organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(Hydrogen phosphonato)-2-hy­droxy-2-phosphono­ethyl]pyridinium

aCollege of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China, and bCollege of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, 215500, Jiangsu, People's Republic of China
*Correspondence e-mail: wflchem@hotmail.com

(Received 19 March 2011; accepted 28 March 2011; online 31 March 2011)

The title compound, C7H11NO7P2, exists as a zwitterion in which the positive charge resides on the protonated pyridyl N atom and the negative charge on one of the two phosphate groups. In the crystal, adjacent molcules are linked by O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For metal complexes of phospho­nic acids, see: Ma et al. (2008[Ma, Y. S., Li, Y. Z. & Song, Y. (2008). Inorg. Chem. 47, 4536-4544.], 2009[Ma, Y. S., Yuan, R. X. & Zheng, L. M. (2009). Inorg. Chem. Commun. 12, 860-863.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11NO7P2

  • Mr = 283.11

  • Monoclinic, P 21 /n

  • a = 10.083 (2) Å

  • b = 9.4713 (19) Å

  • c = 11.708 (2) Å

  • β = 94.87 (3)°

  • V = 1114.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 K

  • 0.3 × 0.25 × 0.2 mm

Data collection
  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA] Tmin = 0.880, Tmax = 0.92

  • 11137 measured reflections

  • 2548 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.117

  • S = 1.02

  • 2548 reflections

  • 174 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.81 (2) 2.06 (2) 2.816 (3) 156 (3)
O4—H4A⋯O7i 0.81 (2) 1.77 (2) 2.574 (3) 176 (4)
O5—H5A⋯O2i 0.82 (2) 1.66 (2) 2.477 (3) 175 (4)
N1—H2A⋯O7ii 0.82 (2) 1.93 (2) 2.741 (3) 171 (4)
O6—H6A⋯O3iii 0.81 (4) 1.67 (4) 2.476 (3) 175 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005)[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA]; cell refinement: CrystalClear[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA]; data reduction: CrystalClear[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.].

Supporting information


Comment top

Metal diphosphonates have been extensively studied for the diversity structures. Monomeric, dimeric, polymeric, two-dimensional layers to three-dimensional frameworks are all featured among these complexs Ma et al., 2008; Ma et al., 2009). Because diphosphonates have capabilities to stabilize transition metals in a wide range of oxidation states. The title compound was synthesized and characterized by X-ray crystal structure analysis.

There are some intermolecular hydrogen bonds in the structure of the title compound (Fig. 1 and Table 1). The intermolecular hydrogen bonds [O1—H1A···O2i, O5—H5A···O2i and O4—H4A···O7i; symmetry code: -x+3/2, y-1/2, -z+1/2] bridge the molecules through head-to-tail into a one-dmensional chain. These chains are linked to two-dimensional structure through hydrogen bonds [N1—H2A···O7ii; symmetry code: x+1, y, z]. The hydrogen bonds [O6—H6A···O3iii; symmetry code: x-1/2, -y+1/2, z-1/2] connected the layers into a three-dimensional network (shown in Fig. 2).

Related literature top

For metal complexes of phosphonic acids, see: Ma et al. (2008, 2009).

Experimental top

The title compound was synthesized by reaction of 4-pyridine acetic acid hydrochloride (0.520 g, 3 mmol) and phosphite (0.711 g, 8.7 mmol) in chlorobenzene (15 mL). The solution was stirred while phosphorus trichloride (0.64 g, 4.7 mmol) was added drop by drop and the temperature should control between 110-120 oC with vigorous stirring for 4 hours. The crude product was concentrated in vacuo. White block crystals formed in high yield by recrystallization.

Refinement top

Carbon-bond H atoms were positioned geometrically (C—H = 0.93 Å), and were included in the refinement in the riding mode approximation, with Uiso(H) = 1.2Ueq(C). H atoms bound to O and N atoms were located in a difference Fourier map and refined with restraints [N—H and O—H = 0.82 (1) Å, with Uiso(H) values fixed at 1.5Ueq(N) and 1.5Ueq(O)].

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. [Symmetry code A = 1-x, y, 1/2-z].
[Figure 2] Fig. 2. Hydrogen bonds connected three-dimensional structure of the title compound (Carbon-bond H atoms were omitted for clarity).
4-[2-(Hydrogen phosphonato)-2-hydroxy-2-phosphonoethyl]pyridinium top
Crystal data top
C7H11NO7P2F(000) = 584
Mr = 283.11Dx = 1.688 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10067 reflections
a = 10.083 (2) Åθ = 3.4–27.6°
b = 9.4713 (19) ŵ = 0.42 mm1
c = 11.708 (2) ÅT = 293 K
β = 94.87 (3)°Block, colorless
V = 1114.1 (4) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury
diffractometer
2548 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
dtfind.ref scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.880, Tmax = 0.92l = 1515
11137 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0537P)2 + 1.150P]
where P = (Fo2 + 2Fc2)/3
2548 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.30 e Å3
5 restraintsΔρmin = 0.29 e Å3
Crystal data top
C7H11NO7P2V = 1114.1 (4) Å3
Mr = 283.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.083 (2) ŵ = 0.42 mm1
b = 9.4713 (19) ÅT = 293 K
c = 11.708 (2) Å0.3 × 0.25 × 0.2 mm
β = 94.87 (3)°
Data collection top
Rigaku Mercury
diffractometer
2548 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2093 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.92Rint = 0.051
11137 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0515 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.30 e Å3
2548 reflectionsΔρmin = 0.29 e Å3
174 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.66199 (6)0.19546 (7)0.09909 (6)0.01961 (18)
P20.87076 (6)0.20407 (7)0.30954 (6)0.01825 (18)
O10.88791 (18)0.0416 (2)0.12393 (16)0.0229 (4)
H1A0.846 (3)0.021 (3)0.151 (3)0.041 (10)*
O20.81307 (19)0.3435 (2)0.34177 (16)0.0277 (4)
O31.01876 (18)0.1862 (2)0.33689 (16)0.0275 (5)
O40.79155 (19)0.0847 (2)0.36597 (16)0.0258 (4)
H4A0.827 (4)0.008 (3)0.370 (3)0.059 (12)*
O50.58172 (19)0.0799 (2)0.1556 (2)0.0327 (5)
H5A0.613 (4)0.000 (2)0.157 (3)0.069 (14)*
O60.6632 (2)0.1660 (2)0.02975 (18)0.0341 (5)
H6A0.619 (4)0.218 (4)0.072 (3)0.059 (13)*
O70.60449 (17)0.33631 (19)0.12698 (17)0.0269 (5)
N11.3345 (2)0.3264 (3)0.1400 (2)0.0362 (6)
H2A1.4152 (19)0.334 (4)0.143 (3)0.058 (12)*
C21.2820 (3)0.2028 (3)0.1039 (3)0.0331 (7)
H21.33740.12750.08940.040*
C31.1465 (3)0.1875 (3)0.0883 (2)0.0279 (6)
H31.10970.10200.06250.033*
C41.0641 (3)0.2998 (3)0.1109 (2)0.0221 (6)
C51.1232 (3)0.4260 (3)0.1492 (3)0.0334 (7)
H51.07050.50240.16620.040*
C61.2600 (3)0.4372 (4)0.1618 (3)0.0413 (8)
H61.29990.52200.18550.050*
C70.9147 (2)0.2907 (3)0.0868 (2)0.0234 (6)
H7A0.89540.27250.00550.028*
H7B0.87770.38260.10230.028*
C80.8396 (2)0.1788 (2)0.1534 (2)0.0166 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0118 (3)0.0169 (3)0.0293 (4)0.0002 (3)0.0028 (2)0.0001 (3)
P20.0170 (3)0.0162 (3)0.0213 (3)0.0004 (3)0.0001 (2)0.0024 (3)
O10.0193 (9)0.0172 (10)0.0326 (10)0.0020 (8)0.0050 (8)0.0043 (8)
O20.0302 (10)0.0183 (10)0.0349 (11)0.0020 (8)0.0048 (8)0.0068 (8)
O30.0193 (10)0.0355 (11)0.0265 (10)0.0036 (8)0.0060 (7)0.0050 (9)
O40.0287 (11)0.0186 (10)0.0310 (10)0.0019 (8)0.0082 (8)0.0040 (8)
O50.0167 (10)0.0234 (12)0.0577 (14)0.0027 (8)0.0011 (9)0.0076 (10)
O60.0316 (11)0.0390 (13)0.0294 (11)0.0093 (10)0.0116 (9)0.0025 (10)
O70.0161 (9)0.0177 (10)0.0466 (12)0.0012 (8)0.0018 (8)0.0016 (8)
N10.0154 (12)0.0549 (18)0.0386 (15)0.0072 (12)0.0046 (10)0.0016 (13)
C20.0199 (14)0.0435 (19)0.0368 (16)0.0047 (13)0.0074 (12)0.0006 (14)
C30.0225 (14)0.0300 (16)0.0319 (15)0.0022 (12)0.0060 (11)0.0039 (12)
C40.0180 (13)0.0260 (14)0.0229 (13)0.0027 (11)0.0051 (10)0.0022 (11)
C50.0240 (15)0.0265 (16)0.0507 (19)0.0058 (12)0.0094 (13)0.0057 (14)
C60.0262 (16)0.043 (2)0.055 (2)0.0144 (15)0.0074 (14)0.0112 (16)
C70.0144 (12)0.0248 (14)0.0311 (14)0.0015 (11)0.0021 (10)0.0059 (12)
C80.0129 (11)0.0129 (12)0.0236 (12)0.0017 (9)0.0004 (9)0.0007 (10)
Geometric parameters (Å, º) top
P1—O71.5015 (19)N1—C21.339 (4)
P1—O61.535 (2)N1—H2A0.815 (19)
P1—O51.543 (2)C2—C31.371 (4)
P1—C81.855 (2)C2—H20.9300
P2—O21.5038 (19)C3—C41.388 (4)
P2—O31.5090 (19)C3—H30.9300
P2—O41.563 (2)C4—C51.392 (4)
P2—C81.844 (3)C4—C71.512 (3)
O1—C81.440 (3)C5—C61.379 (4)
O1—H1A0.806 (18)C5—H50.9300
O4—H4A0.811 (18)C6—H60.9300
O5—H5A0.821 (19)C7—C81.551 (3)
O6—H6A0.81 (4)C7—H7A0.9700
N1—C61.328 (4)C7—H7B0.9700
O7—P1—O6114.23 (12)C2—C3—H3120.0
O7—P1—O5108.10 (12)C4—C3—H3120.0
O6—P1—O5109.93 (13)C3—C4—C5118.2 (2)
O7—P1—C8112.34 (11)C3—C4—C7121.6 (2)
O6—P1—C8103.49 (12)C5—C4—C7120.1 (2)
O5—P1—C8108.59 (11)C6—C5—C4119.8 (3)
O2—P2—O3116.23 (11)C6—C5—H5120.1
O2—P2—O4107.85 (11)C4—C5—H5120.1
O3—P2—O4111.15 (11)N1—C6—C5119.7 (3)
O2—P2—C8108.99 (11)N1—C6—H6120.2
O3—P2—C8106.16 (11)C5—C6—H6120.2
O4—P2—C8105.97 (11)C4—C7—C8117.8 (2)
C8—O1—H1A112 (2)C4—C7—H7A107.9
P2—O4—H4A116 (3)C8—C7—H7A107.9
P1—O5—H5A117 (3)C4—C7—H7B107.9
P1—O6—H6A117 (3)C8—C7—H7B107.9
C6—N1—C2122.5 (3)H7A—C7—H7B107.2
C6—N1—H2A120 (3)O1—C8—C7107.8 (2)
C2—N1—H2A117 (3)O1—C8—P2108.77 (16)
N1—C2—C3119.8 (3)C7—C8—P2111.14 (17)
N1—C2—H2120.1O1—C8—P1109.33 (16)
C3—C2—H2120.1C7—C8—P1105.54 (16)
C2—C3—C4119.9 (3)P2—C8—P1114.04 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.81 (2)2.06 (2)2.816 (3)156 (3)
O4—H4A···O7i0.81 (2)1.77 (2)2.574 (3)176 (4)
O5—H5A···O2i0.82 (2)1.66 (2)2.477 (3)175 (4)
N1—H2A···O7ii0.82 (2)1.93 (2)2.741 (3)171 (4)
O6—H6A···O3iii0.81 (4)1.67 (4)2.476 (3)175 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC7H11NO7P2
Mr283.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.083 (2), 9.4713 (19), 11.708 (2)
β (°) 94.87 (3)
V3)1114.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.880, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
11137, 2548, 2093
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.117, 1.02
No. of reflections2548
No. of parameters174
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.806 (18)2.06 (2)2.816 (3)156 (3)
O4—H4A···O7i0.811 (18)1.765 (19)2.574 (3)176 (4)
O5—H5A···O2i0.821 (19)1.657 (19)2.477 (3)175 (4)
N1—H2A···O7ii0.815 (19)1.93 (2)2.741 (3)171 (4)
O6—H6A···O3iii0.81 (4)1.67 (4)2.476 (3)175 (4)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by a start-up grant from the CSLG (No. KY10657) and by the Natural Science Fund of Jiangsu Province, China (No. 08KJB150001).

References

First citationMa, Y. S., Li, Y. Z. & Song, Y. (2008). Inorg. Chem. 47, 4536–4544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, Y. S., Yuan, R. X. & Zheng, L. M. (2009). Inorg. Chem. Commun. 12, 860–863.  CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds