organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-({[4-Amino-6-(p-bromo­benz­yl)-5-oxo-4,5-di­hydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl­sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 19 March 2011; accepted 23 March 2011; online 31 March 2011)

In the title compound, C20H15BrN6O4S [symstematic name: 4-({[4-amino-6-(p-bromo­benz­yl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfan­yl}acet­yl)-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate], the 4,5-dihydro-1,2,4-triazine ring is essentially planar [maximum deviation = 0.020 (1) Å] and is inclined at dihedral angles of 89.06 (9), 82.21 (8) and 83.98 (8)° with respect to the oxadiazol-3-ium, phenyl and benzene rings. The oxadiazol-3-ium ring forms dihedral angles of 52.71 (9) and 8.77 (9)°, respectively, with the phenyl and benzene rings. In the crystal, the mol­ecules are linked via pairs of inter­molecular N—H⋯O hydrogen bonds, generating R22(10) ring motifs and are further linked via inter­molecular N—H⋯N and weak C—H⋯O hydrogen bonds into infinite columns along [100].

Related literature

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008)[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem, 43, 1715-1720.]; Jyothi et al. (2008[Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrN6O4S

  • Mr = 515.35

  • Triclinic, [P \overline 1]

  • a = 6.3842 (3) Å

  • b = 10.0832 (5) Å

  • c = 17.1563 (8) Å

  • α = 104.873 (1)°

  • β = 93.507 (1)°

  • γ = 98.189 (1)°

  • V = 1050.99 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.10 mm−1

  • T = 100 K

  • 0.32 × 0.26 × 0.06 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.553, Tmax = 0.892

  • 21938 measured reflections

  • 6161 independent reflections

  • 5241 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.03

  • 6161 reflections

  • 297 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1N6⋯N3i 0.81 (3) 2.47 (3) 2.9835 (19) 123 (2)
N6—H1N6⋯N4i 0.81 (3) 2.40 (3) 3.050 (2) 138 (3)
N6—H2N6⋯O4ii 0.86 (3) 2.15 (3) 2.989 (2) 164 (2)
C14—H14B⋯O3iii 0.97 2.50 3.416 (2) 157
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z; (iii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are mesoionic heterocyclic aromatic chemical compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the mesoionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone affords 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(4-bromobenzyl)-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yields S-substituted triazinone derivatives (Jyothi et al., 2008).

The molecular structure is shown in Fig. 1. The 4,5-dihydro-1,2,4-triazine ring (N3-N5/C11-C13) is essentially planar [maximum deviation = 0.020 (1) Å at atom N5] and is inclined at angles of 89.06 (9), 82.21 (8) and 83.98 (8) ° with respect to the oxadiazol-3-ium (O1/N1/N2/C7/C8) phenyl (C1-C6) and benzene (C15-C20) rings. The dihedral angles between oxadiazol-3-ium ring (O1/N1/N2/C7/C8) and the phenyl and benzene rings (C1-C6 and C15-C20) are 52.71 (9) and 8.77 (9)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal (Fig. 2), the molecules are linked via pairs of intermolecular N6–H2N6···O4ii hydrogen bonds (Table 1), generating R22(10) ring motifs (Bernstein et al., 1995) and are further linked via intermolecular N6–H1N6···N3i, N6–H1N6···N4i and weak C14–H14B···O3iii hydrogen bonds (Table 1) into infinite one-dimensional columns along [100].

Related literature top

For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 4-amino-6-(4-bromobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement top

H1N6 and H2N6 were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.88 Å from Br1 and the deepest hole is located at 0.72 Å from Br1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
4-({[4-Amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl] sulfanyl}acetyl)-3-phenylsydnone top
Crystal data top
C20H15BrN6O4SZ = 2
Mr = 515.35F(000) = 520
Triclinic, P1Dx = 1.628 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3842 (3) ÅCell parameters from 8506 reflections
b = 10.0832 (5) Åθ = 2.5–30.1°
c = 17.1563 (8) ŵ = 2.10 mm1
α = 104.873 (1)°T = 100 K
β = 93.507 (1)°Plate, colourless
γ = 98.189 (1)°0.32 × 0.26 × 0.06 mm
V = 1050.99 (9) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6161 independent reflections
Radiation source: fine-focus sealed tube5241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.553, Tmax = 0.892k = 1414
21938 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.5765P]
where P = (Fo2 + 2Fc2)/3
6161 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C20H15BrN6O4Sγ = 98.189 (1)°
Mr = 515.35V = 1050.99 (9) Å3
Triclinic, P1Z = 2
a = 6.3842 (3) ÅMo Kα radiation
b = 10.0832 (5) ŵ = 2.10 mm1
c = 17.1563 (8) ÅT = 100 K
α = 104.873 (1)°0.32 × 0.26 × 0.06 mm
β = 93.507 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
6161 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5241 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.892Rint = 0.029
21938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.95 e Å3
6161 reflectionsΔρmin = 0.50 e Å3
297 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.14494 (4)0.177407 (19)0.446529 (11)0.02915 (7)
S10.25040 (6)0.42973 (4)0.10384 (3)0.01811 (9)
O10.50655 (19)0.68942 (12)0.23590 (8)0.0188 (2)
O20.2801 (2)0.71471 (13)0.14077 (8)0.0208 (3)
O30.0592 (2)0.36960 (13)0.21831 (8)0.0220 (3)
O40.3090 (2)0.01318 (13)0.08910 (8)0.0205 (3)
N10.3930 (2)0.52932 (14)0.27862 (9)0.0149 (3)
N20.5387 (2)0.60958 (15)0.28897 (9)0.0186 (3)
N30.0707 (2)0.26436 (15)0.00189 (9)0.0170 (3)
N40.1524 (2)0.14792 (15)0.06048 (9)0.0181 (3)
N50.2602 (2)0.18642 (14)0.00230 (9)0.0143 (3)
N60.4749 (2)0.22357 (17)0.03542 (11)0.0206 (3)
C10.2106 (3)0.44195 (17)0.37978 (11)0.0196 (3)
H1A0.08390.49670.37560.024*
C20.2207 (3)0.36200 (19)0.43441 (11)0.0238 (4)
H2A0.09940.36280.46750.029*
C30.4115 (3)0.28031 (19)0.44025 (12)0.0259 (4)
H3A0.41720.22800.47770.031*
C40.5930 (3)0.2768 (2)0.39032 (12)0.0248 (4)
H4A0.71960.22140.39400.030*
C50.5857 (3)0.35610 (18)0.33486 (11)0.0200 (3)
H5A0.70600.35410.30090.024*
C60.3950 (3)0.43812 (16)0.33132 (10)0.0159 (3)
C70.3307 (3)0.65627 (16)0.19113 (10)0.0158 (3)
C80.2595 (3)0.54977 (16)0.22188 (10)0.0147 (3)
C90.0958 (3)0.46663 (16)0.19248 (10)0.0155 (3)
C100.0227 (3)0.51392 (17)0.12772 (11)0.0171 (3)
H10A0.06940.61370.14610.021*
H10B0.07400.49480.07890.021*
C110.1283 (2)0.28045 (16)0.02926 (10)0.0140 (3)
C120.0334 (3)0.05691 (17)0.09056 (10)0.0155 (3)
C130.1916 (3)0.06871 (16)0.06161 (10)0.0150 (3)
C140.1255 (3)0.06046 (17)0.16342 (11)0.0186 (3)
H14A0.27890.08070.16400.022*
H14B0.06720.14370.16210.022*
C150.0681 (3)0.01499 (16)0.23796 (10)0.0169 (3)
C160.1898 (3)0.07165 (18)0.26599 (11)0.0204 (3)
H16A0.31230.09220.24210.024*
C170.1300 (3)0.12721 (18)0.32900 (11)0.0229 (4)
H17A0.21160.18410.34790.027*
C180.0541 (3)0.09602 (17)0.36308 (11)0.0204 (3)
C190.1758 (3)0.00851 (18)0.33787 (11)0.0208 (3)
H19A0.29720.01250.36250.025*
C200.1132 (3)0.04737 (17)0.27502 (11)0.0191 (3)
H20A0.19290.10670.25770.023*
H1N60.538 (4)0.226 (3)0.0038 (17)0.032 (7)*
H2N60.512 (4)0.153 (3)0.0487 (14)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04790 (14)0.02057 (9)0.01944 (10)0.00057 (8)0.00410 (8)0.00878 (7)
S10.01188 (18)0.01887 (18)0.0231 (2)0.00468 (14)0.00303 (15)0.00339 (15)
O10.0194 (6)0.0176 (5)0.0236 (6)0.0084 (4)0.0060 (5)0.0094 (5)
O20.0218 (6)0.0192 (6)0.0270 (7)0.0074 (5)0.0063 (5)0.0132 (5)
O30.0233 (6)0.0210 (6)0.0275 (7)0.0115 (5)0.0070 (5)0.0118 (5)
O40.0215 (6)0.0212 (6)0.0228 (6)0.0122 (5)0.0050 (5)0.0075 (5)
N10.0147 (6)0.0137 (6)0.0175 (7)0.0047 (5)0.0021 (5)0.0048 (5)
N20.0192 (7)0.0186 (6)0.0221 (7)0.0086 (5)0.0057 (6)0.0088 (5)
N30.0129 (6)0.0191 (6)0.0196 (7)0.0047 (5)0.0035 (5)0.0046 (5)
N40.0138 (6)0.0205 (6)0.0205 (7)0.0030 (5)0.0039 (5)0.0060 (5)
N50.0105 (6)0.0176 (6)0.0183 (7)0.0064 (5)0.0035 (5)0.0080 (5)
N60.0103 (6)0.0258 (7)0.0270 (8)0.0081 (5)0.0019 (6)0.0064 (6)
C10.0211 (8)0.0175 (7)0.0207 (8)0.0038 (6)0.0011 (6)0.0057 (6)
C20.0283 (9)0.0234 (8)0.0210 (8)0.0065 (7)0.0025 (7)0.0080 (7)
C30.0376 (11)0.0219 (8)0.0211 (9)0.0050 (7)0.0044 (8)0.0106 (7)
C40.0277 (9)0.0236 (8)0.0236 (9)0.0007 (7)0.0056 (7)0.0093 (7)
C50.0203 (8)0.0199 (7)0.0205 (8)0.0027 (6)0.0028 (6)0.0069 (6)
C60.0197 (8)0.0137 (6)0.0162 (7)0.0049 (6)0.0032 (6)0.0061 (6)
C70.0139 (7)0.0136 (6)0.0207 (8)0.0041 (5)0.0028 (6)0.0049 (6)
C80.0146 (7)0.0135 (6)0.0178 (7)0.0045 (5)0.0032 (6)0.0058 (6)
C90.0140 (7)0.0148 (7)0.0178 (8)0.0048 (5)0.0014 (6)0.0033 (6)
C100.0150 (7)0.0164 (7)0.0222 (8)0.0066 (6)0.0047 (6)0.0062 (6)
C110.0131 (7)0.0158 (7)0.0162 (7)0.0061 (5)0.0059 (5)0.0070 (6)
C120.0155 (7)0.0175 (7)0.0167 (7)0.0032 (6)0.0049 (6)0.0094 (6)
C130.0168 (7)0.0166 (7)0.0161 (7)0.0062 (6)0.0050 (6)0.0101 (6)
C140.0190 (8)0.0161 (7)0.0219 (8)0.0021 (6)0.0040 (6)0.0071 (6)
C150.0190 (8)0.0143 (7)0.0177 (8)0.0038 (6)0.0005 (6)0.0044 (6)
C160.0215 (8)0.0188 (7)0.0221 (8)0.0086 (6)0.0019 (6)0.0047 (6)
C170.0310 (9)0.0177 (7)0.0216 (8)0.0094 (7)0.0017 (7)0.0062 (6)
C180.0301 (9)0.0150 (7)0.0158 (8)0.0018 (6)0.0018 (7)0.0047 (6)
C190.0219 (8)0.0216 (8)0.0201 (8)0.0059 (6)0.0055 (7)0.0056 (6)
C200.0217 (8)0.0176 (7)0.0203 (8)0.0078 (6)0.0021 (6)0.0068 (6)
Geometric parameters (Å, º) top
Br1—C181.9049 (18)C3—H3A0.9300
S1—C111.7508 (17)C4—C51.390 (3)
S1—C101.8020 (16)C4—H4A0.9300
O1—N21.3680 (19)C5—C61.385 (2)
O1—C71.429 (2)C5—H5A0.9300
O2—C71.200 (2)C7—C81.428 (2)
O3—C91.218 (2)C8—C91.465 (2)
O4—C131.2187 (19)C9—C101.519 (2)
N1—N21.3088 (19)C10—H10A0.9700
N1—C81.368 (2)C10—H10B0.9700
N1—C61.445 (2)C12—C131.469 (2)
N3—C111.300 (2)C12—C141.504 (2)
N3—N41.381 (2)C14—C151.514 (2)
N4—C121.300 (2)C14—H14A0.9700
N5—C111.3680 (19)C14—H14B0.9700
N5—C131.389 (2)C15—C201.393 (2)
N5—N61.4112 (19)C15—C161.401 (2)
N6—H1N60.81 (3)C16—C171.389 (3)
N6—H2N60.86 (3)C16—H16A0.9300
C1—C21.383 (3)C17—C181.384 (3)
C1—C61.389 (2)C17—H17A0.9300
C1—H1A0.9300C18—C191.386 (2)
C2—C31.394 (3)C19—C201.393 (3)
C2—H2A0.9300C19—H19A0.9300
C3—C41.389 (3)C20—H20A0.9300
C11—S1—C1099.93 (8)C8—C9—C10113.52 (13)
N2—O1—C7110.81 (12)C9—C10—S1112.99 (11)
N2—N1—C8114.46 (14)C9—C10—H10A109.0
N2—N1—C6114.57 (14)S1—C10—H10A109.0
C8—N1—C6130.92 (14)C9—C10—H10B109.0
N1—N2—O1105.56 (13)S1—C10—H10B109.0
C11—N3—N4118.15 (13)H10A—C10—H10B107.8
C12—N4—N3120.73 (14)N3—C11—N5124.05 (15)
C11—N5—C13121.19 (13)N3—C11—S1121.47 (12)
C11—N5—N6116.73 (13)N5—C11—S1114.47 (12)
C13—N5—N6121.61 (13)N4—C12—C13123.59 (15)
N5—N6—H1N6103.2 (19)N4—C12—C14118.19 (15)
N5—N6—H2N6107.7 (15)C13—C12—C14118.02 (14)
H1N6—N6—H2N6103 (2)O4—C13—N5122.36 (15)
C2—C1—C6118.14 (17)O4—C13—C12125.46 (16)
C2—C1—H1A120.9N5—C13—C12112.17 (13)
C6—C1—H1A120.9C12—C14—C15107.41 (13)
C1—C2—C3120.50 (17)C12—C14—H14A110.2
C1—C2—H2A119.8C15—C14—H14A110.2
C3—C2—H2A119.8C12—C14—H14B110.2
C4—C3—C2120.25 (18)C15—C14—H14B110.2
C4—C3—H3A119.9H14A—C14—H14B108.5
C2—C3—H3A119.9C20—C15—C16119.23 (16)
C3—C4—C5120.06 (18)C20—C15—C14121.51 (15)
C3—C4—H4A120.0C16—C15—C14119.03 (15)
C5—C4—H4A120.0C17—C16—C15120.87 (17)
C6—C5—C4118.46 (17)C17—C16—H16A119.6
C6—C5—H5A120.8C15—C16—H16A119.6
C4—C5—H5A120.8C18—C17—C16118.47 (16)
C5—C6—C1122.58 (16)C18—C17—H17A120.8
C5—C6—N1118.14 (15)C16—C17—H17A120.8
C1—C6—N1119.16 (15)C17—C18—C19122.11 (17)
O2—C7—C8136.11 (16)C17—C18—Br1119.06 (14)
O2—C7—O1120.39 (14)C19—C18—Br1118.83 (14)
C8—C7—O1103.49 (14)C18—C19—C20118.84 (16)
N1—C8—C7105.67 (13)C18—C19—H19A120.6
N1—C8—C9126.27 (14)C20—C19—H19A120.6
C7—C8—C9127.67 (15)C19—C20—C15120.45 (16)
O3—C9—C8122.63 (16)C19—C20—H20A119.8
O3—C9—C10123.85 (15)C15—C20—H20A119.8
C8—N1—N2—O10.65 (18)N4—N3—C11—N52.7 (2)
C6—N1—N2—O1178.30 (13)N4—N3—C11—S1176.05 (12)
C7—O1—N2—N10.32 (17)C13—N5—C11—N34.4 (2)
C11—N3—N4—C120.3 (2)N6—N5—C11—N3176.67 (16)
C6—C1—C2—C30.1 (3)C13—N5—C11—S1174.36 (12)
C1—C2—C3—C40.9 (3)N6—N5—C11—S12.14 (19)
C2—C3—C4—C50.7 (3)C10—S1—C11—N36.15 (16)
C3—C4—C5—C60.4 (3)C10—S1—C11—N5175.02 (12)
C4—C5—C6—C11.3 (3)N3—N4—C12—C130.4 (2)
C4—C5—C6—N1174.73 (16)N3—N4—C12—C14174.35 (15)
C2—C1—C6—C51.1 (3)C11—N5—C13—O4176.57 (15)
C2—C1—C6—N1174.91 (15)N6—N5—C13—O44.7 (2)
N2—N1—C6—C551.6 (2)C11—N5—C13—C123.4 (2)
C8—N1—C6—C5131.18 (18)N6—N5—C13—C12175.22 (15)
N2—N1—C6—C1124.54 (17)N4—C12—C13—O4178.76 (17)
C8—N1—C6—C152.6 (2)C14—C12—C13—O44.1 (2)
N2—O1—C7—O2179.06 (15)N4—C12—C13—N51.2 (2)
N2—O1—C7—C80.09 (17)C14—C12—C13—N5175.89 (14)
N2—N1—C8—C70.71 (19)N4—C12—C14—C1592.39 (18)
C6—N1—C8—C7177.89 (16)C13—C12—C14—C1582.61 (17)
N2—N1—C8—C9173.89 (15)C12—C14—C15—C2093.65 (18)
C6—N1—C8—C98.9 (3)C12—C14—C15—C1680.78 (19)
O2—C7—C8—N1178.5 (2)C20—C15—C16—C171.1 (3)
O1—C7—C8—N10.44 (17)C14—C15—C16—C17173.41 (16)
O2—C7—C8—C95.4 (3)C15—C16—C17—C180.6 (3)
O1—C7—C8—C9173.50 (15)C16—C17—C18—C191.9 (3)
N1—C8—C9—O31.7 (3)C16—C17—C18—Br1177.44 (13)
C7—C8—C9—O3173.40 (16)C17—C18—C19—C201.4 (3)
N1—C8—C9—C10178.64 (15)Br1—C18—C19—C20177.91 (13)
C7—C8—C9—C106.9 (2)C18—C19—C20—C150.4 (3)
O3—C9—C10—S19.0 (2)C16—C15—C20—C191.6 (3)
C8—C9—C10—S1170.66 (11)C14—C15—C20—C19172.79 (16)
C11—S1—C10—C987.24 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···N3i0.81 (3)2.47 (3)2.9835 (19)123 (2)
N6—H1N6···N4i0.81 (3)2.40 (3)3.050 (2)138 (3)
N6—H2N6···O4ii0.86 (3)2.15 (3)2.989 (2)164 (2)
C14—H14B···O3iii0.972.503.416 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC20H15BrN6O4S
Mr515.35
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.3842 (3), 10.0832 (5), 17.1563 (8)
α, β, γ (°)104.873 (1), 93.507 (1), 98.189 (1)
V3)1050.99 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.10
Crystal size (mm)0.32 × 0.26 × 0.06
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.553, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
21938, 6161, 5241
Rint0.029
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.03
No. of reflections6161
No. of parameters297
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.95, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1N6···N3i0.81 (3)2.47 (3)2.9835 (19)123 (2)
N6—H1N6···N4i0.81 (3)2.40 (3)3.050 (2)138 (3)
N6—H2N6···O4ii0.86 (3)2.15 (3)2.989 (2)164 (2)
C14—H14B···O3iii0.972.503.416 (2)157
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834.  Web of Science PubMed Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem, 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds