metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m475-m476

Tri­aqua­bis­­[4-(meth­­oxy­carbon­yl)benzoato-κO1]zinc dihydrate

aFaculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, and bInstitut für Anorganische Chemie, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 10 March 2011; accepted 18 March 2011; online 23 March 2011)

In the crystal structure of the title complex, [Zn(C9H7O4)2(H2O)3]·2H2O, the Zn atom and the apical aqua ligand are located on a crystallographic twofold axis, with the ZnII ion in a distorted square-pyramidal coordination geometry composed of five O atoms, two from the monodentate methyl­terephthalato group and three from water mol­ecules. The resulting complex and the two hydrate water mol­ecules are inter­connected by O—H⋯O hydrogen bonds.

Related literature

For related Zn(II) complexes with terephtalato anions as ligands, see: Hawxwell et al. (2006[Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808-814.]); Li et al. (1998[Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571-8572.]); Clausen et al. (2005[Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342-3351.]); Sun et al. (2006[Sun, J., Zhou, Y., Fang, Q., Chen, Z., Weng, L., Zhu, G., Qiu, S. & Zhao, D. (2006). Inorg. Chem. 45, 8677-8684.]); Yin et al. (2008[Yin, P.-X., Zhang, J., Li, Z.-J., Qin, Y.-Y., Cheng, J.-K. & Yao, Y.-G. (2008). Inorg. Chem. Commun. 11, 134-137.]); Carton et al. (2009[Carton, A., Mesbah, A., Aranda, L., Rabu, P. & Francois, M. (2009). Solid State Sci. 11, 818-823.]). For hydrogen-bond motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Etter (1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]). For a description of the coordination of the metal atom, see: Holmes (1984[Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119-235.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H7O4)2(H2O)3]·2H2O

  • Mr = 513.74

  • Monoclinic, C 2/c

  • a = 13.7157 (15) Å

  • b = 5.9719 (7) Å

  • c = 25.874 (3) Å

  • β = 91.551 (2)°

  • V = 2118.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 130 K

  • 0.28 × 0.17 × 0.02 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.976

  • 12212 measured reflections

  • 2435 independent reflections

  • 2269 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.06

  • 2435 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O2 1.9763 (12)
Zn1—O2i 1.9765 (12)
Zn1—O5 2.003 (2)
Zn1—O6 2.0869 (14)
Zn1—O6i 2.0870 (14)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H50⋯O1ii 0.88 1.78 2.6522 (16) 172
O6—H60⋯O10iii 0.82 1.96 2.763 (2) 170
O6—H61⋯O10 0.88 1.87 2.734 (2) 166
O10—H100⋯O1iv 0.82 1.94 2.741 (2) 166
O10—H101⋯O3v 0.83 1.92 2.7486 (19) 176
Symmetry codes: (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) -x+1, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complex crystallizes in the space group C2/c, with half a molecule in the asymmetric unit. The angles are slightly distorted from regular square-pyramidal geometry and the Zn ion lies 0.3187 (3) Å above the basal plane. The fivefold coordination around the metal atom may be described as resulting from 65% of Berry pseudorotation from trigonal-bipyramidal to square pyramidal (Holmes, 1984). Selected bond distances are listed in Table 1. Packing in this solid is dominated by classical intermolecular O—H···O hydrogen bonding between the OH groups of the water molecules (donors of hydrogen bonds) and monoanions (acceptors of hydrogen bonds). All potential H donors find an acceptor in reasonable geometry for hydrogen bonding giving rise to C22(8) motifs in the a direction, C22(13) in the ac plane (Fig. 2) and C11(6) in the b direction (Fig. 3) (Etter et al., 1990; Etter, 1991). The hydrogen bond parameters are presented in Table 2. The shortest Zn···Zn separation amounts to 5.9719 (7) Å.

Related literature top

For related Zn(II) complexes with terephtalato anions as ligands, see Hawxwell et al. (2006); Li et al. (1998); Clausen et al. (2005); Sun et al. (2006); Yin et al. (2008); Carton et al. (2009). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991). For a description of the coordination of the metal atom, see: Holmes (1984).

Experimental top

60 mg (2 mmol) Zn(NO3)2×6(H2O) and 40 mg (2 mmol) C9H7O4Na were stirred in 200 ml H2O at 50° C for 30 min. A white precipitate has formed, it has been removed by filtration. Slow evaporation of the solvent under ambient conditions gives crystals suitable for X-ray diffraction. Elemental analysis calcd (%): C 42.08, H 4.7, N 0; Found: C 41.54, H 4.94, N 0.

Refinement top

H atoms attached to oxygen were located from difference Fourier maps and treated as riding on the oxygen atoms with freely refined Uiso. H atoms attached to carbon were calculated and introduced in their idealized positions with Caryl—H 0.95 Å, Uiso(H) = 1.2Ueq(C); Cmethyl—H 0.98 Å, Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids at 50% probability; H atoms are represented by spheres of arbitrary radius. Symmetry code: i = -x + 1, y, 1/2 - z
[Figure 2] Fig. 2. : Hydrogen-bond motifs in the title compound. The apical water molecule, the methyl substituents and H atoms attached to aryl groups have been omitted for clarity.
[Figure 3] Fig. 3. : Hydrogen-bond motifs in the title compound. The highlighted hydrogen bonds extend along b direction.
Triaquabis[4-(methoxycarbonyl)benzoato-κO1]zinc(II) dihydrate top
Crystal data top
[Zn(C9H7O4)2(H2O)3]·2H2OF(000) = 1064
Mr = 513.74Dx = 1.611 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2818 reflections
a = 13.7157 (15) Åθ = 3.0–30.6°
b = 5.9719 (7) ŵ = 1.23 mm1
c = 25.874 (3) ÅT = 130 K
β = 91.551 (2)°Plate, colorless
V = 2118.5 (4) Å30.28 × 0.17 × 0.02 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2435 independent reflections
Radiation source: fine-focus sealed tube2269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.725, Tmax = 0.976k = 77
12212 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.9928P]
where P = (Fo2 + 2Fc2)/3
2435 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Zn(C9H7O4)2(H2O)3]·2H2OV = 2118.5 (4) Å3
Mr = 513.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.7157 (15) ŵ = 1.23 mm1
b = 5.9719 (7) ÅT = 130 K
c = 25.874 (3) Å0.28 × 0.17 × 0.02 mm
β = 91.551 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2435 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2269 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.976Rint = 0.045
12212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
2435 reflectionsΔρmin = 0.30 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.22322 (5)0.25000.01550 (11)
O10.43857 (11)0.1990 (2)0.16962 (5)0.0234 (3)
O20.50650 (10)0.1406 (2)0.17621 (5)0.0206 (3)
O30.30981 (11)0.0349 (3)0.08830 (5)0.0282 (3)
O40.36264 (11)0.3853 (2)0.07513 (5)0.0256 (3)
O50.50000.5587 (3)0.25000.0363 (6)
H500.48390.64750.22390.053 (9)*
O60.65137 (10)0.1991 (3)0.25858 (6)0.0263 (3)
H600.67800.30690.27240.041 (8)*
H610.68510.16650.23130.048 (8)*
C10.45986 (13)0.0115 (3)0.15193 (7)0.0166 (4)
C20.42900 (12)0.0408 (3)0.09683 (6)0.0153 (4)
C30.38816 (15)0.1255 (3)0.06540 (7)0.0207 (4)
H30.37860.27150.07890.025*
C40.36134 (14)0.0791 (3)0.01444 (7)0.0207 (4)
H40.33470.19400.00710.025*
C50.44032 (15)0.2554 (3)0.07716 (8)0.0209 (4)
H50.46760.37010.09850.025*
C60.41201 (15)0.3030 (3)0.02661 (8)0.0218 (4)
H60.41890.45060.01350.026*
C70.37346 (13)0.1352 (3)0.00510 (7)0.0158 (4)
C80.34468 (13)0.1775 (3)0.06031 (7)0.0178 (4)
O100.77354 (10)0.0523 (3)0.18399 (5)0.0229 (3)
H1000.81650.14210.17730.060 (10)*
H1010.74570.02540.15590.051 (8)*
C100.33801 (16)0.4409 (4)0.12870 (8)0.0288 (5)
H10A0.37620.34680.15170.043*
H10B0.35290.59890.13500.043*
H10C0.26830.41420.13550.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02039 (17)0.01448 (17)0.01142 (16)0.0000.00319 (11)0.000
O10.0324 (8)0.0186 (7)0.0188 (7)0.0025 (6)0.0073 (6)0.0041 (5)
O20.0232 (7)0.0263 (8)0.0120 (6)0.0072 (6)0.0019 (5)0.0022 (5)
O30.0412 (8)0.0253 (8)0.0174 (7)0.0040 (7)0.0100 (6)0.0009 (6)
O40.0369 (8)0.0218 (8)0.0176 (7)0.0032 (6)0.0065 (6)0.0071 (6)
O50.0728 (17)0.0133 (10)0.0215 (10)0.0000.0236 (10)0.000
O60.0220 (7)0.0342 (9)0.0229 (7)0.0058 (6)0.0002 (6)0.0088 (6)
C10.0153 (8)0.0200 (10)0.0143 (8)0.0017 (7)0.0015 (6)0.0008 (7)
C20.0147 (8)0.0173 (9)0.0137 (8)0.0012 (7)0.0006 (6)0.0015 (7)
C30.0302 (10)0.0141 (9)0.0175 (9)0.0036 (8)0.0039 (7)0.0021 (7)
C40.0266 (10)0.0177 (10)0.0174 (9)0.0041 (8)0.0055 (7)0.0015 (7)
C50.0297 (10)0.0160 (9)0.0169 (9)0.0050 (8)0.0041 (8)0.0024 (7)
C60.0326 (11)0.0133 (9)0.0194 (9)0.0033 (8)0.0029 (8)0.0025 (7)
C70.0152 (8)0.0181 (9)0.0139 (8)0.0004 (7)0.0008 (6)0.0005 (7)
C80.0161 (9)0.0215 (10)0.0158 (9)0.0026 (7)0.0002 (7)0.0010 (7)
O100.0238 (7)0.0285 (8)0.0160 (6)0.0015 (6)0.0046 (5)0.0008 (6)
C100.0326 (11)0.0325 (12)0.0209 (10)0.0001 (9)0.0053 (8)0.0103 (9)
Geometric parameters (Å, º) top
Zn1—O21.9763 (12)C2—C31.392 (3)
Zn1—O2i1.9765 (12)C3—C41.387 (2)
Zn1—O52.003 (2)C3—H30.95
Zn1—O62.0869 (14)C4—C71.388 (3)
Zn1—O6i2.0870 (14)C4—H40.95
O1—C11.247 (2)C5—C61.384 (3)
O2—C11.268 (2)C5—H50.95
O3—C81.208 (2)C6—C71.390 (3)
O4—C81.324 (2)C6—H60.95
O4—C101.456 (2)C7—C81.493 (2)
O5—H500.88O10—H1000.82
O6—H600.82O10—H1010.83
O6—H610.88C10—H10A0.98
C1—C21.509 (2)C10—H10B0.98
C2—C51.389 (3)C10—H10C0.98
O2—Zn1—O2i151.08 (9)C2—C3—H3119.8
O2—Zn1—O5104.46 (4)C3—C4—C7119.94 (17)
O2i—Zn1—O5104.46 (4)C3—C4—H4120.0
O2—Zn1—O690.85 (5)C7—C4—H4120.0
O2i—Zn1—O687.18 (6)C6—C5—C2120.29 (17)
O5—Zn1—O693.97 (4)C6—C5—H5119.9
O2—Zn1—O6i87.17 (6)C2—C5—H5119.9
O2i—Zn1—O6i90.85 (5)C5—C6—C7120.15 (18)
O5—Zn1—O6i93.97 (4)C5—C6—H6119.9
O6—Zn1—O6i172.07 (9)C7—C6—H6119.9
C1—O2—Zn1128.49 (12)C4—C7—C6119.81 (17)
C8—O4—C10116.67 (16)C4—C7—C8118.24 (17)
Zn1—O5—H50127.0C6—C7—C8121.95 (17)
Zn1—O6—H60115.1O3—C8—O4124.12 (17)
Zn1—O6—H61118.4O3—C8—C7122.99 (18)
H60—O6—H61106.7O4—C8—C7112.89 (16)
O1—C1—O2125.53 (16)H100—O10—H101105.0
O1—C1—C2118.06 (16)O4—C10—H10A109.5
O2—C1—C2116.41 (16)O4—C10—H10B109.5
C5—C2—C3119.45 (16)H10A—C10—H10B109.5
C5—C2—C1120.40 (16)O4—C10—H10C109.5
C3—C2—C1120.15 (17)H10A—C10—H10C109.5
C4—C3—C2120.33 (18)H10B—C10—H10C109.5
C4—C3—H3119.8
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50···O1ii0.881.782.6522 (16)172
O6—H60···O10iii0.821.962.763 (2)170
O6—H61···O100.881.872.734 (2)166
O10—H100···O1iv0.821.942.741 (2)166
O10—H101···O3v0.831.922.7486 (19)176
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H7O4)2(H2O)3]·2H2O
Mr513.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)13.7157 (15), 5.9719 (7), 25.874 (3)
β (°) 91.551 (2)
V3)2118.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.28 × 0.17 × 0.02
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.725, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
12212, 2435, 2269
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.06
No. of reflections2435
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O21.9763 (12)Zn1—O62.0869 (14)
Zn1—O2i1.9765 (12)Zn1—O6i2.0870 (14)
Zn1—O52.003 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H50···O1ii0.881.782.6522 (16)172
O6—H60···O10iii0.821.962.763 (2)170
O6—H61···O100.881.872.734 (2)166
O10—H100···O1iv0.821.942.741 (2)166
O10—H101···O3v0.831.922.7486 (19)176
Symmetry codes: (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z; (v) x+1, y, z.
 

Acknowledgements

The authors acknowledge financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: `Postdoctoral Program for Advanced Research in the field of nanomaterials'.

References

First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA.  Google Scholar
First citationBruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarton, A., Mesbah, A., Aranda, L., Rabu, P. & Francois, M. (2009). Solid State Sci. 11, 818–823.  CrossRef CAS Google Scholar
First citationClausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342–3351.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235.  CrossRef CAS Web of Science Google Scholar
First citationLi, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Zhou, Y., Fang, Q., Chen, Z., Weng, L., Zhu, G., Qiu, S. & Zhao, D. (2006). Inorg. Chem. 45, 8677–8684.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYin, P.-X., Zhang, J., Li, Z.-J., Qin, Y.-Y., Cheng, J.-K. & Yao, Y.-G. (2008). Inorg. Chem. Commun. 11, 134–137.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m475-m476
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds