pairs were merged for the final cycles of refinement.Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound. The intramolecular hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level. |
C18H12N6O6 | F(000) = 420 |
Mr = 408.34 | Dx = 1.491 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2105 reflections |
a = 7.4255 (4) Å | θ = 3.5–28.5° |
b = 7.6613 (4) Å | µ = 0.12 mm−1 |
c = 16.1510 (9) Å | T = 200 K |
β = 98.160 (5)° | Plate, orange-red |
V = 909.51 (9) Å3 | 0.30 × 0.30 × 0.15 mm |
Z = 2 |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2297 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 1407 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.077 pixels mm-1 | θmax = 28.5°, θmin = 3.5° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −10→10 |
Tmin = 0.920, Tmax = 0.990 | l = −21→21 |
6768 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.058 | H-atom parameters not refined |
S = 0.86 | w = 1/[σ2(Fo2) + (0.021P)2] where P = (Fo2 + 2Fc2)/3 |
2297 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.15 e Å−3 |
1 restraint | Δρmin = −0.14 e Å−3 |
C18H12N6O6 | V = 909.51 (9) Å3 |
Mr = 408.34 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.4255 (4) Å | µ = 0.12 mm−1 |
b = 7.6613 (4) Å | T = 200 K |
c = 16.1510 (9) Å | 0.30 × 0.30 × 0.15 mm |
β = 98.160 (5)° |
Oxford Diffraction Gemini-S CCD-detector diffractometer | 2297 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 1407 reflections with I > 2σ(I) |
Tmin = 0.920, Tmax = 0.990 | Rint = 0.036 |
6768 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 1 restraint |
wR(F2) = 0.058 | H-atom parameters not refined |
S = 0.86 | Δρmax = 0.15 e Å−3 |
2297 reflections | Δρmin = −0.14 e Å−3 |
271 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O21A | 0.7894 (3) | 0.0405 (2) | 0.33042 (15) | 0.0557 (8) | |
O22A | 0.8395 (3) | −0.0131 (3) | 0.20499 (15) | 0.0673 (10) | |
O41A | 0.7046 (3) | 0.3737 (3) | −0.01934 (12) | 0.0524 (8) | |
O42A | 0.5573 (3) | 0.6113 (3) | −0.00428 (13) | 0.0733 (10) | |
O61A | 0.4815 (3) | 0.8150 (3) | 0.26498 (14) | 0.0582 (9) | |
O62A | 0.4238 (2) | 0.6124 (3) | 0.35215 (12) | 0.0467 (7) | |
N1 | 0.6941 (3) | 0.3543 (3) | 0.36913 (14) | 0.0379 (8) | |
N2A | 0.7860 (3) | 0.0827 (3) | 0.25675 (17) | 0.0438 (10) | |
N4 | 0.8515 (3) | 0.7986 (3) | 0.64591 (15) | 0.0376 (8) | |
N4A | 0.6334 (3) | 0.4775 (3) | 0.02299 (15) | 0.0403 (9) | |
N6A | 0.4931 (3) | 0.6655 (3) | 0.29240 (16) | 0.0397 (9) | |
N41 | 0.7964 (3) | 0.7460 (3) | 0.71112 (15) | 0.0388 (8) | |
C1 | 0.7256 (3) | 0.4761 (4) | 0.43607 (17) | 0.0343 (10) | |
C1A | 0.6660 (3) | 0.3836 (3) | 0.28559 (17) | 0.0304 (9) | |
C2 | 0.8086 (3) | 0.6339 (3) | 0.42983 (17) | 0.0367 (10) | |
C2A | 0.7143 (3) | 0.2547 (3) | 0.22900 (18) | 0.0323 (9) | |
C3 | 0.8466 (3) | 0.7381 (4) | 0.50001 (17) | 0.0363 (10) | |
C3A | 0.7034 (3) | 0.2855 (3) | 0.14441 (17) | 0.0325 (10) | |
C4 | 0.8030 (3) | 0.6843 (4) | 0.57641 (18) | 0.0357 (10) | |
C4A | 0.6397 (3) | 0.4442 (4) | 0.11242 (17) | 0.0304 (9) | |
C5 | 0.7209 (4) | 0.5221 (4) | 0.58222 (18) | 0.0420 (11) | |
C5A | 0.5793 (3) | 0.5688 (3) | 0.16261 (17) | 0.0321 (10) | |
C6 | 0.6810 (4) | 0.4184 (4) | 0.51302 (18) | 0.0429 (11) | |
C6A | 0.5887 (3) | 0.5373 (3) | 0.24652 (17) | 0.0301 (9) | |
C11 | 0.9043 (4) | 1.0521 (4) | 0.92620 (19) | 0.0475 (11) | |
C21 | 0.9363 (3) | 1.1240 (4) | 0.8506 (2) | 0.0455 (11) | |
C31 | 0.9046 (3) | 1.0274 (4) | 0.77855 (17) | 0.0361 (10) | |
C41 | 0.8401 (3) | 0.8580 (3) | 0.78142 (17) | 0.0313 (10) | |
C51 | 0.8078 (3) | 0.7876 (4) | 0.85652 (18) | 0.0391 (10) | |
C61 | 0.8423 (4) | 0.8851 (4) | 0.92962 (19) | 0.0437 (11) | |
H1 | 0.69280 | 0.24650 | 0.38380 | 0.0450* | |
H2 | 0.83930 | 0.67080 | 0.37880 | 0.0440* | |
H3 | 0.90220 | 0.84590 | 0.49580 | 0.0430* | |
H3A | 0.73870 | 0.19990 | 0.10920 | 0.0390* | |
H5 | 0.69290 | 0.48390 | 0.63360 | 0.0500* | |
H5A | 0.53250 | 0.67380 | 0.14000 | 0.0390* | |
H6 | 0.62490 | 0.31080 | 0.51700 | 0.0510* | |
H11 | 0.92550 | 1.11840 | 0.97480 | 0.0570* | |
H21 | 0.97920 | 1.23780 | 0.84890 | 0.0540* | |
H31 | 0.92630 | 1.07520 | 0.72800 | 0.0430* | |
H51 | 0.76280 | 0.67450 | 0.85820 | 0.0470* | |
H61 | 0.82320 | 0.83690 | 0.98050 | 0.0520* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O21A | 0.0839 (16) | 0.0368 (12) | 0.0427 (14) | −0.0079 (11) | −0.0033 (12) | 0.0064 (11) |
O22A | 0.0965 (18) | 0.0423 (14) | 0.0679 (18) | 0.0221 (13) | 0.0283 (14) | −0.0003 (12) |
O41A | 0.0661 (14) | 0.0584 (14) | 0.0361 (14) | −0.0002 (12) | 0.0191 (11) | −0.0091 (11) |
O42A | 0.0923 (18) | 0.0854 (17) | 0.0449 (15) | 0.0435 (16) | 0.0196 (13) | 0.0222 (14) |
O61A | 0.0700 (16) | 0.0370 (14) | 0.0701 (18) | 0.0057 (11) | 0.0187 (12) | −0.0105 (11) |
O62A | 0.0385 (11) | 0.0683 (14) | 0.0349 (13) | −0.0036 (11) | 0.0107 (10) | −0.0101 (11) |
N1 | 0.0475 (14) | 0.0359 (13) | 0.0305 (15) | −0.0133 (12) | 0.0065 (12) | 0.0030 (12) |
N2A | 0.0492 (16) | 0.0339 (16) | 0.0470 (19) | −0.0023 (12) | 0.0022 (14) | 0.0000 (14) |
N4 | 0.0358 (13) | 0.0478 (15) | 0.0286 (16) | −0.0031 (12) | 0.0022 (11) | −0.0014 (12) |
N4A | 0.0354 (14) | 0.0543 (17) | 0.0318 (16) | 0.0028 (13) | 0.0067 (12) | 0.0020 (14) |
N6A | 0.0276 (13) | 0.0496 (18) | 0.0414 (17) | −0.0032 (12) | 0.0031 (12) | −0.0160 (14) |
N41 | 0.0429 (14) | 0.0470 (15) | 0.0268 (15) | −0.0013 (13) | 0.0058 (11) | −0.0008 (13) |
C1 | 0.0327 (16) | 0.0389 (18) | 0.0303 (18) | −0.0076 (14) | 0.0014 (13) | −0.0048 (15) |
C1A | 0.0253 (15) | 0.0353 (16) | 0.0302 (18) | −0.0072 (13) | 0.0028 (13) | −0.0062 (14) |
C2 | 0.0347 (15) | 0.0505 (19) | 0.0246 (17) | −0.0113 (14) | 0.0031 (12) | 0.0061 (15) |
C2A | 0.0312 (15) | 0.0283 (15) | 0.0365 (18) | −0.0030 (13) | 0.0019 (13) | −0.0032 (14) |
C3 | 0.0359 (15) | 0.0401 (17) | 0.0318 (19) | −0.0123 (14) | 0.0012 (13) | −0.0004 (15) |
C3A | 0.0278 (15) | 0.0359 (17) | 0.0343 (18) | −0.0073 (13) | 0.0057 (13) | −0.0111 (14) |
C4 | 0.0337 (16) | 0.0433 (18) | 0.0280 (18) | −0.0039 (14) | −0.0027 (13) | 0.0004 (15) |
C4A | 0.0273 (14) | 0.0397 (17) | 0.0244 (16) | −0.0027 (13) | 0.0039 (12) | −0.0024 (14) |
C5 | 0.0560 (19) | 0.0454 (19) | 0.0251 (18) | −0.0117 (16) | 0.0073 (14) | 0.0015 (14) |
C5A | 0.0227 (14) | 0.0357 (17) | 0.0370 (19) | −0.0007 (13) | 0.0010 (13) | 0.0007 (14) |
C6 | 0.0527 (18) | 0.0401 (18) | 0.0359 (19) | −0.0138 (14) | 0.0065 (15) | 0.0029 (14) |
C6A | 0.0229 (13) | 0.0359 (16) | 0.0323 (18) | −0.0024 (13) | 0.0063 (12) | −0.0076 (14) |
C11 | 0.0380 (17) | 0.063 (2) | 0.040 (2) | 0.0134 (17) | 0.0005 (15) | −0.0199 (17) |
C21 | 0.0331 (17) | 0.0445 (18) | 0.057 (2) | −0.0013 (15) | 0.0001 (15) | −0.0113 (17) |
C31 | 0.0280 (15) | 0.0444 (18) | 0.035 (2) | 0.0026 (14) | 0.0014 (14) | 0.0023 (15) |
C41 | 0.0304 (15) | 0.0346 (17) | 0.0277 (18) | 0.0030 (14) | −0.0004 (13) | −0.0009 (14) |
C51 | 0.0387 (16) | 0.0432 (19) | 0.0345 (19) | 0.0078 (14) | 0.0018 (14) | −0.0046 (15) |
C61 | 0.0434 (17) | 0.053 (2) | 0.0338 (19) | 0.0094 (16) | 0.0025 (14) | −0.0003 (17) |
O21A—N2A | 1.230 (4) | C3A—C4A | 1.378 (4) |
O22A—N2A | 1.221 (3) | C4—C5 | 1.393 (4) |
O41A—N4A | 1.217 (3) | C4A—C5A | 1.369 (4) |
O42A—N4A | 1.222 (3) | C5—C6 | 1.369 (4) |
O61A—N6A | 1.227 (3) | C5A—C6A | 1.369 (4) |
O62A—N6A | 1.226 (3) | C11—C61 | 1.364 (4) |
N1—C1 | 1.422 (4) | C11—C21 | 1.390 (4) |
N1—C1A | 1.354 (4) | C21—C31 | 1.371 (4) |
N2A—C2A | 1.467 (3) | C31—C41 | 1.386 (4) |
N4—N41 | 1.250 (3) | C41—C51 | 1.379 (4) |
N4—C4 | 1.429 (4) | C51—C61 | 1.390 (4) |
N4A—C4A | 1.461 (4) | C2—H2 | 0.9300 |
N6A—C6A | 1.472 (3) | C3—H3 | 0.9300 |
N41—C41 | 1.423 (3) | C3A—H3A | 0.9300 |
N1—H1 | 0.8600 | C5—H5 | 0.9300 |
C1—C6 | 1.402 (4) | C5A—H5A | 0.9300 |
C1—C2 | 1.367 (4) | C6—H6 | 0.9300 |
C1A—C2A | 1.426 (4) | C11—H11 | 0.9300 |
C1A—C6A | 1.418 (3) | C21—H21 | 0.9300 |
C2—C3 | 1.382 (4) | C31—H31 | 0.9300 |
C2A—C3A | 1.378 (4) | C51—H51 | 0.9300 |
C3—C4 | 1.382 (4) | C61—H61 | 0.9300 |
C1—N1—C1A | 129.4 (2) | C1—C6—C5 | 119.3 (3) |
O21A—N2A—O22A | 122.7 (2) | N6A—C6A—C1A | 121.6 (2) |
O21A—N2A—C2A | 119.2 (2) | N6A—C6A—C5A | 114.9 (2) |
O22A—N2A—C2A | 118.0 (3) | C1A—C6A—C5A | 123.2 (2) |
N41—N4—C4 | 112.9 (2) | C21—C11—C61 | 120.5 (3) |
O41A—N4A—O42A | 124.1 (2) | C11—C21—C31 | 120.1 (3) |
O41A—N4A—C4A | 119.1 (2) | C21—C31—C41 | 119.7 (3) |
O42A—N4A—C4A | 116.8 (2) | N41—C41—C51 | 114.7 (2) |
O61A—N6A—O62A | 125.3 (2) | N41—C41—C31 | 125.3 (2) |
O61A—N6A—C6A | 117.1 (2) | C31—C41—C51 | 120.0 (3) |
O62A—N6A—C6A | 117.5 (2) | C41—C51—C61 | 120.2 (3) |
N4—N41—C41 | 114.4 (2) | C11—C61—C51 | 119.5 (3) |
C1—N1—H1 | 115.00 | C1—C2—H2 | 120.00 |
C1A—N1—H1 | 115.00 | C3—C2—H2 | 120.00 |
N1—C1—C2 | 123.5 (2) | C2—C3—H3 | 120.00 |
C2—C1—C6 | 120.6 (3) | C4—C3—H3 | 120.00 |
N1—C1—C6 | 115.7 (3) | C2A—C3A—H3A | 120.00 |
C2A—C1A—C6A | 114.4 (2) | C4A—C3A—H3A | 120.00 |
N1—C1A—C6A | 125.2 (2) | C4—C5—H5 | 120.00 |
N1—C1A—C2A | 120.4 (2) | C6—C5—H5 | 120.00 |
C1—C2—C3 | 119.5 (2) | C4A—C5A—H5A | 120.00 |
C1A—C2A—C3A | 122.2 (2) | C6A—C5A—H5A | 120.00 |
N2A—C2A—C1A | 122.7 (2) | C1—C6—H6 | 120.00 |
N2A—C2A—C3A | 115.1 (2) | C5—C6—H6 | 120.00 |
C2—C3—C4 | 120.9 (3) | C21—C11—H11 | 120.00 |
C2A—C3A—C4A | 119.5 (2) | C61—C11—H11 | 120.00 |
N4—C4—C5 | 123.9 (3) | C11—C21—H21 | 120.00 |
N4—C4—C3 | 117.0 (3) | C31—C21—H21 | 120.00 |
C3—C4—C5 | 119.1 (3) | C21—C31—H31 | 120.00 |
N4A—C4A—C5A | 119.8 (2) | C41—C31—H31 | 120.00 |
N4A—C4A—C3A | 119.1 (2) | C41—C51—H51 | 120.00 |
C3A—C4A—C5A | 121.1 (3) | C61—C51—H51 | 120.00 |
C4—C5—C6 | 120.6 (3) | C11—C61—H61 | 120.00 |
C4A—C5A—C6A | 119.3 (2) | C51—C61—H61 | 120.00 |
C1A—N1—C1—C2 | −29.4 (4) | C6A—C1A—C2A—C3A | 6.3 (3) |
C1A—N1—C1—C6 | 156.3 (3) | N1—C1A—C6A—N6A | −14.0 (4) |
C1—N1—C1A—C2A | 152.5 (2) | N1—C1A—C6A—C5A | 173.3 (2) |
C1—N1—C1A—C6A | −27.7 (4) | C2A—C1A—C6A—N6A | 165.7 (2) |
O21A—N2A—C2A—C1A | 7.0 (4) | C2A—C1A—C6A—C5A | −7.0 (3) |
O21A—N2A—C2A—C3A | −175.4 (2) | C1—C2—C3—C4 | 0.5 (4) |
O22A—N2A—C2A—C1A | −173.3 (2) | N2A—C2A—C3A—C4A | −179.3 (2) |
O22A—N2A—C2A—C3A | 4.3 (3) | C1A—C2A—C3A—C4A | −1.6 (4) |
C4—N4—N41—C41 | −179.2 (2) | C2—C3—C4—N4 | 178.5 (2) |
N41—N4—C4—C3 | 175.4 (2) | C2—C3—C4—C5 | 0.5 (4) |
N41—N4—C4—C5 | −6.7 (4) | C2A—C3A—C4A—N4A | 178.3 (2) |
O41A—N4A—C4A—C3A | −8.9 (4) | C2A—C3A—C4A—C5A | −3.0 (4) |
O41A—N4A—C4A—C5A | 172.4 (2) | N4—C4—C5—C6 | −178.9 (3) |
O42A—N4A—C4A—C3A | 172.0 (2) | C3—C4—C5—C6 | −1.1 (4) |
O42A—N4A—C4A—C5A | −6.7 (3) | N4A—C4A—C5A—C6A | −178.9 (2) |
O61A—N6A—C6A—C1A | 157.5 (2) | C3A—C4A—C5A—C6A | 2.4 (4) |
O61A—N6A—C6A—C5A | −29.3 (3) | C4—C5—C6—C1 | 0.8 (4) |
O62A—N6A—C6A—C1A | −26.1 (3) | C4A—C5A—C6A—N6A | −170.2 (2) |
O62A—N6A—C6A—C5A | 147.1 (2) | C4A—C5A—C6A—C1A | 2.9 (4) |
N4—N41—C41—C31 | 12.6 (4) | C61—C11—C21—C31 | 0.4 (4) |
N4—N41—C41—C51 | −169.5 (2) | C21—C11—C61—C51 | −1.2 (4) |
N1—C1—C2—C3 | −174.9 (2) | C11—C21—C31—C41 | 0.2 (4) |
C6—C1—C2—C3 | −0.8 (4) | C21—C31—C41—N41 | 178.0 (2) |
N1—C1—C6—C5 | 174.7 (3) | C21—C31—C41—C51 | 0.1 (4) |
C2—C1—C6—C5 | 0.2 (4) | N41—C41—C51—C61 | −179.0 (2) |
N1—C1A—C2A—N2A | 3.5 (3) | C31—C41—C51—C61 | −1.0 (4) |
N1—C1A—C2A—C3A | −174.0 (2) | C41—C51—C61—C11 | 1.5 (4) |
C6A—C1A—C2A—N2A | −176.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O21A | 0.86 | 1.98 | 2.607 (3) | 129 |
C3A—H3A···O22A | 0.93 | 2.30 | 2.633 (3) | 100 |
C5—H5···O61Ai | 0.93 | 2.58 | 3.453 (4) | 157 |
C11—H11···O41Aii | 0.93 | 2.56 | 3.068 (4) | 115 |
C21—H21···O22Aiii | 0.93 | 2.56 | 3.425 (4) | 155 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) x, y+1, z+1; (iii) −x+2, y+3/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H12N6O6 |
Mr | 408.34 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 200 |
a, b, c (Å) | 7.4255 (4), 7.6613 (4), 16.1510 (9) |
β (°) | 98.160 (5) |
V (Å3) | 909.51 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.30 × 0.30 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini-S CCD-detector diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.920, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6768, 2297, 1407 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.672 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.058, 0.86 |
No. of reflections | 2297 |
No. of parameters | 271 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.15, −0.14 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).
Acknowledgements
The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beretta, A. (1926). Ann. Chim. Appl. 16, 211–216. CAS Google Scholar
Braun, D. E., Gelbrich, J., Jetti, R. K. R., Kahlenberg, X., Price, S. L. & Griesser, U. J. (2008). Cryst. Growth Des. 8, 1977–1989. CrossRef CAS Google Scholar
Crocker, J. C. & Matthews, F. (1911). J. Chem. Soc. Trans. 99, 301–313. CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Forlani, L., Battaglia, L. P., Corradi, A. B. & Sgarabotto, P. (1992). J. Crystallogr. Spectrosc. Res. 22, 705–712. CrossRef CAS Google Scholar
Mahmoudkhani, A. H. & Langer, V. (2001). Acta Cryst. E57, o839–o841. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pan, W.-L., Huang, K.-L., Tang, W., Xu, Y.-Q. & Hu, C.-W. (2007). Chin. J. Chem. 25, 1451–1454. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2011). Acta Cryst. E67, o878. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543–o548. Web of Science CSD CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4803. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The diazo-dye precursor aniline yellow [4-(phenyldiazenyl)aniline] reacts with strong acids to form purple-black to red-black diazenyl-protonated salts (Mahmoudkhani & Langer, 2001; Smith et al., 2009, 2011). However, our 1:1 stoichiometric reaction of aniline yellow with 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50% ethanol-water atypically gave orange-red crystals. This indicated a substitution reaction typical of this acid with anilines, giving N-picryl products with elimination of the sulfonate group. Reaction of picryl chloride with the isomeric aniline carboxylates to give similar products was reported by Crocker & Matthews (1911) while the application of picryl substituted azoanilines including the title compound, (I), in dyeing, was discussed by Beretta (1926). A number of structures of picryl-substituted anilines and other aromatic amines have been reported (e.g. Forlani et al., 1992; Braun et al., 2008; Pan et al., 2007; Smith et al., 2007).
In the title compound, (I), picryl-substitution of the aniline group of the 4-(phenyldiazenyl)aniline molecule has occurred. The molecular structure of (I) is shown Fig. 1. The diphenyldiazenyl ring system is non-planar [torsion angles C3—C4—N4—N41 and C51—C41—N41—N4: 175.4 (2) and -169.5 (2)°, respectively] as is the picrate to aniline ring system [torsion angles C2A—C1A—N1—C1 and C6—C1—N1—C1A: 152.5 (2) and 156.3 (3)° respectively]. Within the picrate moiety, one of the two ortho-related nitro groups is rotated out of the benzene plane [torsion angle C5A—C6A—N6A—O62A, 147.1 (2)°], while the other, which is associated with an intramolecular hydrogen bond [N1—H···O21A (Table 1)] is close to coplanar [C1A—C2A—N2A—O22A, -173.3 (2)°]. The para-related nitro group is also essentially coplanar with the ring [C3A—C4A—N4A—O42A, 172.0 (2)°]. There is one short intermolecular non-bonding nitro group interaction [O41A···O42Ai, 2.860 (3) Å: symmetry code (i) -x + 1, y - 1/2, -z]. In addition, there are weak π···π ring interactions with a centroid to centroid distance 3.7744 (16) Å.