metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[2-(2-oxo-2,3-di­hydro-1,3-benzoxazol-3-yl)acetato]­zinc

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent 100125, Uzbekistan, bThe National University of Uzbekistan named after Mirzo Ulugbek, Faculty of Chemistry, University Str. 6, Tashkent 100779, Uzbekistan, and cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: gavhar1979.79@mail.ru

(Received 3 February 2011; accepted 3 March 2011; online 12 March 2011)

The ZnII ion in the title compound, [Zn(C9H6NO4)2(H2O)4], is located on an inversion center and is octa­hedrally coordinated by two 2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetate anions in axial sites and four water mol­ecules in equatorial positions. In the crystal, O—H⋯O hydrogen bonds between the coordinated water mol­ecules and carbon­yl–carboxyl­ate O atoms lead to pleated sheets parallel to (001).

Related literature

For the synthesis of 3-alkanoic acid derivatives of 2(3H)-benzoxazolone, see: Lespagnol et al. (1967[Lespagnol, A., Lespagnol, Ch., Lesieur, D., Marcincal-Lebebvre, A. & Dupont, C. (1967). Chim. Ther. 2, 343-346.]). For the biological activity of 2(3H)-benzoxazolone derivatives, see: Önkol et al. (2004[Önkol, T., Sahin, M. F., Yildirim, E., Erol, K. & Ito, S. (2004). Arch. Pharm. Res. 27, 1086-1092.]). For the structure of a 2(3H)-benzoxazolone metal complex, see: Wagler & Hill (2008[Wagler, J. & Hill, A. F. (2008). Organometallics, 27, 6579-6586.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H6NO4)2(H2O)4]

  • Mr = 521.73

  • Monoclinic, P 21 /n

  • a = 6.144 (3) Å

  • b = 5.342 (1) Å

  • c = 30.595 (2) Å

  • β = 94.80 (5)°

  • V = 1000.6 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.38 mm−1

  • T = 293 K

  • 0.50 × 0.35 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.726, Tmax = 1.000

  • 5344 measured reflections

  • 1745 independent reflections

  • 1168 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.150

  • S = 1.06

  • 1745 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2B⋯O4i 0.83 2.00 2.772 (5) 156
O1W—H1B⋯O3ii 0.84 1.92 2.699 (5) 153
O1W—H1A⋯O2iii 0.82 2.07 2.799 (5) 148
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) x+1, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Bruker, 1998[Bruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2-Benzoxazolinone derivatives have attracted interest because of their biological activities (Önkol et al., 2004).

The Zn (II) ion lies on an inversion center in an octahedral coordination environment with four O atoms from four coordinated water molecules in the equatorial positions and two O atoms from two ligands in the axial sites.(Fig.1). The coordinated water molecules form strong intermolecular hydrogen bonds with carbonyl and carboxyl O atoms of the ligand (Table 1). Centrosymmetric pairs of O2W–H2B···O4 hydrogen bonds propagating along [010] form pleated strands (Fig.2). Similar strands propagating along [100] (Fig.3) and [110] are formed by O1W–H1B···O3 and O1W–H1A···O2 hydrogen bonds, respectively. Together, these interactions generate sheets parallel to (001).

Related literature top

For the synthesis of 3-alkanoic acid derivatives of 2(3H)-benzoxazolone, see: Lespagnol et al. (1967). For the biological activity of 2(3H)-benzoxazolone derivatives, see: Önkol et al. (2004). For the structure of a 2(3H)-benzoxazolone metal complex, see: Wagler & Hill (2008).

Experimental top

A solution of 2-benzoxazolinon-3-yl-acetate acid (19,3 mg, 0.1 mmol) in ethanol (2 ml) was added to a solution of ZnCl2.6H2O (6.8 mg 0.05 mmol) in water (1 ml) and stirred for 10 min at 40 °C. Slow evaporation of the resulting solution gave colourles crystals suitable for X-ray analysis.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I) projected down the a axis showing the formation of hydrogen bonded pleated strands along [010].
[Figure 3] Fig. 3. Part of the crystal structure of (I) projected down the b axis showing the formation of hydrogen bonded pleated strands along [100].
Tetraaquabis[2-(2-oxo-2,3-dihydro-1,3-benzoxazol-3-yl)acetato]zinc top
Crystal data top
[Zn(C9H6NO4)2(H2O)4]F(000) = 536
Mr = 521.73Dx = 1.732 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 4608 reflections
a = 6.144 (3) Åθ = 7.6–66.2°
b = 5.342 (1) ŵ = 2.38 mm1
c = 30.595 (2) ÅT = 293 K
β = 94.80 (5)°Prism, colourless
V = 1000.6 (6) Å30.50 × 0.35 × 0.20 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1745 independent reflections
Radiation source: Enhance (Cu) X-ray Source1168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 10.2576 pixels mm-1θmax = 66.7°, θmin = 5.8°
ω scansh = 76
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 36
Tmin = 0.726, Tmax = 1.000l = 3536
5344 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.5645P]
where P = (Fo2 + 2Fc2)/3
1745 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn(C9H6NO4)2(H2O)4]V = 1000.6 (6) Å3
Mr = 521.73Z = 2
Monoclinic, P21/nCu Kα radiation
a = 6.144 (3) ŵ = 2.38 mm1
b = 5.342 (1) ÅT = 293 K
c = 30.595 (2) Å0.50 × 0.35 × 0.20 mm
β = 94.80 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
1745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1168 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 1.000Rint = 0.065
5344 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.06Δρmax = 0.80 e Å3
1745 reflectionsΔρmin = 0.34 e Å3
151 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their positions adjusted to provide reasonable geometries for the coordinated water molecules. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.00000.00000.0416 (3)
O10.2330 (6)0.1894 (7)0.17363 (12)0.0481 (9)
O20.1804 (6)0.4884 (7)0.12215 (13)0.0578 (10)
O30.5737 (6)0.0487 (6)0.05893 (11)0.0432 (9)
O40.7938 (6)0.2347 (6)0.03233 (11)0.0446 (9)
N10.4944 (7)0.2399 (8)0.12870 (14)0.0427 (10)
C10.2944 (9)0.3231 (10)0.13871 (17)0.0448 (13)
C20.5608 (8)0.0474 (9)0.15703 (16)0.0386 (12)
C30.7425 (9)0.1051 (10)0.16032 (18)0.0469 (14)
H3A0.85410.08660.14180.056*
C40.7500 (10)0.2885 (11)0.19291 (19)0.0563 (15)
H4A0.86940.39590.19620.068*
C50.5830 (10)0.3139 (11)0.22046 (19)0.0599 (16)
H5A0.59390.43640.24210.072*
C60.4014 (10)0.1616 (11)0.21642 (18)0.0547 (15)
H6A0.28850.17910.23460.066*
C70.3957 (8)0.0144 (10)0.18462 (16)0.0438 (12)
C80.6179 (9)0.3428 (10)0.09484 (17)0.0479 (14)
H8A0.75610.40460.10830.057*
H8B0.53850.48450.08160.057*
C90.6627 (8)0.1603 (10)0.05923 (16)0.0397 (12)
O1W1.1399 (6)0.1149 (7)0.06222 (12)0.0539 (10)
H1A1.12690.25880.07110.065*
H1B1.27220.08350.06990.065*
O2W1.2325 (5)0.2871 (6)0.00289 (11)0.0469 (9)
H2A1.35140.27510.00760.056*
H2B1.20140.43590.00140.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0426 (6)0.0316 (5)0.0524 (6)0.0037 (5)0.0147 (4)0.0050 (5)
O10.046 (2)0.045 (2)0.056 (2)0.0049 (18)0.0188 (17)0.0053 (18)
O20.059 (2)0.050 (2)0.067 (3)0.016 (2)0.0170 (19)0.014 (2)
O30.045 (2)0.036 (2)0.050 (2)0.0054 (16)0.0131 (16)0.0012 (16)
O40.052 (2)0.032 (2)0.053 (2)0.0059 (16)0.0225 (17)0.0060 (17)
N10.049 (3)0.038 (3)0.043 (2)0.000 (2)0.0105 (19)0.001 (2)
C10.043 (3)0.044 (3)0.048 (3)0.002 (3)0.009 (2)0.003 (3)
C20.045 (3)0.032 (3)0.039 (3)0.002 (2)0.006 (2)0.002 (2)
C30.042 (3)0.044 (3)0.055 (4)0.001 (2)0.003 (2)0.004 (3)
C40.058 (4)0.047 (4)0.062 (4)0.006 (3)0.010 (3)0.006 (3)
C50.080 (5)0.044 (4)0.054 (4)0.001 (3)0.006 (3)0.006 (3)
C60.065 (4)0.050 (4)0.050 (4)0.009 (3)0.009 (3)0.010 (3)
C70.051 (3)0.040 (3)0.041 (3)0.004 (3)0.009 (2)0.004 (3)
C80.050 (3)0.041 (3)0.054 (3)0.006 (3)0.016 (3)0.006 (3)
C90.040 (3)0.043 (3)0.037 (3)0.009 (2)0.006 (2)0.007 (2)
O1W0.041 (2)0.055 (2)0.066 (3)0.0016 (18)0.0051 (18)0.016 (2)
O2W0.048 (2)0.0305 (19)0.064 (2)0.0012 (16)0.0170 (17)0.0037 (17)
Geometric parameters (Å, º) top
Zn1—O4i2.089 (3)C3—C41.396 (8)
Zn1—O42.089 (3)C3—H3A0.9300
Zn1—O2W2.093 (3)C4—C51.388 (8)
Zn1—O2Wi2.093 (3)C4—H4A0.9300
Zn1—O1W2.113 (4)C5—C61.378 (8)
Zn1—O1Wi2.113 (4)C5—H5A0.9300
O1—C11.364 (6)C6—C71.351 (8)
O1—C71.389 (6)C6—H6A0.9300
O2—C11.212 (6)C8—C91.504 (7)
O3—C91.243 (6)C8—H8A0.9700
O4—C91.263 (6)C8—H8B0.9700
N1—C11.365 (6)O1W—H1A0.8218
N1—C21.384 (6)O1W—H1B0.8439
N1—C81.443 (6)O2W—H2A0.8249
C2—C31.379 (7)O2W—H2B0.8256
C2—C71.384 (7)
O4i—Zn1—O4180.00 (15)C4—C3—H3A121.8
O4i—Zn1—O2W91.20 (13)C5—C4—C3121.4 (6)
O4—Zn1—O2W88.81 (13)C5—C4—H4A119.3
O4i—Zn1—O2Wi88.80 (13)C3—C4—H4A119.3
O4—Zn1—O2Wi91.20 (13)C6—C5—C4121.5 (6)
O2W—Zn1—O2Wi180.0C6—C5—H5A119.3
O4i—Zn1—O1W92.02 (14)C4—C5—H5A119.3
O4—Zn1—O1W87.98 (14)C7—C6—C5116.6 (6)
O2W—Zn1—O1W87.14 (14)C7—C6—H6A121.7
O2Wi—Zn1—O1W92.86 (14)C5—C6—H6A121.7
O4i—Zn1—O1Wi87.98 (14)C6—C7—C2123.5 (5)
O4—Zn1—O1Wi92.02 (14)C6—C7—O1128.1 (5)
O2W—Zn1—O1Wi92.86 (14)C2—C7—O1108.4 (4)
O2Wi—Zn1—O1Wi87.14 (14)N1—C8—C9114.4 (4)
O1W—Zn1—O1Wi180.0N1—C8—H8A108.7
C1—O1—C7107.6 (4)C9—C8—H8A108.7
C9—O4—Zn1124.4 (3)N1—C8—H8B108.7
C1—N1—C2109.0 (4)C9—C8—H8B108.7
C1—N1—C8125.0 (4)H8A—C8—H8B107.6
C2—N1—C8126.0 (4)O3—C9—O4125.6 (5)
O2—C1—O1121.4 (5)O3—C9—C8118.7 (4)
O2—C1—N1130.0 (5)O4—C9—C8115.7 (5)
O1—C1—N1108.5 (4)Zn1—O1W—H1A121.8
C3—C2—N1132.8 (5)Zn1—O1W—H1B120.1
C3—C2—C7120.7 (5)H1A—O1W—H1B102.2
N1—C2—C7106.5 (4)Zn1—O2W—H2A123.4
C2—C3—C4116.4 (5)Zn1—O2W—H2B123.4
C2—C3—H3A121.8H2A—O2W—H2B102.3
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···O4ii0.832.002.772 (5)156
O1W—H1B···O3iii0.841.922.699 (5)153
O1W—H1A···O2iv0.822.072.799 (5)148
Symmetry codes: (ii) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H6NO4)2(H2O)4]
Mr521.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.144 (3), 5.342 (1), 30.595 (2)
β (°) 94.80 (5)
V3)1000.6 (6)
Z2
Radiation typeCu Kα
µ (mm1)2.38
Crystal size (mm)0.50 × 0.35 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.726, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5344, 1745, 1168
Rint0.065
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.06
No. of reflections1745
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···O4i0.832.002.772 (5)156
O1W—H1B···O3ii0.841.922.699 (5)153
O1W—H1A···O2iii0.822.072.799 (5)148
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y1, z.
 

Acknowledgements

This work was supported by a Grant for Fundamental Research from the Center of Science and Technology, Uzbekistan (grant No. FA-F3-T-141).

References

First citationBruker (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLespagnol, A., Lespagnol, Ch., Lesieur, D., Marcincal-Lebebvre, A. & Dupont, C. (1967). Chim. Ther. 2, 343–346.  CAS Google Scholar
First citationÖnkol, T., Sahin, M. F., Yildirim, E., Erol, K. & Ito, S. (2004). Arch. Pharm. Res. 27, 1086–1092.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagler, J. & Hill, A. F. (2008). Organometallics, 27, 6579–6586.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds