organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o864-o865

2-(4-Methyl­phen­yl)-1H-imidazo[4,5-f][1,10]phenanthroline

aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular, Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: miaoli@sxu.edu.cn

(Received 5 March 2011; accepted 8 March 2011; online 12 March 2011)

In the title compound, C20H14N4, all the non-H atoms are roughly coplanar with an r.m.s. deviation of 0.0776 Å. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains along the ([\overline a + \overline b]). The chains are connected by inter­molecular C—H⋯N hydrogen bonds and ππ stacking inter­actions between inversion-related phenanthroline, imidazole and phenyl rings with centroid–centroid distances in the range 3.777 (1)–3.905 (1) Å.

Related literature

For the biological activity of complexes of metal ions with 1,10-phenanthroline and its derivatives, see: Gao et al. (2009[Gao, X., Lu, L., Zhu, M., Yuan, C., Ma, J. & Fu, X. (2009). Acta Chim. Sin. 67, 929-936.]); Lu et al. (2003[Lu, L., Zhu, M. & Yang, P. (2003). J. Inorg. Biochem. 95, 31-36.]); Yuan et al. (2009[Yuan, C., Lu, L., Gao, X., Wu, Y., Guo, M., Li, Y., Fu, X. & Zhu, M. (2009). J. Biol. Inorg. Chem. 14, 841-851.], 2010[Yuan, C., Lu, L., Wu, Y., Liu, Z., Guo, M., Xing, S., Fu, X. & Zhu, M. (2010). J. Inorg. Biochem. 104, 978-986.]); Chen et al. (2010[Chen, H., Gao, W., Zhu, M., Gao, H., Xue, J. & Li, Y. (2010). Chem. Commun. 46, 8389-8391.]). For aromatic ππ stacking inter­actions in related structures, see: Lu et al. (2004a[Lu, L.-P., Feng, S.-S., Zhang, H.-M. & Zhu, M.-L. (2004a). Acta Cryst. C60, m283-m284.],b[Lu, L., Qin, S., Yang, P. & Zhu, M. (2004b). Acta Cryst. E60, m574-m576.],c[Lu, L.-P., Qin, S.-D., Yang, P. & Zhu, M.-L. (2004c). Acta Cryst. E60, m950-m952.],d[Lu, L.-P., Zhu, M.-L. & Yang, P. (2004d). Acta Cryst. C60, m21-m23.]); Ma et al. (2010[Ma, Q., Zhu, M., Yuan, C., Feng, S., Lu, L. & Wang, Q. (2010). Cryst. Growth Des. 10, 1706-1714.]); Ye et al. (2005[Ye, B., Tong, M. & Chen, X. (2005). Coord. Chem. Rev. 249, 545-565.]); Zhang et al. (2005[Zhang, H.-M., Lu, L.-P., Feng, S.-S., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, m1027-m1029.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14N4

  • Mr = 310.35

  • Monoclinic, P 21 /n

  • a = 9.1609 (8) Å

  • b = 15.5398 (13) Å

  • c = 11.725 (1) Å

  • β = 108.892 (1)°

  • V = 1579.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.984

  • 10917 measured reflections

  • 2790 independent reflections

  • 2182 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.107

  • S = 1.05

  • 2790 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N1i 0.908 (19) 2.106 (19) 3.0131 (19) 176.0 (17)
C1—H1⋯N3ii 0.93 2.57 3.479 (2) 165
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have been interested in the bioactivity research of the complexes of metal ions with 1,10-phenanthroline and its derivatives, such as nuclease activity of mono (1,10-phenanthroline) copper complex (Lu et al., 2003), protein tyrosine phosphatases inhibition activities of oxovanadium complexes with polypyridyl derivatives (Yuan et al., 2009,2010; Gao et al., 2009), selective OFF-ON fluorescent sensor for zinc in aqueous solution and living cells (Chen et al., 2010). As we know, 1,10-phenanthroline and its derivatives, 2,2'-bipyridyl-like, are good planar ligands in metal-organic compounds, in which there are strong ππ stacking interactions (Ye et al., 2005; Lu et al., 2004a, 2004b, 2004c; 2004d; Zhang et al., 2005; Ma et al., 2010). We report here the structure of (I) (Fig. 1), which was synthesized from 1,10-Phenanthroline-5,6-dione and 4-methylbenzaldehyde. All non-hydrogen atoms of (I) are coplanar with a 0.0776 value of r.m.s. deviation of fitted atoms. The molecules are linked by N—H···N hydrogen bonds to form one-dimensional chains (Fig. 2), and the chains are connected by intermolecular C—H···N hydrogen bonds and ππ stacking interactions between inversion related phenanthroline and phenyl rings to complete the hydrogen bonding network in the crystal structure. The stacking distance ππ is in the range of 3.777 (1) to 3.905 (1) Å, namely Cg1···Cg3i 3.905 (1), Cg2···Cg3i 3.867 (1), Cg3···Cg3ii 3.777 (1) Å. Cg1, Cg2, and Cg3 for the centroids of rings N1/C1—C5, C4—C7/C11/C12, C14—C19, respectively, symmetry codes i 1 - x,-y,1 - z; ii 2 - x,-y,1 - z.

Related literature top

For the biological activity of complexes of metal ions with 1,10-phenanthroline and its derivatives, see: Gao et al. (2009); Lu et al. (2003); Yuan et al. (2009, 2010); Chen et al. (2010); For aromatic ππ stacking interactions in related structures, see: Lu et al. (2004a,b,c,d); Ma et al. (2010); Ye et al. (2005); Zhang et al. (2005).

Experimental top

1,10-Phenanthroline-5,6-dione (1.2 mmol), 4-methylbenzaldehyde (1.0 mmol), and ammonium acetate (4 mmol) were added in 20 ml of glacial acetic acid with a constant of stirring, and the mixture was refluxed for 2 h. When the reaction was cooled to room temperature, poured in 20 ml of water. The solution was neutralized with ammonia to pH 7. The precipitate was filtered off and recrystallized from methanol solution to give (I) for X-ray diffraction at room temperature.

Refinement top

H atoms attached to C atoms of (I) were placed in geometrically idealized positions and refined with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(C), with C—H = 0.93 (aromatic) and 0.96 (CH3)Å. H atom attached to N(imidazole) in (I) was located from difference Fourier map and refined with N—H = 0.908 (19) (imidazole) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The views of the structures of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. One-dimensional chain of (I) via N—H···N hydrogen bonds, dotted lines for hydrogen bonds.
2-(4-Methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline top
Crystal data top
C20H14N4F(000) = 648
Mr = 310.35Dx = 1.305 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4474 reflections
a = 9.1609 (8) Åθ = 2.5–27.4°
b = 15.5398 (13) ŵ = 0.08 mm1
c = 11.725 (1) ÅT = 298 K
β = 108.892 (1)°Block, yellow
V = 1579.2 (2) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2790 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1010
Tmin = 0.976, Tmax = 0.984k = 1818
10917 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.047P)2 + 0.4106P]
where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H14N4V = 1579.2 (2) Å3
Mr = 310.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1609 (8) ŵ = 0.08 mm1
b = 15.5398 (13) ÅT = 298 K
c = 11.725 (1) Å0.30 × 0.20 × 0.20 mm
β = 108.892 (1)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2790 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2182 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.984Rint = 0.021
10917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.19 e Å3
2790 reflectionsΔρmin = 0.16 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1494 (2)0.34388 (11)0.29392 (16)0.0569 (5)
H10.07960.38930.27750.068*
C20.2314 (2)0.32622 (12)0.41361 (15)0.0600 (5)
H20.21420.35820.47510.072*
C30.3377 (2)0.26132 (11)0.43997 (14)0.0497 (4)
H30.39580.24950.51950.060*
C40.35793 (17)0.21310 (9)0.34572 (13)0.0394 (4)
C50.26563 (18)0.23316 (10)0.22634 (13)0.0413 (4)
C60.27420 (18)0.18067 (10)0.12531 (13)0.0424 (4)
C70.37132 (17)0.10795 (10)0.14623 (13)0.0405 (4)
C80.3685 (2)0.05668 (11)0.04748 (14)0.0506 (4)
H80.42900.00730.05870.061*
C90.2767 (2)0.07936 (12)0.06532 (15)0.0607 (5)
H90.27400.04640.13210.073*
C100.1872 (2)0.15308 (12)0.07761 (15)0.0635 (5)
H100.12560.16860.15480.076*
C110.46288 (17)0.14274 (10)0.36043 (13)0.0386 (4)
C120.46786 (17)0.09098 (10)0.26710 (13)0.0390 (4)
C130.63601 (17)0.04011 (10)0.42481 (13)0.0415 (4)
C140.76079 (17)0.01205 (10)0.50460 (13)0.0433 (4)
C150.8293 (2)0.07558 (12)0.45554 (16)0.0549 (5)
H150.79350.08540.37280.066*
C160.9495 (2)0.12424 (13)0.52785 (17)0.0615 (5)
H160.99420.16580.49260.074*
C171.0053 (2)0.11301 (13)0.65087 (16)0.0567 (5)
C180.9361 (2)0.05052 (13)0.69982 (16)0.0600 (5)
H180.97090.04190.78280.072*
C190.8162 (2)0.00045 (12)0.62845 (15)0.0538 (4)
H190.77250.04140.66390.065*
C201.1369 (2)0.16699 (15)0.7291 (2)0.0798 (7)
H20A1.20400.13170.79140.120*
H20B1.19380.19070.68060.120*
H20C1.09660.21290.76490.120*
N10.16445 (16)0.29995 (9)0.20174 (12)0.0501 (4)
N20.18375 (17)0.20271 (9)0.01305 (12)0.0560 (4)
N30.57503 (14)0.02646 (8)0.30708 (11)0.0433 (3)
N40.57054 (15)0.10950 (8)0.46160 (11)0.0416 (3)
H40.603 (2)0.1350 (12)0.5353 (17)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0703 (12)0.0485 (10)0.0497 (10)0.0146 (9)0.0165 (9)0.0020 (8)
C20.0797 (13)0.0563 (11)0.0439 (10)0.0147 (10)0.0200 (9)0.0059 (8)
C30.0604 (10)0.0491 (10)0.0365 (8)0.0031 (8)0.0114 (7)0.0023 (7)
C40.0447 (8)0.0365 (8)0.0354 (8)0.0045 (7)0.0107 (6)0.0015 (6)
C50.0469 (9)0.0372 (8)0.0377 (8)0.0005 (7)0.0109 (7)0.0004 (7)
C60.0481 (9)0.0423 (9)0.0338 (8)0.0009 (7)0.0089 (7)0.0007 (7)
C70.0453 (9)0.0412 (9)0.0350 (8)0.0010 (7)0.0130 (7)0.0015 (6)
C80.0608 (10)0.0507 (10)0.0394 (9)0.0100 (8)0.0151 (8)0.0014 (7)
C90.0787 (13)0.0637 (12)0.0359 (9)0.0129 (10)0.0132 (8)0.0062 (8)
C100.0787 (13)0.0678 (12)0.0337 (9)0.0174 (10)0.0041 (8)0.0004 (8)
C110.0414 (8)0.0388 (8)0.0333 (8)0.0042 (7)0.0089 (6)0.0016 (6)
C120.0409 (8)0.0391 (8)0.0356 (8)0.0011 (7)0.0104 (6)0.0019 (6)
C130.0436 (8)0.0417 (9)0.0386 (8)0.0032 (7)0.0127 (7)0.0035 (7)
C140.0424 (8)0.0460 (9)0.0404 (8)0.0031 (7)0.0120 (7)0.0083 (7)
C150.0595 (11)0.0585 (11)0.0448 (9)0.0087 (9)0.0140 (8)0.0092 (8)
C160.0611 (11)0.0623 (12)0.0620 (12)0.0133 (9)0.0213 (9)0.0146 (9)
C170.0461 (9)0.0642 (12)0.0578 (11)0.0003 (9)0.0139 (8)0.0233 (9)
C180.0540 (10)0.0757 (13)0.0432 (10)0.0034 (9)0.0060 (8)0.0141 (9)
C190.0533 (10)0.0617 (11)0.0443 (9)0.0007 (8)0.0126 (8)0.0055 (8)
C200.0587 (12)0.0927 (16)0.0806 (15)0.0122 (11)0.0124 (11)0.0390 (13)
N10.0613 (9)0.0434 (8)0.0418 (8)0.0089 (7)0.0114 (6)0.0003 (6)
N20.0698 (10)0.0544 (9)0.0355 (7)0.0137 (7)0.0054 (7)0.0003 (6)
N30.0457 (7)0.0438 (8)0.0379 (7)0.0023 (6)0.0099 (6)0.0027 (6)
N40.0463 (7)0.0417 (8)0.0327 (7)0.0028 (6)0.0070 (6)0.0001 (6)
Geometric parameters (Å, º) top
C1—N11.323 (2)C11—C121.371 (2)
C1—C21.388 (2)C11—N41.3744 (19)
C1—H10.9300C12—N31.3751 (19)
C2—C31.366 (2)C13—N31.3278 (19)
C2—H20.9300C13—N41.370 (2)
C3—C41.396 (2)C13—C141.465 (2)
C3—H30.9300C14—C191.386 (2)
C4—C51.416 (2)C14—C151.390 (2)
C4—C111.429 (2)C15—C161.378 (2)
C5—N11.359 (2)C15—H150.9300
C5—C61.461 (2)C16—C171.376 (3)
C6—N21.3528 (19)C16—H160.9300
C6—C71.410 (2)C17—C181.382 (3)
C7—C81.399 (2)C17—C201.511 (2)
C7—C121.431 (2)C18—C191.384 (2)
C8—C91.364 (2)C18—H180.9300
C8—H80.9300C19—H190.9300
C9—C101.389 (3)C20—H20A0.9600
C9—H90.9300C20—H20B0.9600
C10—N21.322 (2)C20—H20C0.9600
C10—H100.9300N4—H40.908 (19)
N1—C1—C2123.95 (16)N3—C12—C7128.03 (13)
N1—C1—H1118.0N3—C13—N4111.93 (13)
C2—C1—H1118.0N3—C13—C14123.65 (14)
C3—C2—C1119.18 (16)N4—C13—C14124.41 (14)
C3—C2—H2120.4C19—C14—C15117.68 (15)
C1—C2—H2120.4C19—C14—C13122.85 (16)
C2—C3—C4118.99 (15)C15—C14—C13119.47 (14)
C2—C3—H3120.5C16—C15—C14120.86 (17)
C4—C3—H3120.5C16—C15—H15119.6
C3—C4—C5118.32 (14)C14—C15—H15119.6
C3—C4—C11124.86 (14)C17—C16—C15121.78 (19)
C5—C4—C11116.79 (13)C17—C16—H16119.1
N1—C5—C4121.73 (14)C15—C16—H16119.1
N1—C5—C6117.80 (13)C16—C17—C18117.37 (16)
C4—C5—C6120.46 (14)C16—C17—C20121.20 (19)
N2—C6—C7121.69 (14)C18—C17—C20121.43 (18)
N2—C6—C5118.08 (14)C17—C18—C19121.64 (17)
C7—C6—C5120.20 (13)C17—C18—H18119.2
C8—C7—C6118.11 (14)C19—C18—H18119.2
C8—C7—C12123.68 (14)C18—C19—C14120.66 (18)
C6—C7—C12118.22 (13)C18—C19—H19119.7
C9—C8—C7119.71 (16)C14—C19—H19119.7
C9—C8—H8120.1C17—C20—H20A109.5
C7—C8—H8120.1C17—C20—H20B109.5
C8—C9—C10118.15 (16)H20A—C20—H20B109.5
C8—C9—H9120.9C17—C20—H20C109.5
C10—C9—H9120.9H20A—C20—H20C109.5
N2—C10—C9124.39 (16)H20B—C20—H20C109.5
N2—C10—H10117.8C1—N1—C5117.73 (14)
C9—C10—H10117.8C10—N2—C6117.91 (15)
C12—C11—N4105.57 (13)C13—N3—C12104.57 (13)
C12—C11—C4123.21 (13)C13—N4—C11106.80 (13)
N4—C11—C4131.17 (14)C13—N4—H4127.0 (12)
C11—C12—N3111.12 (13)C11—N4—H4125.3 (12)
C11—C12—C7120.85 (14)
N1—C1—C2—C31.8 (3)C8—C7—C12—N32.6 (3)
C1—C2—C3—C41.7 (3)C6—C7—C12—N3177.08 (14)
C2—C3—C4—C50.6 (2)N3—C13—C14—C19175.68 (15)
C2—C3—C4—C11178.91 (16)N4—C13—C14—C195.7 (2)
C3—C4—C5—N13.1 (2)N3—C13—C14—C155.1 (2)
C11—C4—C5—N1178.52 (14)N4—C13—C14—C15173.46 (15)
C3—C4—C5—C6175.51 (14)C19—C14—C15—C160.9 (3)
C11—C4—C5—C62.9 (2)C13—C14—C15—C16178.34 (16)
N1—C5—C6—N21.5 (2)C14—C15—C16—C170.9 (3)
C4—C5—C6—N2179.89 (14)C15—C16—C17—C180.1 (3)
N1—C5—C6—C7176.74 (14)C15—C16—C17—C20179.85 (17)
C4—C5—C6—C71.9 (2)C16—C17—C18—C190.5 (3)
N2—C6—C7—C82.1 (2)C20—C17—C18—C19179.49 (17)
C5—C6—C7—C8176.11 (15)C17—C18—C19—C140.5 (3)
N2—C6—C7—C12177.60 (14)C15—C14—C19—C180.3 (3)
C5—C6—C7—C124.2 (2)C13—C14—C19—C18178.97 (15)
C6—C7—C8—C91.9 (3)C2—C1—N1—C50.6 (3)
C12—C7—C8—C9177.75 (16)C4—C5—N1—C13.0 (2)
C7—C8—C9—C100.6 (3)C6—C5—N1—C1175.60 (15)
C8—C9—C10—N20.6 (3)C9—C10—N2—C60.5 (3)
C3—C4—C11—C12172.70 (15)C7—C6—N2—C100.9 (3)
C5—C4—C11—C125.6 (2)C5—C6—N2—C10177.34 (17)
C3—C4—C11—N44.5 (3)N4—C13—N3—C121.02 (17)
C5—C4—C11—N4177.23 (15)C14—C13—N3—C12177.72 (14)
N4—C11—C12—N30.13 (17)C11—C12—N3—C130.70 (17)
C4—C11—C12—N3177.65 (13)C7—C12—N3—C13178.22 (15)
N4—C11—C12—C7178.88 (13)N3—C13—N4—C110.97 (17)
C4—C11—C12—C73.3 (2)C14—C13—N4—C11177.76 (14)
C8—C7—C12—C11178.62 (15)C12—C11—N4—C130.48 (16)
C6—C7—C12—C111.7 (2)C4—C11—N4—C13178.01 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.908 (19)2.106 (19)3.0131 (19)176.0 (17)
C1—H1···N3ii0.932.573.479 (2)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H14N4
Mr310.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.1609 (8), 15.5398 (13), 11.725 (1)
β (°) 108.892 (1)
V3)1579.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.976, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10917, 2790, 2182
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.107, 1.05
No. of reflections2790
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SHELXTL/PC (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N1i0.908 (19)2.106 (19)3.0131 (19)176.0 (17)
C1—H1···N3ii0.932.573.479 (2)165
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China (grant No. 20471033), the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20093602), the Provincial Natural Science Foundation of Shanxi Province (grant No. 2010011011–2) and the Overseas Returned Scholar Foundation of Shanxi Province (200808) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Gao, W., Zhu, M., Gao, H., Xue, J. & Li, Y. (2010). Chem. Commun. 46, 8389–8391.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGao, X., Lu, L., Zhu, M., Yuan, C., Ma, J. & Fu, X. (2009). Acta Chim. Sin. 67, 929–936.  CAS Google Scholar
First citationLu, L.-P., Feng, S.-S., Zhang, H.-M. & Zhu, M.-L. (2004a). Acta Cryst. C60, m283–m284.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLu, L., Qin, S., Yang, P. & Zhu, M. (2004b). Acta Cryst. E60, m574–m576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, L.-P., Qin, S.-D., Yang, P. & Zhu, M.-L. (2004c). Acta Cryst. E60, m950–m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, L., Zhu, M. & Yang, P. (2003). J. Inorg. Biochem. 95, 31–36.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, L.-P., Zhu, M.-L. & Yang, P. (2004d). Acta Cryst. C60, m21–m23.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMa, Q., Zhu, M., Yuan, C., Feng, S., Lu, L. & Wang, Q. (2010). Cryst. Growth Des. 10, 1706–1714.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, B., Tong, M. & Chen, X. (2005). Coord. Chem. Rev. 249, 545–565.  CrossRef CAS Google Scholar
First citationYuan, C., Lu, L., Gao, X., Wu, Y., Guo, M., Li, Y., Fu, X. & Zhu, M. (2009). J. Biol. Inorg. Chem. 14, 841–851.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, C., Lu, L., Wu, Y., Liu, Z., Guo, M., Xing, S., Fu, X. & Zhu, M. (2010). J. Inorg. Biochem. 104, 978–986.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, H.-M., Lu, L.-P., Feng, S.-S., Qin, S.-D. & Zhu, M.-L. (2005). Acta Cryst. E61, m1027–m1029.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o864-o865
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds