organic compounds
2-Aminopyrimidinium hydrogen sulfate
aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bCollege of Science, King Saud University Riyadh, Saudi Arabia
*Correspondence e-mail: adelelboulali@yahoo.fr
In the 4H6N3+·HSO4−, hydrogen sulfate anions self-assemble through O—H⋯O hydrogen bonds, forming chains along the b axis, while the cations form centrosymmetric pairs via N—H⋯N hydrogen bonds. The 2-aminopyrimidinium pairs are linked to the sulfate anions via N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (10). In addition, weak intermolecular C—H⋯O contacts generate a three-dimensional network.
of the title compound, CRelated literature
For the biological properties of pyrimidines, see: Rabie et al. (2007); Rival et al. (1991). For applications of aminopyrimidines, see: Rospenk & Koll (2007). For aminopyrimidine salts, see: Hemamalini et al. (2005); Childs et al. (2007); Lee et al. (2003); Ye et al. (2002). For sulfate salts with organic cations, see: Xu et al. (2009a,b).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
10.1107/S1600536811011123/lh5222sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811011123/lh5222Isup2.hkl
To a solution of 2-aminopyrimidine (0.19 g, 2 mmol) dissolved in a mixture of water/ethanol (10/5 ml) was added dropwise 2 mmol (0.15 ml) of commercial H2SO4 (98%, Aldrich). The reaction mixture was stirred and left under slowly evaporation at room temperature until formation of large colorless single crystals of the title compound.
All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H= 0.86 Å and O—H = 0.82 Å with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O)
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).Fig. 1. The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines. | |
Fig. 2. Projection of (I) along the b axis. The H-atoms not involved in H-bonding are omitted. H bonds are shown as dashed lines. |
C4H6N3+·HSO4− | F(000) = 400 |
Mr = 193.19 | Dx = 1.726 Mg m−3 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.388 (2) Å | θ = 9–11° |
b = 5.208 (3) Å | µ = 0.22 mm−1 |
c = 18.468 (4) Å | T = 293 K |
β = 112.84 (2)° | Prism, colorless |
V = 743.6 (5) Å3 | 0.25 × 0.21 × 0.15 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.015 |
Radiation source: fine-focus sealed tube | θmax = 28.0°, θmin = 2.1° |
Graphite monochromator | h = −14→13 |
non–profiled ω scans | k = −8→0 |
3738 measured reflections | l = −30→13 |
3647 independent reflections | 2 standard reflections every 120 min |
2520 reflections with I > 2σ(I) | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0919P)2 + 0.0037P] where P = (Fo2 + 2Fc2)/3 |
3647 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.82 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
C4H6N3+·HSO4− | V = 743.6 (5) Å3 |
Mr = 193.19 | Z = 4 |
Monoclinic, P21/c | Ag Kα radiation, λ = 0.56087 Å |
a = 8.388 (2) Å | µ = 0.22 mm−1 |
b = 5.208 (3) Å | T = 293 K |
c = 18.468 (4) Å | 0.25 × 0.21 × 0.15 mm |
β = 112.84 (2)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.015 |
3738 measured reflections | 2 standard reflections every 120 min |
3647 independent reflections | intensity decay: 1% |
2520 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.82 e Å−3 |
3647 reflections | Δρmin = −0.71 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S | 0.67465 (5) | −0.13645 (8) | 0.21545 (2) | 0.02768 (11) | |
O1 | 0.66596 (17) | −0.4361 (3) | 0.22175 (9) | 0.0400 (3) | |
H1 | 0.5717 | −0.4774 | 0.2218 | 0.060* | |
O2 | 0.5491 (2) | −0.0595 (3) | 0.14085 (8) | 0.0515 (4) | |
O3 | 0.85241 (16) | −0.0898 (3) | 0.22478 (7) | 0.0365 (3) | |
O4 | 0.64241 (17) | −0.0315 (3) | 0.28174 (8) | 0.0408 (3) | |
N1 | 0.9071 (2) | 0.3742 (3) | 0.39016 (9) | 0.0430 (4) | |
H1A | 0.8905 | 0.4952 | 0.4181 | 0.052* | |
H1B | 0.8390 | 0.3583 | 0.3416 | 0.052* | |
N2 | 1.06403 (19) | 0.0245 (3) | 0.37781 (8) | 0.0319 (3) | |
H2 | 0.9966 | 0.0117 | 0.3291 | 0.038* | |
N3 | 1.1419 (2) | 0.2419 (3) | 0.49787 (8) | 0.0358 (3) | |
C1 | 1.0366 (2) | 0.2136 (3) | 0.42160 (9) | 0.0295 (3) | |
C2 | 1.1941 (2) | −0.1444 (3) | 0.40855 (11) | 0.0376 (3) | |
H2A | 1.2105 | −0.2737 | 0.3774 | 0.045* | |
C3 | 1.3011 (3) | −0.1248 (4) | 0.48528 (12) | 0.0429 (4) | |
H3 | 1.3912 | −0.2404 | 0.5085 | 0.051* | |
C4 | 1.2703 (3) | 0.0753 (4) | 0.52752 (10) | 0.0418 (4) | |
H4 | 1.3442 | 0.0939 | 0.5799 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S | 0.03166 (18) | 0.02383 (17) | 0.02574 (16) | −0.00177 (13) | 0.00914 (13) | −0.00139 (13) |
O1 | 0.0418 (7) | 0.0245 (5) | 0.0581 (8) | −0.0021 (5) | 0.0240 (6) | −0.0020 (5) |
O2 | 0.0539 (9) | 0.0493 (9) | 0.0337 (6) | −0.0035 (7) | −0.0023 (6) | 0.0068 (6) |
O3 | 0.0380 (6) | 0.0388 (7) | 0.0365 (6) | −0.0084 (5) | 0.0186 (5) | −0.0057 (5) |
O4 | 0.0423 (7) | 0.0420 (7) | 0.0409 (6) | 0.0016 (5) | 0.0192 (5) | −0.0115 (5) |
N1 | 0.0456 (8) | 0.0428 (9) | 0.0325 (7) | 0.0091 (7) | 0.0062 (6) | −0.0061 (6) |
N2 | 0.0408 (7) | 0.0292 (6) | 0.0263 (5) | −0.0040 (5) | 0.0135 (5) | −0.0039 (5) |
N3 | 0.0420 (7) | 0.0361 (8) | 0.0250 (6) | −0.0001 (6) | 0.0084 (5) | −0.0043 (5) |
C1 | 0.0361 (7) | 0.0266 (6) | 0.0255 (6) | −0.0042 (6) | 0.0116 (5) | −0.0025 (5) |
C2 | 0.0461 (9) | 0.0287 (7) | 0.0438 (9) | −0.0005 (7) | 0.0238 (8) | −0.0030 (7) |
C3 | 0.0450 (9) | 0.0396 (10) | 0.0436 (9) | 0.0093 (8) | 0.0168 (8) | 0.0075 (8) |
C4 | 0.0439 (9) | 0.0468 (10) | 0.0289 (7) | 0.0016 (8) | 0.0078 (7) | 0.0022 (7) |
S—O2 | 1.4288 (14) | N2—C1 | 1.350 (2) |
S—O3 | 1.4535 (13) | N2—H2 | 0.8600 |
S—O4 | 1.4588 (13) | N3—C4 | 1.324 (3) |
S—O1 | 1.5690 (17) | N3—C1 | 1.349 (2) |
O1—H1 | 0.8200 | C2—C3 | 1.355 (3) |
N1—C1 | 1.314 (2) | C2—H2A | 0.9300 |
N1—H1A | 0.8600 | C3—C4 | 1.385 (3) |
N1—H1B | 0.8600 | C3—H3 | 0.9300 |
N2—C2 | 1.343 (2) | C4—H4 | 0.9300 |
O2—S—O3 | 113.94 (9) | C4—N3—C1 | 117.25 (16) |
O2—S—O4 | 113.37 (10) | N1—C1—N3 | 119.05 (16) |
O3—S—O4 | 110.72 (8) | N1—C1—N2 | 120.26 (15) |
O2—S—O1 | 108.21 (9) | N3—C1—N2 | 120.69 (16) |
O3—S—O1 | 103.46 (8) | N2—C2—C3 | 119.50 (17) |
O4—S—O1 | 106.34 (9) | N2—C2—H2A | 120.3 |
S—O1—H1 | 109.5 | C3—C2—H2A | 120.3 |
C1—N1—H1A | 120.0 | C2—C3—C4 | 116.90 (18) |
C1—N1—H1B | 120.0 | C2—C3—H3 | 121.5 |
H1A—N1—H1B | 120.0 | C4—C3—H3 | 121.5 |
C2—N2—C1 | 121.60 (15) | N3—C4—C3 | 124.04 (17) |
C2—N2—H2 | 119.2 | N3—C4—H4 | 118.0 |
C1—N2—H2 | 119.2 | C3—C4—H4 | 118.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.79 | 2.6100 (19) | 174 |
N1—H1B···O1ii | 0.86 | 2.38 | 3.140 (2) | 148 |
N1—H1B···O4 | 0.86 | 2.58 | 3.155 (2) | 125 |
N1—H1A···N3iii | 0.86 | 2.16 | 3.017 (2) | 172 |
N2—H2···O3 | 0.86 | 1.91 | 2.756 (2) | 168 |
C2—H2A···O3iv | 0.93 | 2.40 | 3.294 (2) | 160 |
C3—H3···O2v | 0.93 | 2.51 | 3.262 (3) | 138 |
C4—H4···O4vi | 0.93 | 2.53 | 3.316 (2) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, −y−1/2, z+1/2; (vi) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C4H6N3+·HSO4− |
Mr | 193.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.388 (2), 5.208 (3), 18.468 (4) |
β (°) | 112.84 (2) |
V (Å3) | 743.6 (5) |
Z | 4 |
Radiation type | Ag Kα, λ = 0.56087 Å |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.25 × 0.21 × 0.15 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3738, 3647, 2520 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.836 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.159, 1.07 |
No. of reflections | 3647 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.82, −0.71 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and DIAMOND (Brandenburg & Putz, 2005), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.82 | 1.79 | 2.6100 (19) | 174 |
N1—H1B···O1ii | 0.86 | 2.38 | 3.140 (2) | 148 |
N1—H1B···O4 | 0.86 | 2.58 | 3.155 (2) | 125 |
N1—H1A···N3iii | 0.86 | 2.16 | 3.017 (2) | 172 |
N2—H2···O3 | 0.86 | 1.91 | 2.756 (2) | 168 |
C2—H2A···O3iv | 0.93 | 2.40 | 3.294 (2) | 160 |
C3—H3···O2v | 0.93 | 2.51 | 3.262 (3) | 138 |
C4—H4···O4vi | 0.93 | 2.53 | 3.316 (2) | 142 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2; (v) x+1, −y−1/2, z+1/2; (vi) −x+2, −y, −z+1. |
References
Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Hemamalini, M., Muthiah, P. T., Rychlewska, U. & Plutecka, A. (2005). Acta Cryst. C61, o95–o97. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lee, J.-H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442. Web of Science CSD CrossRef CAS Google Scholar
Rabie, U. M., Abou-El-Wafa, M. H. & Mohamed, R. A. (2007). J. Mol. Struct. 871, 6–13. Web of Science CrossRef CAS Google Scholar
Rival, Y., Grassy, G., Taudou, A. & Ecalle, R. (1991). Eur. J. Med. Chem. 26, 13–18. CrossRef CAS Web of Science Google Scholar
Rospenk, M. & Koll, A. (2007). J. Mol. Struct. 844–845, 232–241. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y.-M., Gao, S. & Ng, S. W. (2009a). Acta Cryst. E65, o3146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xu, Y.-M., Gao, S. & Ng, S. W. (2009b). Acta Cryst. E65, o3147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ye, M.-D., Hu, M.-L. & Ye, C.-P. (2002). Z. Kristallogr. New Cryst. Struct. 217, 501–502. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substantial attention has recently been focused on pyrimidine and its derivatives for their interesting properties as fungicides, vermicides, insecticides (Rabie et al., 2007), antifungal agents and antiviral agents (Rival et al., 1991). In particular, aminopyrimidines have been recognized as interesting nucleic bases, like cytosine, adenine and guanine which are responsible for molecular recognition and replication of DNA, through the formation and breakage of N—H···N hydrogen bonds (Rospenk & Koll, 2007). In continuation of our research on materials which could have interesting applications we report herein the synthesis and crystal structure of the title compound (I).
The asymmetric unit of the title compound (Fig. 1) consists of one hydrogen sulfate anion and one protonated 2-aminopyrimidine. The crystal packing of (I) is characterized by infinite chains built by HSO4- anions extending along the b-direction. These chains are interconnected by cationic moieties via intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) resulting in three-dimensional supra-molecular structure (Fig. 2).
As can be seen in table 1, the O1—H1···O4i hydrogen bond links two adjacent hydrogen sulfate anions generating corrugated chains stacked along c axis (Fig. 2). In the sulfate anion, the S—O bond [1.569 (2) Å] involving the O atom bearing the acid H atom is longer than the other three S—O bonds, which range from 1.429 (1) to 1.459 (1) Å because of the bond multiplicity and the electronic mesomerism as reported previously in the hydrogen sulfate ion (Xu et al., 2009a,b).
With regard to the organic framework, the neighbouring cations of 2-aminopyrimidine linked by the hydrogen bonds N1–H1A···N3 (2 - x, 1 - y, 1 - z) and N3···H1A–N1 (2 - x, 1 - y, 1 - z) form the cyclic dimer of [C4N2H4NH2]2+ 2. The cationic arrangement in crystal structure of 2-amino-4,6-dimethylpyrimidinium hydrogen sulfate (Hemamalini et al., 2005) is closely related to that seen in the title compound. The dimers of the 2-aminopyrimidinium cations with planar rings (r.m.s. deviation = 0.008 Å) are connected to HSO4- chains by hydrogen bonds N1–H1B···O4, N1–H1B···O1 (x, y + 1, z) and N2–H2···O3 to form a two-dimensional network (Fig. 2) which is linked into a three-dimensional network through weak intermolecular hydrogen bonds. These observations are similar to that of other 2-aminopyrimidinium salts (Childs et al., 2007; Lee et al., 2003; Ye et al., 2002).