organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,1′′-Di­methyl-4′-(naphthalen-1-yl)-1,2,3,4-tetra­hydro­naphthalene-2-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-1,2′′-dione

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 24 February 2011; accepted 24 February 2011; online 2 March 2011)

In the title compound, C32H28N2O2, the pyrrolidine ring adopts an envelope conformation, whereas the cyclo­hexa­none ring in the tetra­hydro­naphthalene fused-ring system adopts a half-chair conformation. The oxindole ring system is oriented at an angle of 48.2 (1)° with respect to the naphthyl ring system. An intra­molecular C—H⋯O close contact is observed. In the crystal, mol­ecules associate via two C—H⋯O hydrogen bonds, forming R22(14) and R22(10) dimers.

Related literature

For general background to pyrrolidine derivatives, see: Obniska et al. (2003[Obniska, j., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Kłodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553-557.]); Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]); Kaminski & Obniska (2008[Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457-465.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]). For related structures, see: Selvanayagam et al. (2011[Selvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.]); Gans & Shalloway (2001[Gans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N2O2

  • Mr = 472.56

  • Monoclinic, P 21 /n

  • a = 8.7529 (8) Å

  • b = 18.0411 (16) Å

  • c = 15.4489 (13) Å

  • β = 98.181 (2)°

  • V = 2414.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 27968 measured reflections

  • 5745 independent reflections

  • 4389 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.141

  • S = 1.04

  • 5745 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O1 0.97 2.48 3.143 (2) 126
C13—H13B⋯O1i 0.97 2.58 3.482 (2) 156
C32—H32A⋯O1ii 0.96 2.59 3.364 (2) 138
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1. The geometry of pyrrolidine, tetrahydro naphthalin and naphthyl group systems are comparable with the related reported structure (Selvanayagam et al., 2011). Fig. 2 shows a superposition of the pyrrolidine ring of (I) with this related reported structure, using Qmol (Gans & Shalloway, 2001); the r.m.s. deviation is 0.363 Å.

The sum of the angles at N1 of the pyrrolidine ring [334.8°] and N2 of the oxindole ring [359.9°] are in accordance with sp3 and sp2 hybridizations. The short contacts H3···H23 (2.06 Å) and H4B···H30 (2 Å) result in substantial widening of the C21—C22—C23 and C21—C30—C29 bond angles [123.6 (2)° and 122.3 (2)°, respectively].

Pyrrolidine ring is in an envelope conformation, with puckering parameters q2 = 0.409 (1) Å and ϕ = -175.1 (2) °, and with atom N1 deviating -0.603 (2) Å from the least-squares plane passing through the remaining four atoms (C1-C4) of that ring (Cremer & Pople, 1975). The cyclohexanone ring in the tetrahydro naphthalin ring system has a half-chair conformation with the lowest asymmetry parameters of ΔC2(C2-C12) = 0.084 (1)° (Nardelli, 1983). The best plane of pyrrolidine ring system make a dihedral angles of 76.9 (1) and 68.9 (1)°, respectively with respect to the oxindole ring and naphtyl group systems.

The molecular structure is influenced by an intramolecular C—H···O close contacts. Atom O1 acts as a trifurcated acceptor for three intramolecular C—H···O contacts. In the molecular packing, C—H···O hydrogen bonds involving atoms C13 and O1 link inversion-related molecules to form R22 (14) graph-set dimer (Fig. 3 and Table 1). In addition to this another graph-set dimer of R22(10) forms in the unit cell involving C32 and O1 atoms via C-H···O hydrogen bonds (Fig. 4).

Related literature top

For general background to pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003). For related structures, see: Selvanayagam et al. (2011); Gans & Shalloway (2001). For ring-puckering parameters, see: Cremer & Pople (1975) and for asymmetry parameters, see: Nardelli (1983).

Experimental top

To a mixture of N-methyl isatin (1mmol), sarcosine (1mmol) and 2-napthalidene- 1,2,3,4-tetrahydronaphthalene-1-ones (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Superposition of (I) (violet) with the similar reported structure of Selvanayagam et al. (2011) (cyan).
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the a axis; H-bonds are shown as dashed lines forms a R22(14) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed down the b axis; H-bonds are shown as dashed lines forms a R22(10) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
1',1''-Dimethyl-4'-(naphthalen-1-yl)-1,2,3,4-tetrahydronaphthalene- 2-spiro-3'-pyrrolidine-2'-spiro-3''-indoline-1,2''-dione top
Crystal data top
C32H28N2O2F(000) = 1000
Mr = 472.56Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17402 reflections
a = 8.7529 (8) Åθ = 2.3–27.8°
b = 18.0411 (16) ŵ = 0.08 mm1
c = 15.4489 (13) ÅT = 292 K
β = 98.181 (2)°Block, colourless
V = 2414.7 (4) Å30.24 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4389 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scansh = 1111
27968 measured reflectionsk = 2323
5745 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0661P)2 + 0.5875P]
where P = (Fo2 + 2Fc2)/3
5745 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C32H28N2O2V = 2414.7 (4) Å3
Mr = 472.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7529 (8) ŵ = 0.08 mm1
b = 18.0411 (16) ÅT = 292 K
c = 15.4489 (13) Å0.24 × 0.20 × 0.18 mm
β = 98.181 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4389 reflections with I > 2σ(I)
27968 measured reflectionsRint = 0.030
5745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
5745 reflectionsΔρmin = 0.18 e Å3
327 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19542 (14)0.03811 (7)0.02474 (7)0.0503 (3)
O20.51135 (15)0.18921 (7)0.29060 (8)0.0526 (3)
N10.17919 (14)0.13236 (7)0.18988 (8)0.0394 (3)
N20.20315 (16)0.04854 (7)0.13326 (9)0.0447 (3)
C10.28805 (16)0.07193 (8)0.17953 (9)0.0352 (3)
C20.43644 (16)0.11610 (8)0.16072 (9)0.0341 (3)
C30.36697 (17)0.19082 (8)0.11804 (10)0.0375 (3)
H30.40550.23080.15830.045*
C40.19270 (19)0.18552 (9)0.12043 (11)0.0440 (4)
H4A0.15070.23330.13360.053*
H4B0.13900.16800.06490.053*
C50.22581 (17)0.02033 (9)0.10128 (10)0.0393 (3)
C60.24558 (18)0.05153 (9)0.22415 (11)0.0410 (4)
C70.2350 (2)0.11139 (10)0.27874 (13)0.0528 (4)
H70.20030.15730.25670.063*
C80.2781 (2)0.10037 (11)0.36793 (13)0.0558 (5)
H80.27230.13970.40630.067*
C90.3292 (2)0.03231 (10)0.40053 (12)0.0517 (4)
H90.35710.02610.46050.062*
C100.33951 (19)0.02735 (9)0.34430 (10)0.0436 (4)
H100.37350.07330.36650.052*
C110.29901 (17)0.01766 (8)0.25571 (10)0.0377 (3)
C120.53834 (18)0.07288 (9)0.10482 (10)0.0386 (3)
H12A0.47760.06040.04920.046*
H12B0.62270.10440.09300.046*
C130.60428 (18)0.00205 (9)0.14878 (10)0.0431 (4)
H13A0.52090.03260.15300.052*
H13B0.67430.02060.11320.052*
C140.68899 (17)0.01682 (9)0.23853 (10)0.0417 (4)
C150.8018 (2)0.03200 (11)0.27723 (13)0.0542 (4)
H150.82220.07510.24800.065*
C160.8835 (2)0.01708 (13)0.35840 (14)0.0660 (6)
H160.95770.05050.38360.079*
C170.8563 (2)0.04692 (13)0.40262 (12)0.0637 (5)
H170.91360.05710.45670.076*
C180.7440 (2)0.09559 (11)0.36647 (11)0.0524 (4)
H180.72490.13850.39650.063*
C190.65839 (17)0.08082 (9)0.28461 (10)0.0401 (4)
C200.53440 (17)0.13366 (9)0.24958 (10)0.0382 (3)
C210.41452 (18)0.21033 (9)0.03005 (10)0.0406 (4)
C220.55816 (19)0.24838 (8)0.02709 (11)0.0427 (4)
C230.6600 (2)0.26977 (10)0.10265 (12)0.0518 (4)
H230.63290.26040.15770.062*
C240.7977 (2)0.30391 (12)0.09610 (16)0.0671 (6)
H240.86230.31790.14650.080*
C250.8418 (3)0.31796 (13)0.01394 (18)0.0758 (7)
H250.93610.34050.01000.091*
C260.7475 (3)0.29878 (12)0.05961 (16)0.0697 (6)
H260.77790.30870.11370.084*
C270.6039 (2)0.26398 (9)0.05623 (12)0.0514 (4)
C280.5078 (3)0.24300 (11)0.13333 (12)0.0621 (5)
H280.53780.25310.18750.075*
C290.3724 (3)0.20835 (11)0.12918 (12)0.0635 (5)
H290.30920.19520.18040.076*
C300.3263 (2)0.19202 (10)0.04740 (12)0.0531 (4)
H300.23270.16800.04610.064*
C310.02001 (18)0.10912 (10)0.19308 (12)0.0496 (4)
H31A0.04320.15200.19760.074*
H31B0.01680.07770.24300.074*
H31C0.01800.08230.14070.074*
C320.1366 (3)0.10906 (10)0.07871 (14)0.0646 (6)
H32A0.07850.08950.02630.097*
H32B0.06960.13750.11000.097*
H32C0.21760.14030.06370.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0545 (7)0.0563 (7)0.0389 (6)0.0025 (6)0.0017 (5)0.0018 (5)
O20.0589 (8)0.0525 (7)0.0462 (7)0.0012 (6)0.0059 (6)0.0133 (5)
N10.0365 (7)0.0373 (7)0.0465 (7)0.0007 (5)0.0127 (6)0.0009 (6)
N20.0472 (8)0.0365 (7)0.0483 (8)0.0041 (6)0.0007 (6)0.0035 (6)
C10.0357 (7)0.0356 (8)0.0349 (7)0.0018 (6)0.0076 (6)0.0006 (6)
C20.0347 (7)0.0349 (7)0.0336 (7)0.0014 (6)0.0078 (6)0.0007 (6)
C30.0393 (8)0.0339 (7)0.0398 (8)0.0011 (6)0.0074 (6)0.0011 (6)
C40.0404 (8)0.0389 (8)0.0540 (10)0.0030 (7)0.0109 (7)0.0065 (7)
C50.0349 (7)0.0417 (8)0.0414 (8)0.0003 (6)0.0055 (6)0.0030 (6)
C60.0383 (8)0.0369 (8)0.0477 (9)0.0009 (6)0.0060 (7)0.0013 (7)
C70.0543 (10)0.0360 (9)0.0670 (12)0.0017 (7)0.0053 (9)0.0053 (8)
C80.0585 (11)0.0490 (10)0.0606 (11)0.0035 (8)0.0110 (9)0.0193 (9)
C90.0549 (10)0.0589 (11)0.0424 (9)0.0032 (8)0.0101 (8)0.0100 (8)
C100.0478 (9)0.0441 (9)0.0407 (8)0.0018 (7)0.0127 (7)0.0006 (7)
C110.0358 (7)0.0373 (8)0.0412 (8)0.0002 (6)0.0098 (6)0.0032 (6)
C120.0403 (8)0.0439 (8)0.0330 (7)0.0014 (7)0.0096 (6)0.0012 (6)
C130.0420 (8)0.0433 (9)0.0455 (9)0.0052 (7)0.0112 (7)0.0032 (7)
C140.0347 (7)0.0479 (9)0.0440 (8)0.0020 (7)0.0103 (6)0.0086 (7)
C150.0466 (9)0.0540 (11)0.0623 (11)0.0049 (8)0.0088 (8)0.0130 (9)
C160.0513 (11)0.0806 (15)0.0640 (13)0.0110 (10)0.0009 (9)0.0251 (11)
C170.0533 (11)0.0942 (16)0.0406 (9)0.0003 (10)0.0035 (8)0.0144 (10)
C180.0491 (10)0.0690 (12)0.0391 (9)0.0066 (9)0.0060 (7)0.0030 (8)
C190.0352 (8)0.0506 (9)0.0352 (8)0.0050 (7)0.0076 (6)0.0051 (7)
C200.0379 (8)0.0431 (8)0.0351 (8)0.0056 (6)0.0105 (6)0.0010 (6)
C210.0448 (9)0.0344 (8)0.0432 (8)0.0011 (6)0.0084 (7)0.0069 (6)
C220.0469 (9)0.0325 (8)0.0506 (9)0.0018 (7)0.0134 (7)0.0079 (7)
C230.0502 (10)0.0502 (10)0.0562 (10)0.0067 (8)0.0115 (8)0.0060 (8)
C240.0557 (12)0.0652 (13)0.0798 (14)0.0152 (10)0.0076 (10)0.0036 (11)
C250.0618 (13)0.0721 (14)0.0978 (18)0.0219 (11)0.0264 (13)0.0141 (13)
C260.0814 (15)0.0554 (12)0.0805 (15)0.0124 (11)0.0400 (13)0.0132 (11)
C270.0641 (11)0.0369 (9)0.0573 (11)0.0010 (8)0.0227 (9)0.0107 (7)
C280.0898 (15)0.0540 (11)0.0460 (10)0.0008 (10)0.0212 (10)0.0144 (8)
C290.0851 (15)0.0614 (12)0.0419 (10)0.0082 (11)0.0014 (9)0.0077 (9)
C300.0572 (11)0.0540 (10)0.0474 (10)0.0074 (8)0.0049 (8)0.0083 (8)
C310.0378 (8)0.0542 (10)0.0597 (11)0.0030 (7)0.0165 (8)0.0017 (8)
C320.0726 (13)0.0447 (10)0.0697 (13)0.0067 (9)0.0137 (10)0.0104 (9)
Geometric parameters (Å, º) top
O1—C51.2175 (19)C14—C151.393 (2)
O2—C201.2179 (19)C14—C191.402 (2)
N1—C41.456 (2)C15—C161.379 (3)
N1—C311.4626 (19)C15—H150.9300
N1—C11.4715 (19)C16—C171.379 (3)
N2—C51.362 (2)C16—H160.9300
N2—C61.401 (2)C17—C181.376 (3)
N2—C321.450 (2)C17—H170.9300
C1—C111.523 (2)C18—C191.401 (2)
C1—C51.561 (2)C18—H180.9300
C1—C21.585 (2)C19—C201.487 (2)
C2—C121.539 (2)C21—C301.369 (2)
C2—C201.544 (2)C21—C221.439 (2)
C2—C31.584 (2)C22—C231.418 (2)
C3—C211.519 (2)C22—C271.429 (2)
C3—C41.534 (2)C23—C241.370 (3)
C3—H30.9800C23—H230.9300
C4—H4A0.9700C24—C251.401 (3)
C4—H4B0.9700C24—H240.9300
C6—C71.381 (2)C25—C261.351 (3)
C6—C111.396 (2)C25—H250.9300
C7—C81.390 (3)C26—C271.413 (3)
C7—H70.9300C26—H260.9300
C8—C91.378 (3)C27—C281.409 (3)
C8—H80.9300C28—C291.349 (3)
C9—C101.394 (2)C28—H280.9300
C9—H90.9300C29—C301.411 (3)
C10—C111.375 (2)C29—H290.9300
C10—H100.9300C30—H300.9300
C12—C131.522 (2)C31—H31A0.9600
C12—H12A0.9700C31—H31B0.9600
C12—H12B0.9700C31—H31C0.9600
C13—C141.500 (2)C32—H32A0.9600
C13—H13A0.9700C32—H32B0.9600
C13—H13B0.9700C32—H32C0.9600
C4—N1—C31113.04 (13)C15—C14—C19118.54 (16)
C4—N1—C1106.63 (11)C15—C14—C13120.75 (16)
C31—N1—C1115.21 (13)C19—C14—C13120.70 (14)
C5—N2—C6111.54 (13)C16—C15—C14120.73 (19)
C5—N2—C32122.92 (15)C16—C15—H15119.6
C6—N2—C32125.49 (15)C14—C15—H15119.6
N1—C1—C11111.27 (12)C15—C16—C17120.67 (18)
N1—C1—C5111.46 (12)C15—C16—H16119.7
C11—C1—C5101.04 (12)C17—C16—H16119.7
N1—C1—C2101.98 (11)C18—C17—C16119.80 (18)
C11—C1—C2120.09 (12)C18—C17—H17120.1
C5—C1—C2111.26 (11)C16—C17—H17120.1
C12—C2—C20108.06 (12)C17—C18—C19120.30 (19)
C12—C2—C3114.61 (12)C17—C18—H18119.8
C20—C2—C3109.09 (12)C19—C18—H18119.8
C12—C2—C1113.80 (12)C18—C19—C14119.92 (16)
C20—C2—C1107.81 (11)C18—C19—C20118.39 (15)
C3—C2—C1103.18 (11)C14—C19—C20121.69 (14)
C21—C3—C4115.86 (13)O2—C20—C19120.29 (14)
C21—C3—C2115.60 (12)O2—C20—C2121.28 (14)
C4—C3—C2105.14 (12)C19—C20—C2118.42 (13)
C21—C3—H3106.5C30—C21—C22118.29 (15)
C4—C3—H3106.5C30—C21—C3122.29 (15)
C2—C3—H3106.5C22—C21—C3119.42 (14)
N1—C4—C3104.12 (12)C23—C22—C27117.62 (16)
N1—C4—H4A110.9C23—C22—C21123.62 (15)
C3—C4—H4A110.9C27—C22—C21118.73 (16)
N1—C4—H4B110.9C24—C23—C22121.23 (18)
C3—C4—H4B110.9C24—C23—H23119.4
H4A—C4—H4B109.0C22—C23—H23119.4
O1—C5—N2124.73 (15)C23—C24—C25120.4 (2)
O1—C5—C1126.79 (14)C23—C24—H24119.8
N2—C5—C1108.42 (13)C25—C24—H24119.8
C7—C6—C11122.27 (16)C26—C25—C24120.1 (2)
C7—C6—N2127.64 (15)C26—C25—H25119.9
C11—C6—N2110.07 (13)C24—C25—H25119.9
C6—C7—C8117.45 (16)C25—C26—C27121.5 (2)
C6—C7—H7121.3C25—C26—H26119.2
C8—C7—H7121.3C27—C26—H26119.2
C9—C8—C7121.21 (16)C28—C27—C26121.06 (18)
C9—C8—H8119.4C28—C27—C22119.87 (17)
C7—C8—H8119.4C26—C27—C22119.06 (19)
C8—C9—C10120.45 (17)C29—C28—C27120.49 (17)
C8—C9—H9119.8C29—C28—H28119.8
C10—C9—H9119.8C27—C28—H28119.8
C11—C10—C9119.44 (16)C28—C29—C30120.26 (19)
C11—C10—H10120.3C28—C29—H29119.9
C9—C10—H10120.3C30—C29—H29119.9
C10—C11—C6119.16 (15)C21—C30—C29122.34 (18)
C10—C11—C1131.76 (14)C21—C30—H30118.8
C6—C11—C1108.89 (13)C29—C30—H30118.8
C13—C12—C2112.84 (12)N1—C31—H31A109.5
C13—C12—H12A109.0N1—C31—H31B109.5
C2—C12—H12A109.0H31A—C31—H31B109.5
C13—C12—H12B109.0N1—C31—H31C109.5
C2—C12—H12B109.0H31A—C31—H31C109.5
H12A—C12—H12B107.8H31B—C31—H31C109.5
C14—C13—C12111.68 (13)N2—C32—H32A109.5
C14—C13—H13A109.3N2—C32—H32B109.5
C12—C13—H13A109.3H32A—C32—H32B109.5
C14—C13—H13B109.3N2—C32—H32C109.5
C12—C13—H13B109.3H32A—C32—H32C109.5
H13A—C13—H13B107.9H32B—C32—H32C109.5
C4—N1—C1—C11172.75 (12)C5—C1—C11—C61.96 (15)
C31—N1—C1—C1160.95 (17)C2—C1—C11—C6124.64 (14)
C4—N1—C1—C575.29 (15)C20—C2—C12—C1357.40 (16)
C31—N1—C1—C551.01 (17)C3—C2—C12—C13179.26 (12)
C4—N1—C1—C243.50 (14)C1—C2—C12—C1362.30 (17)
C31—N1—C1—C2169.80 (12)C2—C12—C13—C1454.08 (17)
N1—C1—C2—C12151.75 (12)C12—C13—C14—C15156.85 (15)
C11—C1—C2—C1284.77 (16)C12—C13—C14—C1921.9 (2)
C5—C1—C2—C1232.81 (17)C19—C14—C15—C161.1 (3)
N1—C1—C2—C2088.40 (13)C13—C14—C15—C16177.67 (17)
C11—C1—C2—C2035.07 (17)C14—C15—C16—C170.7 (3)
C5—C1—C2—C20152.65 (12)C15—C16—C17—C181.6 (3)
N1—C1—C2—C326.95 (13)C16—C17—C18—C190.7 (3)
C11—C1—C2—C3150.43 (13)C17—C18—C19—C141.1 (2)
C5—C1—C2—C391.99 (13)C17—C18—C19—C20177.82 (16)
C12—C2—C3—C211.88 (18)C15—C14—C19—C182.0 (2)
C20—C2—C3—C21119.41 (14)C13—C14—C19—C18176.80 (14)
C1—C2—C3—C21126.16 (13)C15—C14—C19—C20176.92 (14)
C12—C2—C3—C4127.22 (14)C13—C14—C19—C204.3 (2)
C20—C2—C3—C4111.49 (13)C18—C19—C20—O21.8 (2)
C1—C2—C3—C42.94 (15)C14—C19—C20—O2179.27 (14)
C31—N1—C4—C3169.85 (13)C18—C19—C20—C2178.04 (13)
C1—N1—C4—C342.26 (16)C14—C19—C20—C20.9 (2)
C21—C3—C4—N1151.51 (13)C12—C2—C20—O2149.50 (14)
C2—C3—C4—N122.57 (16)C3—C2—C20—O224.30 (19)
C6—N2—C5—O1178.51 (15)C1—C2—C20—O287.09 (17)
C32—N2—C5—O11.1 (3)C12—C2—C20—C1930.67 (17)
C6—N2—C5—C11.40 (17)C3—C2—C20—C19155.87 (13)
C32—N2—C5—C1176.01 (15)C1—C2—C20—C1992.74 (15)
N1—C1—C5—O160.76 (19)C4—C3—C21—C3028.9 (2)
C11—C1—C5—O1179.05 (15)C2—C3—C21—C3094.74 (19)
C2—C1—C5—O152.3 (2)C4—C3—C21—C22152.08 (14)
N1—C1—C5—N2116.28 (14)C2—C3—C21—C2284.27 (18)
C11—C1—C5—N22.01 (15)C30—C21—C22—C23179.50 (16)
C2—C1—C5—N2130.63 (13)C3—C21—C22—C230.4 (2)
C5—N2—C6—C7178.27 (17)C30—C21—C22—C271.3 (2)
C32—N2—C6—C71.0 (3)C3—C21—C22—C27177.77 (14)
C5—N2—C6—C110.08 (18)C27—C22—C23—C240.2 (3)
C32—N2—C6—C11177.24 (16)C21—C22—C23—C24178.00 (18)
C11—C6—C7—C80.8 (3)C22—C23—C24—C250.6 (3)
N2—C6—C7—C8177.22 (16)C23—C24—C25—C260.9 (4)
C6—C7—C8—C90.1 (3)C24—C25—C26—C270.4 (4)
C7—C8—C9—C100.3 (3)C25—C26—C27—C28178.8 (2)
C8—C9—C10—C110.4 (3)C25—C26—C27—C220.4 (3)
C9—C10—C11—C61.2 (2)C23—C22—C27—C28179.18 (16)
C9—C10—C11—C1175.58 (15)C21—C22—C27—C280.9 (2)
C7—C6—C11—C101.4 (2)C23—C22—C27—C260.7 (3)
N2—C6—C11—C10176.88 (14)C21—C22—C27—C26177.61 (16)
C7—C6—C11—C1177.00 (15)C26—C27—C28—C29178.6 (2)
N2—C6—C11—C11.31 (17)C22—C27—C28—C290.1 (3)
N1—C1—C11—C1058.3 (2)C27—C28—C29—C300.7 (3)
C5—C1—C11—C10176.78 (16)C22—C21—C30—C290.8 (3)
C2—C1—C11—C1060.5 (2)C3—C21—C30—C29178.26 (17)
N1—C1—C11—C6116.47 (14)C28—C29—C30—C210.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.982.252.783 (2)113
C4—H4B···O10.972.493.045 (2)116
C12—H12A···O10.972.483.143 (2)126
C32—H32A···O10.962.522.852 (2)100
C13—H13B···O1i0.972.583.482 (2)156
C32—H32A···O1ii0.962.593.364 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC32H28N2O2
Mr472.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)8.7529 (8), 18.0411 (16), 15.4489 (13)
β (°) 98.181 (2)
V3)2414.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27968, 5745, 4389
Rint0.030
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.141, 1.04
No. of reflections5745
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O20.982.252.783 (2)113
C4—H4B···O10.972.493.045 (2)116
C12—H12A···O10.972.483.143 (2)126
C32—H32A···O10.962.522.852 (2)100
C13—H13B···O1i0.972.583.482 (2)156
C32—H32A···O1ii0.962.593.364 (2)138
Symmetry codes: (i) x+1, y, z; (ii) x, y, z.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. D. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465.  Web of Science PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, j., Pawłowski, M., Kołaczkowski, M., Czopek, A., Duszyńska, B., Kłodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.  Web of Science PubMed CAS Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSelvanayagam, S., Sridhar, B., Ravikumar, K., Saravanan, P. & Raghunathan, R. (2011). Acta Cryst. E67, o629.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds