organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Meth­­oxy­anthracen-1-yl)-2-phenyl­diazene

aUniversity of Fribourg, Department of Chemistry, Chemin du Musee 9, CH-1700 Fribourg, Switzerland, and bInstitute of Organic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bdg 9, Sofia 1113, Bulgaria
*Correspondence e-mail: katharina.fromm@unifr.ch, lantonov@orgchm.bas.bg

(Received 10 February 2011; accepted 23 March 2011; online 31 March 2011)

The title compound, C21H16N2O, has an E-conformation about the diazene N=N bond. It is reasonably planar with the phenyl ring being inclined to the mean plane of the anthracene moiety [planar to within 0.077 (3) Å] by 6.43 (10)°. The crystal structure is stabilized by C—H⋯π and weak ππ inter­actions [centroid–centroid distances of 3.7192 (16) and 3.8382 (15) Å], leading to the formation of two-dimensional networks stacking along [001] and lying parallel to (110).

Related literature

For background to sensing mol­ecules based on tautomeric switches, see: Nedeltcheva et al. (2009[Nedeltcheva, D., Antonov, L., Lycka, A., Damyanova, B. & Popov, S. (2009). Curr. Org. Chem. 13, 217-240.]); Antonov et al. (2009[Antonov, L., Deneva, V., Simeonov, S., Kurteva, V., Nedeltcheva, D. & Wirz, J. (2009). Angew. Chem. Int. Ed. 48, 7875-7878.], 2010[Antonov, L. M., Kurteva, V. B., Simeonov, S. P., Deneva, V. V., Crochet, A. & Fromm, K. (2010). Tetrahedron, 66, 4292-4297.]). For investigations of the tautomerism of azodyes, see: Kelemen (1981[Kelemen, J. (1981). J. Dyes Pigm. 2, 73-91.]). For the synthesis of the title compound, see: Nedeltcheva et al. (2010[Nedeltcheva, D., Kurteva, V. & Topalova, I. (2010). Rapid Commun. Mass Spectrom. 24, 714-720.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O

  • Mr = 312.36

  • Orthorhombic, P 21 21 21

  • a = 6.3021 (3) Å

  • b = 9.0481 (4) Å

  • c = 27.3935 (17) Å

  • V = 1562.03 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.54 × 0.32 × 0.12 mm

Data collection
  • STOE IPDS 2T diffractometer

  • 12181 measured reflections

  • 2584 independent reflections

  • 2096 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.086

  • S = 1.10

  • 2584 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
C—H⋯π interactions (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7,C8,C17–C20 and C8–C10,C15–C17) rings, respectively.

C—H⋯Cg C—H H⋯Cg C⋯Cg C—H⋯Cg
C21—H21ACg1i 0.98 2.83 3.646 (4) 141
C12—H12⋯Cg2ii 0.95 2.80 3.681 (4) 154
C11—H11⋯Cg3ii 0.95 2.83 3.543 (3) 132
Symmetry codes: (i) x+1, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

More than 90% of the existing commercial azodyes are tautomeric ones, which makes the investigation of their tautomerism of substantial practical interest (Kelemen, 1981). However, in most of the tautomeric dyes the tautomeric equilibrium cannot be shifted to the pure, end tautomeric forms. In such cases model compounds, possessing the characteristics of the corresponding end-structures, are usually applied. As a part of our interest in sensing molecules based on tautomeric switches (Nedeltcheva et al., 2009, Antonov et al., 2009, 2010), the equilibrium in 4-phenylazo-antracene-1-ol was studied in the gas phase by mass spectrometry, and in solution by flash photolysis (Nedeltcheva et al., 2010). The corresponding O-methyl and N-methyl derivatives were used as model enol and keto tautomers, respectively, and the tautomeric constant was estimated. Herein, we report on the crystal structure of the title compound, the model enol analogue of 4-phenylazo-antracene-1-ol.

The molecular structure of the title molecule is shown in Fig. 1. The molecule, which has the E-conformation about the diazene N1N2 bond, is relatively planar, with phenyl ring (C1—C6) being inclined to the mean plane of the anthracene moiety (C7—C20) by 6.43 (10) °.

In the crystal the molecules are linked by C—H···π interactions (Table 1). There are also weak π···π interactions involving the phenyl ring (C1—C6) with rings (C7,C8,C17—C20)i and (C8—C10,C15—C17)i [symmetry code (i) x - 1, y - 1, z]; the centroid-centroid distances are 3.7192 (16) and 3.8382 (15) Å, respectively. These interactions lead to the formation of two-dimensional sheet-like networks that stack along the c axis, lying parallel to the ab-plane (Fig. 2).

Related literature top

For backgroung to sensing molecules based on tautomeric switches, see: Nedeltcheva et al. (2009); Antonov et al. (2009, 2010). For investigations of the tautomerism of azodyes, see: Kelemen (1981). For the synthesis of the title compound, see: Nedeltcheva et al. (2010).

Experimental top

Simple methylation of (E)-4-(phenyldiazenyl)anthracen-1-ol in basic media gave an easy separable mixture of the title compound and the corresponding N-methyl derivative, with yields of 32% and 43%, respectively (Nedeltcheva et al., 2010). Dark red block-like crystals of the title compound, suitable for X-ray diffraction analysis, were grown by slow diffusion of hexane into a chloroform solution of the title compound.

Refinement top

Because no heavy atoms are present the absolute structure and absolute configuration cannot be determined.Therefore, Friedel opposites were merged in the refinement. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 and 0.98 Å for CH and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal structure of the title compound. The π···π and C—H···π and interactions are shown as dashed cyan lines [see Table 1 for details; H-atoms not involved in these interactions have been omitted for clarity].
(E)-1-(4-Methoxyanthracen-1-yl)-2-phenyldiazene top
Crystal data top
C21H16N2OF(000) = 656
Mr = 312.36Dx = 1.328 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8137 reflections
a = 6.3021 (3) Åθ = 1.5–25.1°
b = 9.0481 (4) ŵ = 0.08 mm1
c = 27.3935 (17) ÅT = 150 K
V = 1562.03 (14) Å3Block, red
Z = 40.54 × 0.32 × 0.12 mm
Data collection top
STOE IPDS 2T
diffractometer
2096 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 24.6°, θmin = 1.5°
Detector resolution: 6.67 pixels mm-1h = 67
rotation method scansk = 910
12181 measured reflectionsl = 3232
2584 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.1352P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H16N2OV = 1562.03 (14) Å3
Mr = 312.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3021 (3) ŵ = 0.08 mm1
b = 9.0481 (4) ÅT = 150 K
c = 27.3935 (17) Å0.54 × 0.32 × 0.12 mm
Data collection top
STOE IPDS 2T
diffractometer
2096 reflections with I > 2σ(I)
12181 measured reflectionsRint = 0.072
2584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.10Δρmax = 0.13 e Å3
2584 reflectionsΔρmin = 0.15 e Å3
218 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3714 (4)0.0729 (3)0.41632 (8)0.0295 (6)
C20.2333 (4)0.0908 (3)0.45491 (10)0.0390 (7)
H20.26090.04330.48520.047*
C30.0531 (5)0.1787 (3)0.44947 (11)0.0459 (8)
H30.04220.19110.47600.055*
C40.0136 (5)0.2471 (3)0.40569 (10)0.0428 (8)
H40.11050.30560.40180.051*
C50.1533 (5)0.2314 (3)0.36735 (11)0.0410 (7)
H50.12600.28020.33730.049*
C60.3333 (4)0.1448 (3)0.37242 (9)0.0343 (6)
H60.43000.13480.34600.041*
C70.8346 (4)0.1413 (3)0.39361 (8)0.0279 (6)
C80.9818 (4)0.1429 (3)0.35326 (8)0.0278 (6)
C90.9493 (4)0.0641 (3)0.31029 (8)0.0308 (6)
H90.82330.00750.30670.037*
C101.0975 (4)0.0660 (3)0.27227 (8)0.0287 (6)
C111.0656 (5)0.0128 (3)0.22788 (8)0.0335 (6)
H110.93960.06890.22350.040*
C121.2126 (5)0.0087 (3)0.19165 (8)0.0352 (7)
H121.18750.06080.16210.042*
C131.4030 (4)0.0725 (3)0.19757 (9)0.0355 (7)
H131.50510.07360.17210.043*
C141.4408 (4)0.1487 (3)0.23939 (8)0.0328 (6)
H141.56880.20320.24280.039*
C151.2913 (4)0.1479 (3)0.27795 (8)0.0280 (6)
C161.3235 (4)0.2270 (3)0.32118 (8)0.0290 (6)
H161.45160.28080.32530.035*
C171.1728 (4)0.2290 (3)0.35837 (8)0.0258 (6)
C181.2018 (4)0.3159 (3)0.40158 (8)0.0284 (6)
C191.0512 (4)0.3180 (3)0.43775 (8)0.0302 (6)
H191.06910.37920.46560.036*
C200.8696 (4)0.2281 (3)0.43313 (8)0.0322 (7)
H200.76770.22850.45870.039*
C211.4285 (5)0.4842 (3)0.44324 (8)0.0410 (7)
H21A1.31650.55850.44700.061*
H21B1.56560.53370.43900.061*
H21C1.43330.42170.47240.061*
N10.5491 (4)0.0227 (3)0.42517 (7)0.0329 (5)
N20.6573 (3)0.0465 (2)0.38713 (7)0.0301 (5)
O11.3851 (3)0.3951 (2)0.40156 (6)0.0347 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (15)0.0275 (16)0.0375 (13)0.0038 (13)0.0023 (11)0.0052 (11)
C20.0385 (18)0.0367 (19)0.0418 (14)0.0030 (14)0.0075 (13)0.0038 (13)
C30.0361 (18)0.044 (2)0.0573 (17)0.0027 (16)0.0182 (15)0.0014 (15)
C40.0335 (19)0.0329 (18)0.0620 (19)0.0001 (14)0.0059 (15)0.0030 (14)
C50.0377 (18)0.0352 (18)0.0500 (16)0.0040 (15)0.0016 (14)0.0009 (13)
C60.0330 (16)0.0341 (16)0.0359 (13)0.0017 (14)0.0032 (12)0.0043 (12)
C70.0220 (15)0.0298 (16)0.0319 (12)0.0031 (13)0.0034 (11)0.0060 (11)
C80.0294 (15)0.0280 (15)0.0260 (12)0.0022 (13)0.0010 (11)0.0037 (10)
C90.0253 (14)0.0341 (16)0.0330 (13)0.0021 (13)0.0042 (12)0.0013 (11)
C100.0272 (15)0.0274 (15)0.0314 (12)0.0005 (13)0.0018 (11)0.0003 (11)
C110.0357 (16)0.0324 (16)0.0322 (13)0.0038 (13)0.0045 (12)0.0007 (11)
C120.0410 (17)0.0361 (17)0.0285 (12)0.0008 (14)0.0017 (12)0.0026 (12)
C130.0365 (17)0.0337 (17)0.0363 (14)0.0002 (15)0.0047 (12)0.0013 (12)
C140.0291 (16)0.0315 (16)0.0378 (13)0.0024 (13)0.0033 (12)0.0005 (11)
C150.0314 (15)0.0253 (15)0.0273 (12)0.0023 (12)0.0010 (12)0.0025 (11)
C160.0247 (15)0.0283 (16)0.0341 (13)0.0011 (12)0.0026 (12)0.0021 (10)
C170.0254 (15)0.0260 (15)0.0259 (12)0.0007 (12)0.0028 (11)0.0013 (10)
C180.0265 (15)0.0275 (16)0.0312 (12)0.0005 (12)0.0048 (12)0.0023 (11)
C190.0316 (16)0.0314 (16)0.0276 (12)0.0030 (13)0.0025 (12)0.0038 (11)
C200.0312 (16)0.0368 (17)0.0285 (13)0.0060 (14)0.0018 (12)0.0003 (11)
C210.0461 (18)0.0429 (18)0.0340 (13)0.0091 (15)0.0066 (13)0.0066 (12)
N10.0315 (13)0.0331 (13)0.0342 (11)0.0031 (11)0.0053 (10)0.0021 (9)
N20.0246 (12)0.0333 (14)0.0325 (11)0.0033 (11)0.0005 (10)0.0042 (9)
O10.0350 (12)0.0380 (11)0.0311 (9)0.0086 (9)0.0036 (8)0.0065 (8)
Geometric parameters (Å, º) top
C1—C21.379 (3)C11—H110.9500
C1—C61.389 (3)C12—C131.416 (4)
C1—N11.435 (3)C12—H120.9500
C2—C31.394 (4)C13—C141.358 (3)
C2—H20.9500C13—H130.9500
C3—C41.373 (4)C14—C151.415 (3)
C3—H30.9500C14—H140.9500
C4—C51.378 (4)C15—C161.398 (3)
C4—H40.9500C16—C171.393 (3)
C5—C61.386 (4)C16—H160.9500
C5—H50.9500C17—C181.433 (3)
C6—H60.9500C18—O11.359 (3)
C7—C201.356 (3)C18—C191.372 (3)
C7—N21.420 (3)C19—C201.409 (4)
C7—C81.443 (3)C19—H190.9500
C8—C91.391 (3)C20—H200.9500
C8—C171.441 (4)C21—O11.424 (3)
C9—C101.399 (3)C21—H21A0.9800
C9—H90.9500C21—H21B0.9800
C10—C111.423 (3)C21—H21C0.9800
C10—C151.437 (4)N1—N21.264 (3)
C11—C121.358 (4)
C2—C1—C6120.0 (3)C13—C12—H12119.7
C2—C1—N1115.7 (2)C14—C13—C12120.6 (2)
C6—C1—N1124.3 (2)C14—C13—H13119.7
C1—C2—C3120.0 (3)C12—C13—H13119.7
C1—C2—H2120.0C13—C14—C15120.7 (3)
C3—C2—H2120.0C13—C14—H14119.7
C4—C3—C2119.9 (3)C15—C14—H14119.7
C4—C3—H3120.1C16—C15—C14122.2 (2)
C2—C3—H3120.1C16—C15—C10118.6 (2)
C3—C4—C5120.2 (3)C14—C15—C10119.2 (2)
C3—C4—H4119.9C17—C16—C15121.8 (2)
C5—C4—H4119.9C17—C16—H16119.1
C4—C5—C6120.3 (3)C15—C16—H16119.1
C4—C5—H5119.8C16—C17—C18121.6 (2)
C6—C5—H5119.8C16—C17—C8119.4 (2)
C5—C6—C1119.6 (3)C18—C17—C8118.9 (2)
C5—C6—H6120.2O1—C18—C19125.5 (2)
C1—C6—H6120.2O1—C18—C17113.4 (2)
C20—C7—N2125.3 (2)C19—C18—C17121.0 (2)
C20—C7—C8120.1 (2)C18—C19—C20119.3 (2)
N2—C7—C8114.6 (2)C18—C19—H19120.4
C9—C8—C17118.8 (2)C20—C19—H19120.4
C9—C8—C7123.2 (2)C7—C20—C19122.5 (2)
C17—C8—C7117.9 (2)C7—C20—H20118.7
C8—C9—C10121.7 (2)C19—C20—H20118.7
C8—C9—H9119.2O1—C21—H21A109.5
C10—C9—H9119.2O1—C21—H21B109.5
C9—C10—C11122.4 (2)H21A—C21—H21B109.5
C9—C10—C15119.5 (2)O1—C21—H21C109.5
C11—C10—C15118.1 (2)H21A—C21—H21C109.5
C12—C11—C10121.0 (3)H21B—C21—H21C109.5
C12—C11—H11119.5N2—N1—C1112.59 (19)
C10—C11—H11119.5N1—N2—C7115.1 (2)
C11—C12—C13120.5 (2)C18—O1—C21117.5 (2)
C11—C12—H12119.7
C6—C1—C2—C31.3 (4)C11—C10—C15—C140.7 (4)
N1—C1—C2—C3178.4 (3)C14—C15—C16—C17178.1 (2)
C1—C2—C3—C40.0 (4)C10—C15—C16—C170.4 (4)
C2—C3—C4—C51.1 (4)C15—C16—C17—C18176.9 (2)
C3—C4—C5—C60.9 (4)C15—C16—C17—C82.5 (4)
C4—C5—C6—C10.5 (4)C9—C8—C17—C162.4 (3)
C2—C1—C6—C51.6 (4)C7—C8—C17—C16176.7 (2)
N1—C1—C6—C5178.2 (3)C9—C8—C17—C18177.0 (2)
C20—C7—C8—C9175.8 (3)C7—C8—C17—C183.9 (3)
N2—C7—C8—C93.0 (4)C16—C17—C18—O11.0 (3)
C20—C7—C8—C175.1 (4)C8—C17—C18—O1178.4 (2)
N2—C7—C8—C17176.1 (2)C16—C17—C18—C19179.4 (2)
C17—C8—C9—C100.3 (4)C8—C17—C18—C190.0 (4)
C7—C8—C9—C10178.8 (2)O1—C18—C19—C20179.1 (2)
C8—C9—C10—C11179.3 (3)C17—C18—C19—C202.7 (4)
C8—C9—C10—C151.7 (4)N2—C7—C20—C19178.8 (2)
C9—C10—C11—C12180.0 (3)C8—C7—C20—C192.6 (4)
C15—C10—C11—C121.0 (4)C18—C19—C20—C71.5 (4)
C10—C11—C12—C130.9 (4)C2—C1—N1—N2173.3 (2)
C11—C12—C13—C140.6 (4)C6—C1—N1—N26.5 (3)
C12—C13—C14—C150.4 (4)C1—N1—N2—C7179.6 (2)
C13—C14—C15—C16179.0 (3)C20—C7—N2—N113.9 (4)
C13—C14—C15—C100.4 (4)C8—C7—N2—N1167.4 (2)
C9—C10—C15—C161.7 (4)C19—C18—O1—C212.2 (4)
C11—C10—C15—C16179.3 (2)C17—C18—O1—C21179.5 (2)
C9—C10—C15—C14179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7,C8,C17–C20 and C8–C10,C15–C17) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg1i0.982.833.646 (4)141
C12—H12···Cg2ii0.952.803.681 (4)154
C11—H11···Cg3ii0.952.833.543 (3)132
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O
Mr312.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)6.3021 (3), 9.0481 (4), 27.3935 (17)
V3)1562.03 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.32 × 0.12
Data collection
DiffractometerSTOE IPDS 2T
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12181, 2584, 2096
Rint0.072
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.086, 1.10
No. of reflections2584
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C1–C6, C7,C8,C17–C20 and C8–C10,C15–C17) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21A···Cg1i0.982.833.646 (4)141
C12—H12···Cg2ii0.952.803.681 (4)154
C11—H11···Cg3ii0.952.833.543 (3)132
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Bulgarian National Science Fund (Project TK–X-1716), the SCOPES program of the Swiss National Science Foundation and FriMat for generous funding. They also thank Professor Helen Stoekli-Evans for valuable advice and assistance.

References

First citationAntonov, L., Deneva, V., Simeonov, S., Kurteva, V., Nedeltcheva, D. & Wirz, J. (2009). Angew. Chem. Int. Ed. 48, 7875–7878.  CrossRef CAS Google Scholar
First citationAntonov, L. M., Kurteva, V. B., Simeonov, S. P., Deneva, V. V., Crochet, A. & Fromm, K. (2010). Tetrahedron, 66, 4292–4297.  CrossRef CAS Google Scholar
First citationKelemen, J. (1981). J. Dyes Pigm. 2, 73–91.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNedeltcheva, D., Antonov, L., Lycka, A., Damyanova, B. & Popov, S. (2009). Curr. Org. Chem. 13, 217–240.  CrossRef CAS Google Scholar
First citationNedeltcheva, D., Kurteva, V. & Topalova, I. (2010). Rapid Commun. Mass Spectrom. 24, 714–720.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds