metal-organic compounds
Triaquabis[4-(methoxycarbonyl)benzoato-κO1]zinc dihydrate
aFaculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu 1, RO-011061 Bucharest, Romania, and bInstitut für Anorganische Chemie, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de
In the 9H7O4)2(H2O)3]·2H2O, the Zn atom and the apical aqua ligand are located on a crystallographic twofold axis, with the ZnII ion in a distorted square-pyramidal coordination geometry composed of five O atoms, two from the monodentate methylterephthalato group and three from water molecules. The resulting complex and the two hydrate water molecules are interconnected by O—H⋯O hydrogen bonds.
of the title complex, [Zn(CRelated literature
For related Zn(II) complexes with terephtalato anions as ligands, see: Hawxwell et al. (2006); Li et al. (1998); Clausen et al. (2005); Sun et al. (2006); Yin et al. (2008); Carton et al. (2009). For hydrogen-bond motifs, see: Etter et al. (1990); Etter (1991). For a description of the coordination of the metal atom, see: Holmes (1984).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811010269/nc2223sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811010269/nc2223Isup2.hkl
60 mg (2 mmol) Zn(NO3)2×6(H2O) and 40 mg (2 mmol) C9H7O4Na were stirred in 200 ml H2O at 50° C for 30 min. A white precipitate has formed, it has been removed by filtration. Slow evaporation of the solvent under ambient conditions gives crystals suitable for X-ray diffraction. Elemental analysis calcd (%): C 42.08, H 4.7, N 0; Found: C 41.54, H 4.94, N 0.
H atoms attached to oxygen were located from difference Fourier maps and treated as riding on the oxygen atoms with freely refined Uiso. H atoms attached to carbon were calculated and introduced in their idealized positions with Caryl—H 0.95 Å, Uiso(H) = 1.2Ueq(C); Cmethyl—H 0.98 Å, Uiso(H) = 1.5Ueq(C).
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Zn(C9H7O4)2(H2O)3]·2H2O | F(000) = 1064 |
Mr = 513.74 | Dx = 1.611 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2818 reflections |
a = 13.7157 (15) Å | θ = 3.0–30.6° |
b = 5.9719 (7) Å | µ = 1.23 mm−1 |
c = 25.874 (3) Å | T = 130 K |
β = 91.551 (2)° | Plate, colorless |
V = 2118.5 (4) Å3 | 0.28 × 0.17 × 0.02 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 2435 independent reflections |
Radiation source: fine-focus sealed tube | 2269 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −17→17 |
Tmin = 0.725, Tmax = 0.976 | k = −7→7 |
12212 measured reflections | l = −33→33 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0415P)2 + 1.9928P] where P = (Fo2 + 2Fc2)/3 |
2435 reflections | (Δ/σ)max < 0.001 |
152 parameters | Δρmax = 0.43 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Zn(C9H7O4)2(H2O)3]·2H2O | V = 2118.5 (4) Å3 |
Mr = 513.74 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 13.7157 (15) Å | µ = 1.23 mm−1 |
b = 5.9719 (7) Å | T = 130 K |
c = 25.874 (3) Å | 0.28 × 0.17 × 0.02 mm |
β = 91.551 (2)° |
Bruker SMART APEX CCD diffractometer | 2435 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2269 reflections with I > 2σ(I) |
Tmin = 0.725, Tmax = 0.976 | Rint = 0.045 |
12212 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.083 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.43 e Å−3 |
2435 reflections | Δρmin = −0.30 e Å−3 |
152 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.22322 (5) | 0.2500 | 0.01550 (11) | |
O1 | 0.43857 (11) | −0.1990 (2) | 0.16962 (5) | 0.0234 (3) | |
O2 | 0.50650 (10) | 0.1406 (2) | 0.17621 (5) | 0.0206 (3) | |
O3 | 0.30981 (11) | 0.0349 (3) | −0.08830 (5) | 0.0282 (3) | |
O4 | 0.36264 (11) | 0.3853 (2) | −0.07513 (5) | 0.0256 (3) | |
O5 | 0.5000 | 0.5587 (3) | 0.2500 | 0.0363 (6) | |
H50 | 0.4839 | 0.6475 | 0.2239 | 0.053 (9)* | |
O6 | 0.65137 (10) | 0.1991 (3) | 0.25858 (6) | 0.0263 (3) | |
H60 | 0.6780 | 0.3069 | 0.2724 | 0.041 (8)* | |
H61 | 0.6851 | 0.1665 | 0.2313 | 0.048 (8)* | |
C1 | 0.45986 (13) | −0.0115 (3) | 0.15193 (7) | 0.0166 (4) | |
C2 | 0.42900 (12) | 0.0408 (3) | 0.09683 (6) | 0.0153 (4) | |
C3 | 0.38816 (15) | −0.1255 (3) | 0.06540 (7) | 0.0207 (4) | |
H3 | 0.3786 | −0.2715 | 0.0789 | 0.025* | |
C4 | 0.36134 (14) | −0.0791 (3) | 0.01444 (7) | 0.0207 (4) | |
H4 | 0.3347 | −0.1940 | −0.0071 | 0.025* | |
C5 | 0.44032 (15) | 0.2554 (3) | 0.07716 (8) | 0.0209 (4) | |
H5 | 0.4676 | 0.3701 | 0.0985 | 0.025* | |
C6 | 0.41201 (15) | 0.3030 (3) | 0.02661 (8) | 0.0218 (4) | |
H6 | 0.4189 | 0.4506 | 0.0135 | 0.026* | |
C7 | 0.37346 (13) | 0.1352 (3) | −0.00510 (7) | 0.0158 (4) | |
C8 | 0.34468 (13) | 0.1775 (3) | −0.06031 (7) | 0.0178 (4) | |
O10 | 0.77354 (10) | 0.0523 (3) | 0.18399 (5) | 0.0229 (3) | |
H100 | 0.8165 | 0.1421 | 0.1773 | 0.060 (10)* | |
H101 | 0.7457 | 0.0254 | 0.1559 | 0.051 (8)* | |
C10 | 0.33801 (16) | 0.4409 (4) | −0.12870 (8) | 0.0288 (5) | |
H10A | 0.3762 | 0.3468 | −0.1517 | 0.043* | |
H10B | 0.3529 | 0.5989 | −0.1350 | 0.043* | |
H10C | 0.2683 | 0.4142 | −0.1355 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02039 (17) | 0.01448 (17) | 0.01142 (16) | 0.000 | −0.00319 (11) | 0.000 |
O1 | 0.0324 (8) | 0.0186 (7) | 0.0188 (7) | −0.0025 (6) | −0.0073 (6) | 0.0041 (5) |
O2 | 0.0232 (7) | 0.0263 (8) | 0.0120 (6) | −0.0072 (6) | −0.0019 (5) | −0.0022 (5) |
O3 | 0.0412 (8) | 0.0253 (8) | 0.0174 (7) | −0.0040 (7) | −0.0100 (6) | 0.0009 (6) |
O4 | 0.0369 (8) | 0.0218 (8) | 0.0176 (7) | −0.0032 (6) | −0.0065 (6) | 0.0071 (6) |
O5 | 0.0728 (17) | 0.0133 (10) | 0.0215 (10) | 0.000 | −0.0236 (10) | 0.000 |
O6 | 0.0220 (7) | 0.0342 (9) | 0.0229 (7) | −0.0058 (6) | −0.0002 (6) | −0.0088 (6) |
C1 | 0.0153 (8) | 0.0200 (10) | 0.0143 (8) | 0.0017 (7) | −0.0015 (6) | −0.0008 (7) |
C2 | 0.0147 (8) | 0.0173 (9) | 0.0137 (8) | 0.0012 (7) | −0.0006 (6) | −0.0015 (7) |
C3 | 0.0302 (10) | 0.0141 (9) | 0.0175 (9) | −0.0036 (8) | −0.0039 (7) | 0.0021 (7) |
C4 | 0.0266 (10) | 0.0177 (10) | 0.0174 (9) | −0.0041 (8) | −0.0055 (7) | −0.0015 (7) |
C5 | 0.0297 (10) | 0.0160 (9) | 0.0169 (9) | −0.0050 (8) | −0.0041 (8) | −0.0024 (7) |
C6 | 0.0326 (11) | 0.0133 (9) | 0.0194 (9) | −0.0033 (8) | −0.0029 (8) | 0.0025 (7) |
C7 | 0.0152 (8) | 0.0181 (9) | 0.0139 (8) | 0.0004 (7) | −0.0008 (6) | 0.0005 (7) |
C8 | 0.0161 (9) | 0.0215 (10) | 0.0158 (9) | 0.0026 (7) | 0.0002 (7) | 0.0010 (7) |
O10 | 0.0238 (7) | 0.0285 (8) | 0.0160 (6) | −0.0015 (6) | −0.0046 (5) | 0.0008 (6) |
C10 | 0.0326 (11) | 0.0325 (12) | 0.0209 (10) | 0.0001 (9) | −0.0053 (8) | 0.0103 (9) |
Zn1—O2 | 1.9763 (12) | C2—C3 | 1.392 (3) |
Zn1—O2i | 1.9765 (12) | C3—C4 | 1.387 (2) |
Zn1—O5 | 2.003 (2) | C3—H3 | 0.95 |
Zn1—O6 | 2.0869 (14) | C4—C7 | 1.388 (3) |
Zn1—O6i | 2.0870 (14) | C4—H4 | 0.95 |
O1—C1 | 1.247 (2) | C5—C6 | 1.384 (3) |
O2—C1 | 1.268 (2) | C5—H5 | 0.95 |
O3—C8 | 1.208 (2) | C6—C7 | 1.390 (3) |
O4—C8 | 1.324 (2) | C6—H6 | 0.95 |
O4—C10 | 1.456 (2) | C7—C8 | 1.493 (2) |
O5—H50 | 0.88 | O10—H100 | 0.82 |
O6—H60 | 0.82 | O10—H101 | 0.83 |
O6—H61 | 0.88 | C10—H10A | 0.98 |
C1—C2 | 1.509 (2) | C10—H10B | 0.98 |
C2—C5 | 1.389 (3) | C10—H10C | 0.98 |
O2—Zn1—O2i | 151.08 (9) | C2—C3—H3 | 119.8 |
O2—Zn1—O5 | 104.46 (4) | C3—C4—C7 | 119.94 (17) |
O2i—Zn1—O5 | 104.46 (4) | C3—C4—H4 | 120.0 |
O2—Zn1—O6 | 90.85 (5) | C7—C4—H4 | 120.0 |
O2i—Zn1—O6 | 87.18 (6) | C6—C5—C2 | 120.29 (17) |
O5—Zn1—O6 | 93.97 (4) | C6—C5—H5 | 119.9 |
O2—Zn1—O6i | 87.17 (6) | C2—C5—H5 | 119.9 |
O2i—Zn1—O6i | 90.85 (5) | C5—C6—C7 | 120.15 (18) |
O5—Zn1—O6i | 93.97 (4) | C5—C6—H6 | 119.9 |
O6—Zn1—O6i | 172.07 (9) | C7—C6—H6 | 119.9 |
C1—O2—Zn1 | 128.49 (12) | C4—C7—C6 | 119.81 (17) |
C8—O4—C10 | 116.67 (16) | C4—C7—C8 | 118.24 (17) |
Zn1—O5—H50 | 127.0 | C6—C7—C8 | 121.95 (17) |
Zn1—O6—H60 | 115.1 | O3—C8—O4 | 124.12 (17) |
Zn1—O6—H61 | 118.4 | O3—C8—C7 | 122.99 (18) |
H60—O6—H61 | 106.7 | O4—C8—C7 | 112.89 (16) |
O1—C1—O2 | 125.53 (16) | H100—O10—H101 | 105.0 |
O1—C1—C2 | 118.06 (16) | O4—C10—H10A | 109.5 |
O2—C1—C2 | 116.41 (16) | O4—C10—H10B | 109.5 |
C5—C2—C3 | 119.45 (16) | H10A—C10—H10B | 109.5 |
C5—C2—C1 | 120.40 (16) | O4—C10—H10C | 109.5 |
C3—C2—C1 | 120.15 (17) | H10A—C10—H10C | 109.5 |
C4—C3—C2 | 120.33 (18) | H10B—C10—H10C | 109.5 |
C4—C3—H3 | 119.8 |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H50···O1ii | 0.88 | 1.78 | 2.6522 (16) | 172 |
O6—H60···O10iii | 0.82 | 1.96 | 2.763 (2) | 170 |
O6—H61···O10 | 0.88 | 1.87 | 2.734 (2) | 166 |
O10—H100···O1iv | 0.82 | 1.94 | 2.741 (2) | 166 |
O10—H101···O3v | 0.83 | 1.92 | 2.7486 (19) | 176 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x+1/2, y+1/2, z; (v) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C9H7O4)2(H2O)3]·2H2O |
Mr | 513.74 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 130 |
a, b, c (Å) | 13.7157 (15), 5.9719 (7), 25.874 (3) |
β (°) | 91.551 (2) |
V (Å3) | 2118.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.23 |
Crystal size (mm) | 0.28 × 0.17 × 0.02 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.725, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12212, 2435, 2269 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.083, 1.06 |
No. of reflections | 2435 |
No. of parameters | 152 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.30 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Zn1—O2 | 1.9763 (12) | Zn1—O6 | 2.0869 (14) |
Zn1—O2i | 1.9765 (12) | Zn1—O6i | 2.0870 (14) |
Zn1—O5 | 2.003 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H50···O1ii | 0.88 | 1.78 | 2.6522 (16) | 172 |
O6—H60···O10iii | 0.82 | 1.96 | 2.763 (2) | 170 |
O6—H61···O10 | 0.88 | 1.87 | 2.734 (2) | 166 |
O10—H100···O1iv | 0.82 | 1.94 | 2.741 (2) | 166 |
O10—H101···O3v | 0.83 | 1.92 | 2.7486 (19) | 176 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+3/2, y+1/2, −z+1/2; (iv) x+1/2, y+1/2, z; (v) −x+1, −y, −z. |
Acknowledgements
The authors acknowledge financial support from the European Social Fund through POSDRU/89/1.5/S/54785 project: `Postdoctoral Program for Advanced Research in the field of nanomaterials'.
References
Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconson, USA. Google Scholar
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carton, A., Mesbah, A., Aranda, L., Rabu, P. & Francois, M. (2009). Solid State Sci. 11, 818–823. CrossRef CAS Google Scholar
Clausen, H. F., Poulsen, R. D., Bond, A. D., Chevallier, M.-A. S. & Iversen, B. B. (2005). J. Solid State Chem. 178, 3342–3351. Web of Science CSD CrossRef CAS Google Scholar
Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Holmes, R. R. (1984). Prog. Inorg. Chem. 32, 119–235. CrossRef CAS Web of Science Google Scholar
Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, J., Zhou, Y., Fang, Q., Chen, Z., Weng, L., Zhu, G., Qiu, S. & Zhao, D. (2006). Inorg. Chem. 45, 8677–8684. Web of Science CrossRef PubMed CAS Google Scholar
Yin, P.-X., Zhang, J., Li, Z.-J., Qin, Y.-Y., Cheng, J.-K. & Yao, Y.-G. (2008). Inorg. Chem. Commun. 11, 134–137. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The complex crystallizes in the space group C2/c, with half a molecule in the asymmetric unit. The angles are slightly distorted from regular square-pyramidal geometry and the Zn ion lies 0.3187 (3) Å above the basal plane. The fivefold coordination around the metal atom may be described as resulting from 65% of Berry pseudorotation from trigonal-bipyramidal to square pyramidal (Holmes, 1984). Selected bond distances are listed in Table 1. Packing in this solid is dominated by classical intermolecular O—H···O hydrogen bonding between the OH groups of the water molecules (donors of hydrogen bonds) and monoanions (acceptors of hydrogen bonds). All potential H donors find an acceptor in reasonable geometry for hydrogen bonding giving rise to C22(8) motifs in the a direction, C22(13) in the ac plane (Fig. 2) and C11(6) in the b direction (Fig. 3) (Etter et al., 1990; Etter, 1991). The hydrogen bond parameters are presented in Table 2. The shortest Zn···Zn separation amounts to 5.9719 (7) Å.