organic compounds
4-({[4-Amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenylsydnone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C20H15BrN6O4S [symstematic name: 4-({[4-amino-6-(p-bromobenzyl)-5-oxo-4,5-dihydro-1,2,4-triazin-3-yl]sulfanyl}acetyl)-3-phenyl-1,2,3-oxadiazol-3-ium-5-olate], the 4,5-dihydro-1,2,4-triazine ring is essentially planar [maximum deviation = 0.020 (1) Å] and is inclined at dihedral angles of 89.06 (9), 82.21 (8) and 83.98 (8)° with respect to the oxadiazol-3-ium, phenyl and benzene rings. The oxadiazol-3-ium ring forms dihedral angles of 52.71 (9) and 8.77 (9)°, respectively, with the phenyl and benzene rings. In the crystal, the molecules are linked via pairs of intermolecular N—H⋯O hydrogen bonds, generating R22(10) ring motifs and are further linked via intermolecular N—H⋯N and weak C—H⋯O hydrogen bonds into infinite columns along [100].
Related literature
For general background to and the biological activity of sydnone derivatives, see: Rai et al. (2008); Jyothi et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811010798/lh5224sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010798/lh5224Isup2.hkl
To a solution of 4-bromoacetyl-3-phenylsydnone (0.01 mol) and 4-amino-6-(4-bromobenzyl)-3-sulfanyl-1,2,4-triazin-5(4H)-one (0.01 mol) in ethanol, catalytic amount of anhydrous sodium acetate was added. The solution was stirred at room temperature for 2 to 3 h. The solid product that separated out was filtered and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.
H1N6 and H2N6 were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C). The highest residual electron density peak is located at 0.88 Å from Br1 and the deepest hole is located at 0.72 Å from Br1.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C20H15BrN6O4S | Z = 2 |
Mr = 515.35 | F(000) = 520 |
Triclinic, P1 | Dx = 1.628 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3842 (3) Å | Cell parameters from 8506 reflections |
b = 10.0832 (5) Å | θ = 2.5–30.1° |
c = 17.1563 (8) Å | µ = 2.10 mm−1 |
α = 104.873 (1)° | T = 100 K |
β = 93.507 (1)° | Plate, colourless |
γ = 98.189 (1)° | 0.32 × 0.26 × 0.06 mm |
V = 1050.99 (9) Å3 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 6161 independent reflections |
Radiation source: fine-focus sealed tube | 5241 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ϕ and ω scans | θmax = 30.2°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→8 |
Tmin = 0.553, Tmax = 0.892 | k = −14→14 |
21938 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0469P)2 + 0.5765P] where P = (Fo2 + 2Fc2)/3 |
6161 reflections | (Δ/σ)max = 0.001 |
297 parameters | Δρmax = 0.95 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
C20H15BrN6O4S | γ = 98.189 (1)° |
Mr = 515.35 | V = 1050.99 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.3842 (3) Å | Mo Kα radiation |
b = 10.0832 (5) Å | µ = 2.10 mm−1 |
c = 17.1563 (8) Å | T = 100 K |
α = 104.873 (1)° | 0.32 × 0.26 × 0.06 mm |
β = 93.507 (1)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 6161 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 5241 reflections with I > 2σ(I) |
Tmin = 0.553, Tmax = 0.892 | Rint = 0.029 |
21938 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.089 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.95 e Å−3 |
6161 reflections | Δρmin = −0.50 e Å−3 |
297 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.14494 (4) | 0.177407 (19) | −0.446529 (11) | 0.02915 (7) | |
S1 | 0.25040 (6) | 0.42973 (4) | 0.10384 (3) | 0.01811 (9) | |
O1 | −0.50655 (19) | 0.68942 (12) | 0.23590 (8) | 0.0188 (2) | |
O2 | −0.2801 (2) | 0.71471 (13) | 0.14077 (8) | 0.0208 (3) | |
O3 | −0.0592 (2) | 0.36960 (13) | 0.21831 (8) | 0.0220 (3) | |
O4 | 0.3090 (2) | −0.01318 (13) | −0.08910 (8) | 0.0205 (3) | |
N1 | −0.3930 (2) | 0.52932 (14) | 0.27862 (9) | 0.0149 (3) | |
N2 | −0.5387 (2) | 0.60958 (15) | 0.28897 (9) | 0.0186 (3) | |
N3 | −0.0707 (2) | 0.26436 (15) | 0.00189 (9) | 0.0170 (3) | |
N4 | −0.1524 (2) | 0.14792 (15) | −0.06048 (9) | 0.0181 (3) | |
N5 | 0.2602 (2) | 0.18642 (14) | 0.00230 (9) | 0.0143 (3) | |
N6 | 0.4749 (2) | 0.22357 (17) | 0.03542 (11) | 0.0206 (3) | |
C1 | −0.2106 (3) | 0.44195 (17) | 0.37978 (11) | 0.0196 (3) | |
H1A | −0.0839 | 0.4967 | 0.3756 | 0.024* | |
C2 | −0.2207 (3) | 0.36200 (19) | 0.43441 (11) | 0.0238 (4) | |
H2A | −0.0994 | 0.3628 | 0.4675 | 0.029* | |
C3 | −0.4115 (3) | 0.28031 (19) | 0.44025 (12) | 0.0259 (4) | |
H3A | −0.4172 | 0.2280 | 0.4777 | 0.031* | |
C4 | −0.5930 (3) | 0.2768 (2) | 0.39032 (12) | 0.0248 (4) | |
H4A | −0.7196 | 0.2214 | 0.3940 | 0.030* | |
C5 | −0.5857 (3) | 0.35610 (18) | 0.33486 (11) | 0.0200 (3) | |
H5A | −0.7060 | 0.3541 | 0.3009 | 0.024* | |
C6 | −0.3950 (3) | 0.43812 (16) | 0.33132 (10) | 0.0159 (3) | |
C7 | −0.3307 (3) | 0.65627 (16) | 0.19113 (10) | 0.0158 (3) | |
C8 | −0.2595 (3) | 0.54977 (16) | 0.22188 (10) | 0.0147 (3) | |
C9 | −0.0958 (3) | 0.46663 (16) | 0.19248 (10) | 0.0155 (3) | |
C10 | 0.0227 (3) | 0.51392 (17) | 0.12772 (11) | 0.0171 (3) | |
H10A | 0.0694 | 0.6137 | 0.1461 | 0.021* | |
H10B | −0.0740 | 0.4948 | 0.0789 | 0.021* | |
C11 | 0.1283 (2) | 0.28045 (16) | 0.02926 (10) | 0.0140 (3) | |
C12 | −0.0334 (3) | 0.05691 (17) | −0.09056 (10) | 0.0155 (3) | |
C13 | 0.1916 (3) | 0.06871 (16) | −0.06161 (10) | 0.0150 (3) | |
C14 | −0.1255 (3) | −0.06046 (17) | −0.16342 (11) | 0.0186 (3) | |
H14A | −0.2789 | −0.0807 | −0.1640 | 0.022* | |
H14B | −0.0672 | −0.1437 | −0.1621 | 0.022* | |
C15 | −0.0681 (3) | −0.01499 (16) | −0.23796 (10) | 0.0169 (3) | |
C16 | −0.1898 (3) | 0.07165 (18) | −0.26599 (11) | 0.0204 (3) | |
H16A | −0.3123 | 0.0922 | −0.2421 | 0.024* | |
C17 | −0.1300 (3) | 0.12721 (18) | −0.32900 (11) | 0.0229 (4) | |
H17A | −0.2116 | 0.1841 | −0.3479 | 0.027* | |
C18 | 0.0541 (3) | 0.09602 (17) | −0.36308 (11) | 0.0204 (3) | |
C19 | 0.1758 (3) | 0.00851 (18) | −0.33787 (11) | 0.0208 (3) | |
H19A | 0.2972 | −0.0125 | −0.3625 | 0.025* | |
C20 | 0.1132 (3) | −0.04737 (17) | −0.27502 (11) | 0.0191 (3) | |
H20A | 0.1929 | −0.1067 | −0.2577 | 0.023* | |
H1N6 | 0.538 (4) | 0.226 (3) | −0.0038 (17) | 0.032 (7)* | |
H2N6 | 0.512 (4) | 0.153 (3) | 0.0487 (14) | 0.021 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04790 (14) | 0.02057 (9) | 0.01944 (10) | 0.00057 (8) | 0.00410 (8) | 0.00878 (7) |
S1 | 0.01188 (18) | 0.01887 (18) | 0.0231 (2) | 0.00468 (14) | 0.00303 (15) | 0.00339 (15) |
O1 | 0.0194 (6) | 0.0176 (5) | 0.0236 (6) | 0.0084 (4) | 0.0060 (5) | 0.0094 (5) |
O2 | 0.0218 (6) | 0.0192 (6) | 0.0270 (7) | 0.0074 (5) | 0.0063 (5) | 0.0132 (5) |
O3 | 0.0233 (6) | 0.0210 (6) | 0.0275 (7) | 0.0115 (5) | 0.0070 (5) | 0.0118 (5) |
O4 | 0.0215 (6) | 0.0212 (6) | 0.0228 (6) | 0.0122 (5) | 0.0050 (5) | 0.0075 (5) |
N1 | 0.0147 (6) | 0.0137 (6) | 0.0175 (7) | 0.0047 (5) | 0.0021 (5) | 0.0048 (5) |
N2 | 0.0192 (7) | 0.0186 (6) | 0.0221 (7) | 0.0086 (5) | 0.0057 (6) | 0.0088 (5) |
N3 | 0.0129 (6) | 0.0191 (6) | 0.0196 (7) | 0.0047 (5) | 0.0035 (5) | 0.0046 (5) |
N4 | 0.0138 (6) | 0.0205 (6) | 0.0205 (7) | 0.0030 (5) | 0.0039 (5) | 0.0060 (5) |
N5 | 0.0105 (6) | 0.0176 (6) | 0.0183 (7) | 0.0064 (5) | 0.0035 (5) | 0.0080 (5) |
N6 | 0.0103 (6) | 0.0258 (7) | 0.0270 (8) | 0.0081 (5) | 0.0019 (6) | 0.0064 (6) |
C1 | 0.0211 (8) | 0.0175 (7) | 0.0207 (8) | 0.0038 (6) | 0.0011 (6) | 0.0057 (6) |
C2 | 0.0283 (9) | 0.0234 (8) | 0.0210 (8) | 0.0065 (7) | −0.0025 (7) | 0.0080 (7) |
C3 | 0.0376 (11) | 0.0219 (8) | 0.0211 (9) | 0.0050 (7) | 0.0044 (8) | 0.0106 (7) |
C4 | 0.0277 (9) | 0.0236 (8) | 0.0236 (9) | −0.0007 (7) | 0.0056 (7) | 0.0093 (7) |
C5 | 0.0203 (8) | 0.0199 (7) | 0.0205 (8) | 0.0027 (6) | 0.0028 (6) | 0.0069 (6) |
C6 | 0.0197 (8) | 0.0137 (6) | 0.0162 (7) | 0.0049 (6) | 0.0032 (6) | 0.0061 (6) |
C7 | 0.0139 (7) | 0.0136 (6) | 0.0207 (8) | 0.0041 (5) | 0.0028 (6) | 0.0049 (6) |
C8 | 0.0146 (7) | 0.0135 (6) | 0.0178 (7) | 0.0045 (5) | 0.0032 (6) | 0.0058 (6) |
C9 | 0.0140 (7) | 0.0148 (7) | 0.0178 (8) | 0.0048 (5) | 0.0014 (6) | 0.0033 (6) |
C10 | 0.0150 (7) | 0.0164 (7) | 0.0222 (8) | 0.0066 (6) | 0.0047 (6) | 0.0062 (6) |
C11 | 0.0131 (7) | 0.0158 (7) | 0.0162 (7) | 0.0061 (5) | 0.0059 (5) | 0.0070 (6) |
C12 | 0.0155 (7) | 0.0175 (7) | 0.0167 (7) | 0.0032 (6) | 0.0049 (6) | 0.0094 (6) |
C13 | 0.0168 (7) | 0.0166 (7) | 0.0161 (7) | 0.0062 (6) | 0.0050 (6) | 0.0101 (6) |
C14 | 0.0190 (8) | 0.0161 (7) | 0.0219 (8) | 0.0021 (6) | 0.0040 (6) | 0.0071 (6) |
C15 | 0.0190 (8) | 0.0143 (7) | 0.0177 (8) | 0.0038 (6) | 0.0005 (6) | 0.0044 (6) |
C16 | 0.0215 (8) | 0.0188 (7) | 0.0221 (8) | 0.0086 (6) | 0.0019 (6) | 0.0047 (6) |
C17 | 0.0310 (9) | 0.0177 (7) | 0.0216 (8) | 0.0094 (7) | −0.0017 (7) | 0.0062 (6) |
C18 | 0.0301 (9) | 0.0150 (7) | 0.0158 (8) | 0.0018 (6) | 0.0018 (7) | 0.0047 (6) |
C19 | 0.0219 (8) | 0.0216 (8) | 0.0201 (8) | 0.0059 (6) | 0.0055 (7) | 0.0056 (6) |
C20 | 0.0217 (8) | 0.0176 (7) | 0.0203 (8) | 0.0078 (6) | 0.0021 (6) | 0.0068 (6) |
Br1—C18 | 1.9049 (18) | C3—H3A | 0.9300 |
S1—C11 | 1.7508 (17) | C4—C5 | 1.390 (3) |
S1—C10 | 1.8020 (16) | C4—H4A | 0.9300 |
O1—N2 | 1.3680 (19) | C5—C6 | 1.385 (2) |
O1—C7 | 1.429 (2) | C5—H5A | 0.9300 |
O2—C7 | 1.200 (2) | C7—C8 | 1.428 (2) |
O3—C9 | 1.218 (2) | C8—C9 | 1.465 (2) |
O4—C13 | 1.2187 (19) | C9—C10 | 1.519 (2) |
N1—N2 | 1.3088 (19) | C10—H10A | 0.9700 |
N1—C8 | 1.368 (2) | C10—H10B | 0.9700 |
N1—C6 | 1.445 (2) | C12—C13 | 1.469 (2) |
N3—C11 | 1.300 (2) | C12—C14 | 1.504 (2) |
N3—N4 | 1.381 (2) | C14—C15 | 1.514 (2) |
N4—C12 | 1.300 (2) | C14—H14A | 0.9700 |
N5—C11 | 1.3680 (19) | C14—H14B | 0.9700 |
N5—C13 | 1.389 (2) | C15—C20 | 1.393 (2) |
N5—N6 | 1.4112 (19) | C15—C16 | 1.401 (2) |
N6—H1N6 | 0.81 (3) | C16—C17 | 1.389 (3) |
N6—H2N6 | 0.86 (3) | C16—H16A | 0.9300 |
C1—C2 | 1.383 (3) | C17—C18 | 1.384 (3) |
C1—C6 | 1.389 (2) | C17—H17A | 0.9300 |
C1—H1A | 0.9300 | C18—C19 | 1.386 (2) |
C2—C3 | 1.394 (3) | C19—C20 | 1.393 (3) |
C2—H2A | 0.9300 | C19—H19A | 0.9300 |
C3—C4 | 1.389 (3) | C20—H20A | 0.9300 |
C11—S1—C10 | 99.93 (8) | C8—C9—C10 | 113.52 (13) |
N2—O1—C7 | 110.81 (12) | C9—C10—S1 | 112.99 (11) |
N2—N1—C8 | 114.46 (14) | C9—C10—H10A | 109.0 |
N2—N1—C6 | 114.57 (14) | S1—C10—H10A | 109.0 |
C8—N1—C6 | 130.92 (14) | C9—C10—H10B | 109.0 |
N1—N2—O1 | 105.56 (13) | S1—C10—H10B | 109.0 |
C11—N3—N4 | 118.15 (13) | H10A—C10—H10B | 107.8 |
C12—N4—N3 | 120.73 (14) | N3—C11—N5 | 124.05 (15) |
C11—N5—C13 | 121.19 (13) | N3—C11—S1 | 121.47 (12) |
C11—N5—N6 | 116.73 (13) | N5—C11—S1 | 114.47 (12) |
C13—N5—N6 | 121.61 (13) | N4—C12—C13 | 123.59 (15) |
N5—N6—H1N6 | 103.2 (19) | N4—C12—C14 | 118.19 (15) |
N5—N6—H2N6 | 107.7 (15) | C13—C12—C14 | 118.02 (14) |
H1N6—N6—H2N6 | 103 (2) | O4—C13—N5 | 122.36 (15) |
C2—C1—C6 | 118.14 (17) | O4—C13—C12 | 125.46 (16) |
C2—C1—H1A | 120.9 | N5—C13—C12 | 112.17 (13) |
C6—C1—H1A | 120.9 | C12—C14—C15 | 107.41 (13) |
C1—C2—C3 | 120.50 (17) | C12—C14—H14A | 110.2 |
C1—C2—H2A | 119.8 | C15—C14—H14A | 110.2 |
C3—C2—H2A | 119.8 | C12—C14—H14B | 110.2 |
C4—C3—C2 | 120.25 (18) | C15—C14—H14B | 110.2 |
C4—C3—H3A | 119.9 | H14A—C14—H14B | 108.5 |
C2—C3—H3A | 119.9 | C20—C15—C16 | 119.23 (16) |
C3—C4—C5 | 120.06 (18) | C20—C15—C14 | 121.51 (15) |
C3—C4—H4A | 120.0 | C16—C15—C14 | 119.03 (15) |
C5—C4—H4A | 120.0 | C17—C16—C15 | 120.87 (17) |
C6—C5—C4 | 118.46 (17) | C17—C16—H16A | 119.6 |
C6—C5—H5A | 120.8 | C15—C16—H16A | 119.6 |
C4—C5—H5A | 120.8 | C18—C17—C16 | 118.47 (16) |
C5—C6—C1 | 122.58 (16) | C18—C17—H17A | 120.8 |
C5—C6—N1 | 118.14 (15) | C16—C17—H17A | 120.8 |
C1—C6—N1 | 119.16 (15) | C17—C18—C19 | 122.11 (17) |
O2—C7—C8 | 136.11 (16) | C17—C18—Br1 | 119.06 (14) |
O2—C7—O1 | 120.39 (14) | C19—C18—Br1 | 118.83 (14) |
C8—C7—O1 | 103.49 (14) | C18—C19—C20 | 118.84 (16) |
N1—C8—C7 | 105.67 (13) | C18—C19—H19A | 120.6 |
N1—C8—C9 | 126.27 (14) | C20—C19—H19A | 120.6 |
C7—C8—C9 | 127.67 (15) | C19—C20—C15 | 120.45 (16) |
O3—C9—C8 | 122.63 (16) | C19—C20—H20A | 119.8 |
O3—C9—C10 | 123.85 (15) | C15—C20—H20A | 119.8 |
C8—N1—N2—O1 | 0.65 (18) | N4—N3—C11—N5 | −2.7 (2) |
C6—N1—N2—O1 | 178.30 (13) | N4—N3—C11—S1 | 176.05 (12) |
C7—O1—N2—N1 | −0.32 (17) | C13—N5—C11—N3 | 4.4 (2) |
C11—N3—N4—C12 | 0.3 (2) | N6—N5—C11—N3 | 176.67 (16) |
C6—C1—C2—C3 | −0.1 (3) | C13—N5—C11—S1 | −174.36 (12) |
C1—C2—C3—C4 | 0.9 (3) | N6—N5—C11—S1 | −2.14 (19) |
C2—C3—C4—C5 | −0.7 (3) | C10—S1—C11—N3 | 6.15 (16) |
C3—C4—C5—C6 | −0.4 (3) | C10—S1—C11—N5 | −175.02 (12) |
C4—C5—C6—C1 | 1.3 (3) | N3—N4—C12—C13 | 0.4 (2) |
C4—C5—C6—N1 | −174.73 (16) | N3—N4—C12—C14 | −174.35 (15) |
C2—C1—C6—C5 | −1.1 (3) | C11—N5—C13—O4 | 176.57 (15) |
C2—C1—C6—N1 | 174.91 (15) | N6—N5—C13—O4 | 4.7 (2) |
N2—N1—C6—C5 | 51.6 (2) | C11—N5—C13—C12 | −3.4 (2) |
C8—N1—C6—C5 | −131.18 (18) | N6—N5—C13—C12 | −175.22 (15) |
N2—N1—C6—C1 | −124.54 (17) | N4—C12—C13—O4 | −178.76 (17) |
C8—N1—C6—C1 | 52.6 (2) | C14—C12—C13—O4 | −4.1 (2) |
N2—O1—C7—O2 | 179.06 (15) | N4—C12—C13—N5 | 1.2 (2) |
N2—O1—C7—C8 | −0.09 (17) | C14—C12—C13—N5 | 175.89 (14) |
N2—N1—C8—C7 | −0.71 (19) | N4—C12—C14—C15 | 92.39 (18) |
C6—N1—C8—C7 | −177.89 (16) | C13—C12—C14—C15 | −82.61 (17) |
N2—N1—C8—C9 | −173.89 (15) | C12—C14—C15—C20 | 93.65 (18) |
C6—N1—C8—C9 | 8.9 (3) | C12—C14—C15—C16 | −80.78 (19) |
O2—C7—C8—N1 | −178.5 (2) | C20—C15—C16—C17 | −1.1 (3) |
O1—C7—C8—N1 | 0.44 (17) | C14—C15—C16—C17 | 173.41 (16) |
O2—C7—C8—C9 | −5.4 (3) | C15—C16—C17—C18 | −0.6 (3) |
O1—C7—C8—C9 | 173.50 (15) | C16—C17—C18—C19 | 1.9 (3) |
N1—C8—C9—O3 | −1.7 (3) | C16—C17—C18—Br1 | −177.44 (13) |
C7—C8—C9—O3 | −173.40 (16) | C17—C18—C19—C20 | −1.4 (3) |
N1—C8—C9—C10 | 178.64 (15) | Br1—C18—C19—C20 | 177.91 (13) |
C7—C8—C9—C10 | 6.9 (2) | C18—C19—C20—C15 | −0.4 (3) |
O3—C9—C10—S1 | −9.0 (2) | C16—C15—C20—C19 | 1.6 (3) |
C8—C9—C10—S1 | 170.66 (11) | C14—C15—C20—C19 | −172.79 (16) |
C11—S1—C10—C9 | 87.24 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H1N6···N3i | 0.81 (3) | 2.47 (3) | 2.9835 (19) | 123 (2) |
N6—H1N6···N4i | 0.81 (3) | 2.40 (3) | 3.050 (2) | 138 (3) |
N6—H2N6···O4ii | 0.86 (3) | 2.15 (3) | 2.989 (2) | 164 (2) |
C14—H14B···O3iii | 0.97 | 2.50 | 3.416 (2) | 157 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H15BrN6O4S |
Mr | 515.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 6.3842 (3), 10.0832 (5), 17.1563 (8) |
α, β, γ (°) | 104.873 (1), 93.507 (1), 98.189 (1) |
V (Å3) | 1050.99 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.10 |
Crystal size (mm) | 0.32 × 0.26 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.553, 0.892 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21938, 6161, 5241 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.709 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.089, 1.03 |
No. of reflections | 6161 |
No. of parameters | 297 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.95, −0.50 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H1N6···N3i | 0.81 (3) | 2.47 (3) | 2.9835 (19) | 123 (2) |
N6—H1N6···N4i | 0.81 (3) | 2.40 (3) | 3.050 (2) | 138 (3) |
N6—H2N6···O4ii | 0.86 (3) | 2.15 (3) | 2.989 (2) | 164 (2) |
C14—H14B···O3iii | 0.97 | 2.50 | 3.416 (2) | 157 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z; (iii) −x, −y, −z. |
Acknowledgements
HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831–2834. Web of Science PubMed Google Scholar
Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem, 43, 1715–1720. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sydnones are mesoionic heterocyclic aromatic chemical compounds. The study of sydnones remains as a field of interest because of their electronic structures and varied types of biological activities (Rai et al., 2008). Recently sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi et al., 2008). Since their discovery, sydnones have shown diverse biological activities and it is thought that the mesoionic nature of the sydnone ring promotes significant interactions with biological systems. Photochemical bromination of 3-aryl-4-acetylsydnone affords 3-aryl-4 bromoacetylsydnones. Condensation of 4-amino-6-(4-bromobenzyl)-3- sulfanyl-1,2,4-triazin-5(4H)-one with 3-aryl-4-bromoacetylsydnones yields S-substituted triazinone derivatives (Jyothi et al., 2008).
The molecular structure is shown in Fig. 1. The 4,5-dihydro-1,2,4-triazine ring (N3-N5/C11-C13) is essentially planar [maximum deviation = 0.020 (1) Å at atom N5] and is inclined at angles of 89.06 (9), 82.21 (8) and 83.98 (8) ° with respect to the oxadiazol-3-ium (O1/N1/N2/C7/C8) phenyl (C1-C6) and benzene (C15-C20) rings. The dihedral angles between oxadiazol-3-ium ring (O1/N1/N2/C7/C8) and the phenyl and benzene rings (C1-C6 and C15-C20) are 52.71 (9) and 8.77 (9)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges.
In the crystal (Fig. 2), the molecules are linked via pairs of intermolecular N6–H2N6···O4ii hydrogen bonds (Table 1), generating R22(10) ring motifs (Bernstein et al., 1995) and are further linked via intermolecular N6–H1N6···N3i, N6–H1N6···N4i and weak C14–H14B···O3iii hydrogen bonds (Table 1) into infinite one-dimensional columns along [100].