organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro-N-[4-(phenyl­diazen­yl)phen­yl]aniline

aFaculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 10 March 2011; accepted 17 March 2011; online 23 March 2011)

The title compound, C18H12N6O6, was prepared from the reaction of 4-(phenyl­diazen­yl)aniline (aniline yellow) with picryl­sulfonic acid. The dihedral angle formed by the two benzene rings of the diphenyl­diazenyl ring system is 6.55 (13)° and that formed by the rings of the picrate–aniline ring system is 48.76 (12)°. The mol­ecule contains an intra­molecular aniline–nitro N—H⋯O hydrogen bond.

Related literature

For the reaction of picryl chloride with isomeric amino­benzoic acids, see: Crocker & Matthews (1911[Crocker, J. C. & Matthews, F. (1911). J. Chem. Soc. Trans. 99, 301-313.]). For the application of the title compound in dyeing technology, see: Beretta (1926[Beretta, A. (1926). Ann. Chim. Appl. 16, 211-216.]);. For structural data on N-picryl-substituted anilines, see: Forlani et al. (1992[Forlani, L., Battaglia, L. P., Corradi, A. B. & Sgarabotto, P. (1992). J. Crystallogr. Spectrosc. Res. 22, 705-712.]); Pan et al. (2007[Pan, W.-L., Huang, K.-L., Tang, W., Xu, Y.-Q. & Hu, C.-W. (2007). Chin. J. Chem. 25, 1451-1454.]); Smith et al. (2007)[Smith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4803.]; Braun et al. (2008[Braun, D. E., Gelbrich, J., Jetti, R. K. R., Kahlenberg, X., Price, S. L. & Griesser, U. J. (2008). Cryst. Growth Des. 8, 1977-1989.]); Smith et al. (2009[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543-o548.]). For diazenyl-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001[Mahmoudkhani, A. H. & Langer, V. (2001). Acta Cryst. E57, o839-o841.]); Smith et al. (2009[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543-o548.], 2011[Smith, G., Wermuth, U. D. & White, J. M. (2011). Acta Cryst. E67, o878.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N6O6

  • Mr = 408.34

  • Monoclinic, P 21

  • a = 7.4255 (4) Å

  • b = 7.6613 (4) Å

  • c = 16.1510 (9) Å

  • β = 98.160 (5)°

  • V = 909.51 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 200 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini-S CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.920, Tmax = 0.990

  • 6768 measured reflections

  • 2297 independent reflections

  • 1407 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.058

  • S = 0.86

  • 2297 reflections

  • 271 parameters

  • 1 restraint

  • H-atom parameters not refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O21A 0.86 1.98 2.607 (3) 129

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The diazo-dye precursor aniline yellow [4-(phenyldiazenyl)aniline] reacts with strong acids to form purple-black to red-black diazenyl-protonated salts (Mahmoudkhani & Langer, 2001; Smith et al., 2009, 2011). However, our 1:1 stoichiometric reaction of aniline yellow with 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50% ethanol-water atypically gave orange-red crystals. This indicated a substitution reaction typical of this acid with anilines, giving N-picryl products with elimination of the sulfonate group. Reaction of picryl chloride with the isomeric aniline carboxylates to give similar products was reported by Crocker & Matthews (1911) while the application of picryl substituted azoanilines including the title compound, (I), in dyeing, was discussed by Beretta (1926). A number of structures of picryl-substituted anilines and other aromatic amines have been reported (e.g. Forlani et al., 1992; Braun et al., 2008; Pan et al., 2007; Smith et al., 2007).

In the title compound, (I), picryl-substitution of the aniline group of the 4-(phenyldiazenyl)aniline molecule has occurred. The molecular structure of (I) is shown Fig. 1. The diphenyldiazenyl ring system is non-planar [torsion angles C3—C4—N4—N41 and C51—C41—N41—N4: 175.4 (2) and -169.5 (2)°, respectively] as is the picrate to aniline ring system [torsion angles C2A—C1A—N1—C1 and C6—C1—N1—C1A: 152.5 (2) and 156.3 (3)° respectively]. Within the picrate moiety, one of the two ortho-related nitro groups is rotated out of the benzene plane [torsion angle C5A—C6A—N6A—O62A, 147.1 (2)°], while the other, which is associated with an intramolecular hydrogen bond [N1—H···O21A (Table 1)] is close to coplanar [C1A—C2A—N2A—O22A, -173.3 (2)°]. The para-related nitro group is also essentially coplanar with the ring [C3A—C4A—N4A—O42A, 172.0 (2)°]. There is one short intermolecular non-bonding nitro group interaction [O41A···O42Ai, 2.860 (3) Å: symmetry code (i) -x + 1, y - 1/2, -z]. In addition, there are weak π···π ring interactions with a centroid to centroid distance 3.7744 (16) Å.

Related literature top

For the reaction of picryl chloride with isomeric aminobenzoic acids, see: Crocker & Matthews (1911). For the application of the title compound in dyeing technology, see: Beretta (1926);. For structural data on N-picryl-substituted anilines, see: Forlani et al. (1992); Pan et al. (2007); Smith et al. (2007); Braun et al. (2008); Smith et al. (2009). For diazenyl-protonated salts of aniline yellow, see: Mahmoudkhani & Langer (2001); Smith et al. (2009, 2011).

Experimental top

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 4-(phenyldiazenyl)aniline (aniline yellow) and 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) in 50 ml of 50% ethanol-water. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave orange-red prisms of (I) from which a specimen was cleaved for the X-ray analysis.

Refinement top

All H-atoms were included in the refinement in calculated positions and were allowed to ride with C—H = 0.93 Å or N—H = 0.86 Å and with Uiso(H) = 1.2Ueq(C, N). In the absence of significant anomalous dispersion effects Friedel pairs were merged for the final cycles of refinement.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. The intramolecular hydrogen bond is shown as a dashed line and displacement ellipsoids are drawn at the 40% probability level.
2,4,6-Trinitro-N-[4-(phenyldiazenyl)phenyl]aniline top
Crystal data top
C18H12N6O6F(000) = 420
Mr = 408.34Dx = 1.491 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2105 reflections
a = 7.4255 (4) Åθ = 3.5–28.5°
b = 7.6613 (4) ŵ = 0.12 mm1
c = 16.1510 (9) ÅT = 200 K
β = 98.160 (5)°Plate, orange-red
V = 909.51 (9) Å30.30 × 0.30 × 0.15 mm
Z = 2
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2297 independent reflections
Radiation source: Enhance (Mo) X-ray source1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.077 pixels mm-1θmax = 28.5°, θmin = 3.5°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.920, Tmax = 0.990l = 2121
6768 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters not refined
S = 0.86 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
2297 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C18H12N6O6V = 909.51 (9) Å3
Mr = 408.34Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.4255 (4) ŵ = 0.12 mm1
b = 7.6613 (4) ÅT = 200 K
c = 16.1510 (9) Å0.30 × 0.30 × 0.15 mm
β = 98.160 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2297 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1407 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.990Rint = 0.036
6768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.058H-atom parameters not refined
S = 0.86Δρmax = 0.15 e Å3
2297 reflectionsΔρmin = 0.14 e Å3
271 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21A0.7894 (3)0.0405 (2)0.33042 (15)0.0557 (8)
O22A0.8395 (3)0.0131 (3)0.20499 (15)0.0673 (10)
O41A0.7046 (3)0.3737 (3)0.01934 (12)0.0524 (8)
O42A0.5573 (3)0.6113 (3)0.00428 (13)0.0733 (10)
O61A0.4815 (3)0.8150 (3)0.26498 (14)0.0582 (9)
O62A0.4238 (2)0.6124 (3)0.35215 (12)0.0467 (7)
N10.6941 (3)0.3543 (3)0.36913 (14)0.0379 (8)
N2A0.7860 (3)0.0827 (3)0.25675 (17)0.0438 (10)
N40.8515 (3)0.7986 (3)0.64591 (15)0.0376 (8)
N4A0.6334 (3)0.4775 (3)0.02299 (15)0.0403 (9)
N6A0.4931 (3)0.6655 (3)0.29240 (16)0.0397 (9)
N410.7964 (3)0.7460 (3)0.71112 (15)0.0388 (8)
C10.7256 (3)0.4761 (4)0.43607 (17)0.0343 (10)
C1A0.6660 (3)0.3836 (3)0.28559 (17)0.0304 (9)
C20.8086 (3)0.6339 (3)0.42983 (17)0.0367 (10)
C2A0.7143 (3)0.2547 (3)0.22900 (18)0.0323 (9)
C30.8466 (3)0.7381 (4)0.50001 (17)0.0363 (10)
C3A0.7034 (3)0.2855 (3)0.14441 (17)0.0325 (10)
C40.8030 (3)0.6843 (4)0.57641 (18)0.0357 (10)
C4A0.6397 (3)0.4442 (4)0.11242 (17)0.0304 (9)
C50.7209 (4)0.5221 (4)0.58222 (18)0.0420 (11)
C5A0.5793 (3)0.5688 (3)0.16261 (17)0.0321 (10)
C60.6810 (4)0.4184 (4)0.51302 (18)0.0429 (11)
C6A0.5887 (3)0.5373 (3)0.24652 (17)0.0301 (9)
C110.9043 (4)1.0521 (4)0.92620 (19)0.0475 (11)
C210.9363 (3)1.1240 (4)0.8506 (2)0.0455 (11)
C310.9046 (3)1.0274 (4)0.77855 (17)0.0361 (10)
C410.8401 (3)0.8580 (3)0.78142 (17)0.0313 (10)
C510.8078 (3)0.7876 (4)0.85652 (18)0.0391 (10)
C610.8423 (4)0.8851 (4)0.92962 (19)0.0437 (11)
H10.692800.246500.383800.0450*
H20.839300.670800.378800.0440*
H30.902200.845900.495800.0430*
H3A0.738700.199900.109200.0390*
H50.692900.483900.633600.0500*
H5A0.532500.673800.140000.0390*
H60.624900.310800.517000.0510*
H110.925501.118400.974800.0570*
H210.979201.237800.848900.0540*
H310.926301.075200.728000.0430*
H510.762800.674500.858200.0470*
H610.823200.836900.980500.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O21A0.0839 (16)0.0368 (12)0.0427 (14)0.0079 (11)0.0033 (12)0.0064 (11)
O22A0.0965 (18)0.0423 (14)0.0679 (18)0.0221 (13)0.0283 (14)0.0003 (12)
O41A0.0661 (14)0.0584 (14)0.0361 (14)0.0002 (12)0.0191 (11)0.0091 (11)
O42A0.0923 (18)0.0854 (17)0.0449 (15)0.0435 (16)0.0196 (13)0.0222 (14)
O61A0.0700 (16)0.0370 (14)0.0701 (18)0.0057 (11)0.0187 (12)0.0105 (11)
O62A0.0385 (11)0.0683 (14)0.0349 (13)0.0036 (11)0.0107 (10)0.0101 (11)
N10.0475 (14)0.0359 (13)0.0305 (15)0.0133 (12)0.0065 (12)0.0030 (12)
N2A0.0492 (16)0.0339 (16)0.0470 (19)0.0023 (12)0.0022 (14)0.0000 (14)
N40.0358 (13)0.0478 (15)0.0286 (16)0.0031 (12)0.0022 (11)0.0014 (12)
N4A0.0354 (14)0.0543 (17)0.0318 (16)0.0028 (13)0.0067 (12)0.0020 (14)
N6A0.0276 (13)0.0496 (18)0.0414 (17)0.0032 (12)0.0031 (12)0.0160 (14)
N410.0429 (14)0.0470 (15)0.0268 (15)0.0013 (13)0.0058 (11)0.0008 (13)
C10.0327 (16)0.0389 (18)0.0303 (18)0.0076 (14)0.0014 (13)0.0048 (15)
C1A0.0253 (15)0.0353 (16)0.0302 (18)0.0072 (13)0.0028 (13)0.0062 (14)
C20.0347 (15)0.0505 (19)0.0246 (17)0.0113 (14)0.0031 (12)0.0061 (15)
C2A0.0312 (15)0.0283 (15)0.0365 (18)0.0030 (13)0.0019 (13)0.0032 (14)
C30.0359 (15)0.0401 (17)0.0318 (19)0.0123 (14)0.0012 (13)0.0004 (15)
C3A0.0278 (15)0.0359 (17)0.0343 (18)0.0073 (13)0.0057 (13)0.0111 (14)
C40.0337 (16)0.0433 (18)0.0280 (18)0.0039 (14)0.0027 (13)0.0004 (15)
C4A0.0273 (14)0.0397 (17)0.0244 (16)0.0027 (13)0.0039 (12)0.0024 (14)
C50.0560 (19)0.0454 (19)0.0251 (18)0.0117 (16)0.0073 (14)0.0015 (14)
C5A0.0227 (14)0.0357 (17)0.0370 (19)0.0007 (13)0.0010 (13)0.0007 (14)
C60.0527 (18)0.0401 (18)0.0359 (19)0.0138 (14)0.0065 (15)0.0029 (14)
C6A0.0229 (13)0.0359 (16)0.0323 (18)0.0024 (13)0.0063 (12)0.0076 (14)
C110.0380 (17)0.063 (2)0.040 (2)0.0134 (17)0.0005 (15)0.0199 (17)
C210.0331 (17)0.0445 (18)0.057 (2)0.0013 (15)0.0001 (15)0.0113 (17)
C310.0280 (15)0.0444 (18)0.035 (2)0.0026 (14)0.0014 (14)0.0023 (15)
C410.0304 (15)0.0346 (17)0.0277 (18)0.0030 (14)0.0004 (13)0.0009 (14)
C510.0387 (16)0.0432 (19)0.0345 (19)0.0078 (14)0.0018 (14)0.0046 (15)
C610.0434 (17)0.053 (2)0.0338 (19)0.0094 (16)0.0025 (14)0.0003 (17)
Geometric parameters (Å, º) top
O21A—N2A1.230 (4)C3A—C4A1.378 (4)
O22A—N2A1.221 (3)C4—C51.393 (4)
O41A—N4A1.217 (3)C4A—C5A1.369 (4)
O42A—N4A1.222 (3)C5—C61.369 (4)
O61A—N6A1.227 (3)C5A—C6A1.369 (4)
O62A—N6A1.226 (3)C11—C611.364 (4)
N1—C11.422 (4)C11—C211.390 (4)
N1—C1A1.354 (4)C21—C311.371 (4)
N2A—C2A1.467 (3)C31—C411.386 (4)
N4—N411.250 (3)C41—C511.379 (4)
N4—C41.429 (4)C51—C611.390 (4)
N4A—C4A1.461 (4)C2—H20.9300
N6A—C6A1.472 (3)C3—H30.9300
N41—C411.423 (3)C3A—H3A0.9300
N1—H10.8600C5—H50.9300
C1—C61.402 (4)C5A—H5A0.9300
C1—C21.367 (4)C6—H60.9300
C1A—C2A1.426 (4)C11—H110.9300
C1A—C6A1.418 (3)C21—H210.9300
C2—C31.382 (4)C31—H310.9300
C2A—C3A1.378 (4)C51—H510.9300
C3—C41.382 (4)C61—H610.9300
C1—N1—C1A129.4 (2)C1—C6—C5119.3 (3)
O21A—N2A—O22A122.7 (2)N6A—C6A—C1A121.6 (2)
O21A—N2A—C2A119.2 (2)N6A—C6A—C5A114.9 (2)
O22A—N2A—C2A118.0 (3)C1A—C6A—C5A123.2 (2)
N41—N4—C4112.9 (2)C21—C11—C61120.5 (3)
O41A—N4A—O42A124.1 (2)C11—C21—C31120.1 (3)
O41A—N4A—C4A119.1 (2)C21—C31—C41119.7 (3)
O42A—N4A—C4A116.8 (2)N41—C41—C51114.7 (2)
O61A—N6A—O62A125.3 (2)N41—C41—C31125.3 (2)
O61A—N6A—C6A117.1 (2)C31—C41—C51120.0 (3)
O62A—N6A—C6A117.5 (2)C41—C51—C61120.2 (3)
N4—N41—C41114.4 (2)C11—C61—C51119.5 (3)
C1—N1—H1115.00C1—C2—H2120.00
C1A—N1—H1115.00C3—C2—H2120.00
N1—C1—C2123.5 (2)C2—C3—H3120.00
C2—C1—C6120.6 (3)C4—C3—H3120.00
N1—C1—C6115.7 (3)C2A—C3A—H3A120.00
C2A—C1A—C6A114.4 (2)C4A—C3A—H3A120.00
N1—C1A—C6A125.2 (2)C4—C5—H5120.00
N1—C1A—C2A120.4 (2)C6—C5—H5120.00
C1—C2—C3119.5 (2)C4A—C5A—H5A120.00
C1A—C2A—C3A122.2 (2)C6A—C5A—H5A120.00
N2A—C2A—C1A122.7 (2)C1—C6—H6120.00
N2A—C2A—C3A115.1 (2)C5—C6—H6120.00
C2—C3—C4120.9 (3)C21—C11—H11120.00
C2A—C3A—C4A119.5 (2)C61—C11—H11120.00
N4—C4—C5123.9 (3)C11—C21—H21120.00
N4—C4—C3117.0 (3)C31—C21—H21120.00
C3—C4—C5119.1 (3)C21—C31—H31120.00
N4A—C4A—C5A119.8 (2)C41—C31—H31120.00
N4A—C4A—C3A119.1 (2)C41—C51—H51120.00
C3A—C4A—C5A121.1 (3)C61—C51—H51120.00
C4—C5—C6120.6 (3)C11—C61—H61120.00
C4A—C5A—C6A119.3 (2)C51—C61—H61120.00
C1A—N1—C1—C229.4 (4)C6A—C1A—C2A—C3A6.3 (3)
C1A—N1—C1—C6156.3 (3)N1—C1A—C6A—N6A14.0 (4)
C1—N1—C1A—C2A152.5 (2)N1—C1A—C6A—C5A173.3 (2)
C1—N1—C1A—C6A27.7 (4)C2A—C1A—C6A—N6A165.7 (2)
O21A—N2A—C2A—C1A7.0 (4)C2A—C1A—C6A—C5A7.0 (3)
O21A—N2A—C2A—C3A175.4 (2)C1—C2—C3—C40.5 (4)
O22A—N2A—C2A—C1A173.3 (2)N2A—C2A—C3A—C4A179.3 (2)
O22A—N2A—C2A—C3A4.3 (3)C1A—C2A—C3A—C4A1.6 (4)
C4—N4—N41—C41179.2 (2)C2—C3—C4—N4178.5 (2)
N41—N4—C4—C3175.4 (2)C2—C3—C4—C50.5 (4)
N41—N4—C4—C56.7 (4)C2A—C3A—C4A—N4A178.3 (2)
O41A—N4A—C4A—C3A8.9 (4)C2A—C3A—C4A—C5A3.0 (4)
O41A—N4A—C4A—C5A172.4 (2)N4—C4—C5—C6178.9 (3)
O42A—N4A—C4A—C3A172.0 (2)C3—C4—C5—C61.1 (4)
O42A—N4A—C4A—C5A6.7 (3)N4A—C4A—C5A—C6A178.9 (2)
O61A—N6A—C6A—C1A157.5 (2)C3A—C4A—C5A—C6A2.4 (4)
O61A—N6A—C6A—C5A29.3 (3)C4—C5—C6—C10.8 (4)
O62A—N6A—C6A—C1A26.1 (3)C4A—C5A—C6A—N6A170.2 (2)
O62A—N6A—C6A—C5A147.1 (2)C4A—C5A—C6A—C1A2.9 (4)
N4—N41—C41—C3112.6 (4)C61—C11—C21—C310.4 (4)
N4—N41—C41—C51169.5 (2)C21—C11—C61—C511.2 (4)
N1—C1—C2—C3174.9 (2)C11—C21—C31—C410.2 (4)
C6—C1—C2—C30.8 (4)C21—C31—C41—N41178.0 (2)
N1—C1—C6—C5174.7 (3)C21—C31—C41—C510.1 (4)
C2—C1—C6—C50.2 (4)N41—C41—C51—C61179.0 (2)
N1—C1A—C2A—N2A3.5 (3)C31—C41—C51—C611.0 (4)
N1—C1A—C2A—C3A174.0 (2)C41—C51—C61—C111.5 (4)
C6A—C1A—C2A—N2A176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21A0.861.982.607 (3)129
C3A—H3A···O22A0.932.302.633 (3)100
C5—H5···O61Ai0.932.583.453 (4)157
C11—H11···O41Aii0.932.563.068 (4)115
C21—H21···O22Aiii0.932.563.425 (4)155
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y+1, z+1; (iii) x+2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H12N6O6
Mr408.34
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)7.4255 (4), 7.6613 (4), 16.1510 (9)
β (°) 98.160 (5)
V3)909.51 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.920, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6768, 2297, 1407
Rint0.036
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.058, 0.86
No. of reflections2297
No. of parameters271
No. of restraints1
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21A0.861.982.607 (3)129
 

Acknowledgements

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology and the University Library, Queensland University of Technology.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBeretta, A. (1926). Ann. Chim. Appl. 16, 211–216.  CAS Google Scholar
First citationBraun, D. E., Gelbrich, J., Jetti, R. K. R., Kahlenberg, X., Price, S. L. & Griesser, U. J. (2008). Cryst. Growth Des. 8, 1977–1989.  CrossRef CAS Google Scholar
First citationCrocker, J. C. & Matthews, F. (1911). J. Chem. Soc. Trans. 99, 301–313.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForlani, L., Battaglia, L. P., Corradi, A. B. & Sgarabotto, P. (1992). J. Crystallogr. Spectrosc. Res. 22, 705–712.  CrossRef CAS Google Scholar
First citationMahmoudkhani, A. H. & Langer, V. (2001). Acta Cryst. E57, o839–o841.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPan, W.-L., Huang, K.-L., Tang, W., Xu, Y.-Q. & Hu, C.-W. (2007). Chin. J. Chem. 25, 1451–1454.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2011). Acta Cryst. E67, o878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2009). Acta Cryst. C65, o543–o548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2007). Acta Cryst. E63, o4803.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds