organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyrimidinium hydrogen sulfate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCollege of Science, King Saud University Riyadh, Saudi Arabia
*Correspondence e-mail: adelelboulali@yahoo.fr

(Received 14 March 2011; accepted 25 March 2011; online 31 March 2011)

In the crystal structure of the title compound, C4H6N3+·HSO4, hydrogen sulfate anions self-assemble through O—H⋯O hydrogen bonds, forming chains along the b axis, while the cations form centrosymmetric pairs via N—H⋯N hydrogen bonds. The 2-amino­pyrimidinium pairs are linked to the sulfate anions via N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (10[\overline{2}]). In addition, weak inter­molecular C—H⋯O contacts generate a three-dimensional network.

Related literature

For the biological properties of pyrimidines, see: Rabie et al. (2007[Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6-13.]); Rival et al. (1991[Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13-18.]). For applications of amino­pyrimidines, see: Rospenk & Koll (2007[Rospenk, M. & Koll, A. (2007). J. Mol. Struct. 844-845, 232-241.]). For amino­pyrimidine salts, see: Hemamalini et al. (2005[Hemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95-o97.]); Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]); Lee et al. (2003[Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425-1442.]); Ye et al. (2002[Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501-502.]). For sulfate salts with organic cations, see: Xu et al. (2009a[Xu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, o3146.],b[Xu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, o3147.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·HSO4

  • Mr = 193.19

  • Monoclinic, P 21 /c

  • a = 8.388 (2) Å

  • b = 5.208 (3) Å

  • c = 18.468 (4) Å

  • β = 112.84 (2)°

  • V = 743.6 (5) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.25 × 0.21 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3738 measured reflections

  • 3647 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.015

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.07

  • 3647 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.79 2.6100 (19) 174
N1—H1B⋯O1ii 0.86 2.38 3.140 (2) 148
N1—H1B⋯O4 0.86 2.58 3.155 (2) 125
N1—H1A⋯N3iii 0.86 2.16 3.017 (2) 172
N2—H2⋯O3 0.86 1.91 2.756 (2) 168
C2—H2A⋯O3iv 0.93 2.40 3.294 (2) 160
C3—H3⋯O2v 0.93 2.51 3.262 (3) 138
C4—H4⋯O4vi 0.93 2.53 3.316 (2) 142
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+1; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x+1, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) -x+2, -y, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995)[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Substantial attention has recently been focused on pyrimidine and its derivatives for their interesting properties as fungicides, vermicides, insecticides (Rabie et al., 2007), antifungal agents and antiviral agents (Rival et al., 1991). In particular, aminopyrimidines have been recognized as interesting nucleic bases, like cytosine, adenine and guanine which are responsible for molecular recognition and replication of DNA, through the formation and breakage of N—H···N hydrogen bonds (Rospenk & Koll, 2007). In continuation of our research on materials which could have interesting applications we report herein the synthesis and crystal structure of the title compound (I).

The asymmetric unit of the title compound (Fig. 1) consists of one hydrogen sulfate anion and one protonated 2-aminopyrimidine. The crystal packing of (I) is characterized by infinite chains built by HSO4- anions extending along the b-direction. These chains are interconnected by cationic moieties via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) resulting in three-dimensional supra-molecular structure (Fig. 2).

As can be seen in table 1, the O1—H1···O4i hydrogen bond links two adjacent hydrogen sulfate anions generating corrugated chains stacked along c axis (Fig. 2). In the sulfate anion, the S—O bond [1.569 (2) Å] involving the O atom bearing the acid H atom is longer than the other three S—O bonds, which range from 1.429 (1) to 1.459 (1) Å because of the bond multiplicity and the electronic mesomerism as reported previously in the hydrogen sulfate ion (Xu et al., 2009a,b).

With regard to the organic framework, the neighbouring cations of 2-aminopyrimidine linked by the hydrogen bonds N1–H1A···N3 (2 - x, 1 - y, 1 - z) and N3···H1A–N1 (2 - x, 1 - y, 1 - z) form the cyclic dimer of [C4N2H4NH2]2+ 2. The cationic arrangement in crystal structure of 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005) is closely related to that seen in the title compound. The dimers of the 2-aminopyrimidinium cations with planar rings (r.m.s. deviation = 0.008 Å) are connected to HSO4- chains by hydrogen bonds N1–H1B···O4, N1–H1B···O1 (x, y + 1, z) and N2–H2···O3 to form a two-dimensional network (Fig. 2) which is linked into a three-dimensional network through weak intermolecular hydrogen bonds. These observations are similar to that of other 2-aminopyrimidinium salts (Childs et al., 2007; Lee et al., 2003; Ye et al., 2002).

Related literature top

For the biological properties of pyrimidines, see: Rabie et al. (2007); Rival et al. (1991). For applications of aminopyrimidines, see: Rospenk & Koll (2007). For aminopyrimidine salts, see: Hemamalini et al. (2005); Childs et al. (2007); Lee et al. (2003); Ye et al. (2002). For sulfate salts with organic cations, see: Xu et al. (2009a,b).

Experimental top

To a solution of 2-aminopyrimidine (0.19 g, 2 mmol) dissolved in a mixture of water/ethanol (10/5 ml) was added dropwise 2 mmol (0.15 ml) of commercial H2SO4 (98%, Aldrich). The reaction mixture was stirred and left under slowly evaporation at room temperature until formation of large colorless single crystals of the title compound.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H= 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. H bonds are shown as dashed lines.
2-Aminopyrimidinium hydrogen sulfate top
Crystal data top
C4H6N3+·HSO4F(000) = 400
Mr = 193.19Dx = 1.726 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.388 (2) Åθ = 9–11°
b = 5.208 (3) ŵ = 0.22 mm1
c = 18.468 (4) ÅT = 293 K
β = 112.84 (2)°Prism, colorless
V = 743.6 (5) Å30.25 × 0.21 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 1413
non–profiled ω scansk = 80
3738 measured reflectionsl = 3013
3647 independent reflections2 standard reflections every 120 min
2520 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0919P)2 + 0.0037P]
where P = (Fo2 + 2Fc2)/3
3647 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
C4H6N3+·HSO4V = 743.6 (5) Å3
Mr = 193.19Z = 4
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 8.388 (2) ŵ = 0.22 mm1
b = 5.208 (3) ÅT = 293 K
c = 18.468 (4) Å0.25 × 0.21 × 0.15 mm
β = 112.84 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.015
3738 measured reflections2 standard reflections every 120 min
3647 independent reflections intensity decay: 1%
2520 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 0.82 e Å3
3647 reflectionsΔρmin = 0.71 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.67465 (5)0.13645 (8)0.21545 (2)0.02768 (11)
O10.66596 (17)0.4361 (3)0.22175 (9)0.0400 (3)
H10.57170.47740.22180.060*
O20.5491 (2)0.0595 (3)0.14085 (8)0.0515 (4)
O30.85241 (16)0.0898 (3)0.22478 (7)0.0365 (3)
O40.64241 (17)0.0315 (3)0.28174 (8)0.0408 (3)
N10.9071 (2)0.3742 (3)0.39016 (9)0.0430 (4)
H1A0.89050.49520.41810.052*
H1B0.83900.35830.34160.052*
N21.06403 (19)0.0245 (3)0.37781 (8)0.0319 (3)
H20.99660.01170.32910.038*
N31.1419 (2)0.2419 (3)0.49787 (8)0.0358 (3)
C11.0366 (2)0.2136 (3)0.42160 (9)0.0295 (3)
C21.1941 (2)0.1444 (3)0.40855 (11)0.0376 (3)
H2A1.21050.27370.37740.045*
C31.3011 (3)0.1248 (4)0.48528 (12)0.0429 (4)
H31.39120.24040.50850.051*
C41.2703 (3)0.0753 (4)0.52752 (10)0.0418 (4)
H41.34420.09390.57990.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.03166 (18)0.02383 (17)0.02574 (16)0.00177 (13)0.00914 (13)0.00139 (13)
O10.0418 (7)0.0245 (5)0.0581 (8)0.0021 (5)0.0240 (6)0.0020 (5)
O20.0539 (9)0.0493 (9)0.0337 (6)0.0035 (7)0.0023 (6)0.0068 (6)
O30.0380 (6)0.0388 (7)0.0365 (6)0.0084 (5)0.0186 (5)0.0057 (5)
O40.0423 (7)0.0420 (7)0.0409 (6)0.0016 (5)0.0192 (5)0.0115 (5)
N10.0456 (8)0.0428 (9)0.0325 (7)0.0091 (7)0.0062 (6)0.0061 (6)
N20.0408 (7)0.0292 (6)0.0263 (5)0.0040 (5)0.0135 (5)0.0039 (5)
N30.0420 (7)0.0361 (8)0.0250 (6)0.0001 (6)0.0084 (5)0.0043 (5)
C10.0361 (7)0.0266 (6)0.0255 (6)0.0042 (6)0.0116 (5)0.0025 (5)
C20.0461 (9)0.0287 (7)0.0438 (9)0.0005 (7)0.0238 (8)0.0030 (7)
C30.0450 (9)0.0396 (10)0.0436 (9)0.0093 (8)0.0168 (8)0.0075 (8)
C40.0439 (9)0.0468 (10)0.0289 (7)0.0016 (8)0.0078 (7)0.0022 (7)
Geometric parameters (Å, º) top
S—O21.4288 (14)N2—C11.350 (2)
S—O31.4535 (13)N2—H20.8600
S—O41.4588 (13)N3—C41.324 (3)
S—O11.5690 (17)N3—C11.349 (2)
O1—H10.8200C2—C31.355 (3)
N1—C11.314 (2)C2—H2A0.9300
N1—H1A0.8600C3—C41.385 (3)
N1—H1B0.8600C3—H30.9300
N2—C21.343 (2)C4—H40.9300
O2—S—O3113.94 (9)C4—N3—C1117.25 (16)
O2—S—O4113.37 (10)N1—C1—N3119.05 (16)
O3—S—O4110.72 (8)N1—C1—N2120.26 (15)
O2—S—O1108.21 (9)N3—C1—N2120.69 (16)
O3—S—O1103.46 (8)N2—C2—C3119.50 (17)
O4—S—O1106.34 (9)N2—C2—H2A120.3
S—O1—H1109.5C3—C2—H2A120.3
C1—N1—H1A120.0C2—C3—C4116.90 (18)
C1—N1—H1B120.0C2—C3—H3121.5
H1A—N1—H1B120.0C4—C3—H3121.5
C2—N2—C1121.60 (15)N3—C4—C3124.04 (17)
C2—N2—H2119.2N3—C4—H4118.0
C1—N2—H2119.2C3—C4—H4118.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.792.6100 (19)174
N1—H1B···O1ii0.862.383.140 (2)148
N1—H1B···O40.862.583.155 (2)125
N1—H1A···N3iii0.862.163.017 (2)172
N2—H2···O30.861.912.756 (2)168
C2—H2A···O3iv0.932.403.294 (2)160
C3—H3···O2v0.932.513.262 (3)138
C4—H4···O4vi0.932.533.316 (2)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H6N3+·HSO4
Mr193.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.388 (2), 5.208 (3), 18.468 (4)
β (°) 112.84 (2)
V3)743.6 (5)
Z4
Radiation typeAg Kα, λ = 0.56087 Å
µ (mm1)0.22
Crystal size (mm)0.25 × 0.21 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3738, 3647, 2520
Rint0.015
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.07
No. of reflections3647
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.71

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.792.6100 (19)174
N1—H1B···O1ii0.862.383.140 (2)148
N1—H1B···O40.862.583.155 (2)125
N1—H1A···N3iii0.862.163.017 (2)172
N2—H2···O30.861.912.756 (2)168
C2—H2A···O3iv0.932.403.294 (2)160
C3—H3···O2v0.932.513.262 (3)138
C4—H4···O4vi0.932.533.316 (2)142
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+2, y+1, z+1; (iv) x+2, y1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x+2, y, z+1.
 

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemamalini, M., Mu­thiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.  Web of Science CSD CrossRef CAS Google Scholar
First citationRabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13.  Web of Science CrossRef CAS Google Scholar
First citationRival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18.  CrossRef CAS Web of Science Google Scholar
First citationRospenk, M. & Koll, A. (2007). J. Mol. Struct. 844–845, 232–241.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, o3146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, o3147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds