organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-4-oxo-6,7,8,9-tetra­hydro­thieno[2′,3′:4,5]pyrimidino­[1,2-a]pyridine-3-carboxylic acid

aS.Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek St 77, Tashkent 100170, Uzbekistan
*Correspondence e-mail: burkhon@rambler.ru

(Received 17 January 2011; accepted 2 March 2011; online 9 March 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C12H12N2O3S. With the exception of the methyl­ene groups, a mean plane fitted through all non-H atoms of each mol­ecule has an r.m.s. deviation of 0.035 Å for one mol­ecule and 0.120 Å for the second. In one of the independent mol­ecules, the methyl­ene groups was refined using a disorder model with an occupancy ratio of 0.53:0.47 (14). Each molecule features an intra­molecular O—H⋯O hydrogen bond, which generates an S(7) ring.

Related literature

For the synthesis of thieno[2,3-d]pyrimidin-4-ones and their derivatives, see: Litvinov (2004[Litvinov, V. P. (2004). Izv. Akad. Nauk. Ser. Khim. 3, 463-490.]); Elmuradov et al. (2010[Elmuradov, B. Zh., Bozorov, Kh. A. & Shakhidoyatov, Kh. M. (2010). Khim. Get. Soedin. pp. 1717-1724.]); Csukonyi et al. (1986[Csukonyi, K., Lazar, J., Bernath, G., Hermecz, I. & Meszaros, Z. (1986). Monatsh. Chem. 117, 1295-1303.]). For the physiological activity of thieno[2,3-d]pyrimidin-4-ones and their derivatives, see: Lilienkampf et al. (2007[Lilienkampf, A., Heikkinen, S., Mutikainen, I. & Wähäla, K. (2007). Synthesis, pp. 2699-2705.]). For a related structure, see: Bozorov et al. (2010[Bozorov, K. A., Elmuradov, B. Z., Okmanov, R. Y., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o552-o553.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O3S

  • Mr = 264.30

  • Monoclinic, P 21 /n

  • a = 7.2550 (15) Å

  • b = 20.506 (4) Å

  • c = 15.824 (3) Å

  • β = 96.93 (3)°

  • V = 2337.0 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.50 mm−1

  • T = 296 K

  • 0.60 × 0.40 × 0.15 mm

Data collection
  • Stoe STADI4 diffractometer

  • Absorption correction: ψ scan (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.]) Tmin = 0.346, Tmax = 0.687

  • 4297 measured reflections

  • 3438 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.047

  • θmax = 60.0°

  • 3 standard reflections every 60 min intensity decay: 4.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.169

  • S = 1.10

  • 3438 reflections

  • 348 parameters

  • 23 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.87 (2) 1.63 (2) 2.501 (5) 177 (7)
O52—H52O⋯O51 0.87 (2) 1.71 (3) 2.518 (6) 154 (4)

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Among heterocyclic compounds. the thieno[2,3-d]pyrimidin-4-one family (Litvinov, 2004; Elmuradov et al., 2010; Csukonyi et al., 1986) has been shown to possess various physiological activity (Lilienkampf et al., 2007). The reaction of 2,3-dimethylthieno[2',3':4,5]pyrimidino[1,2-a]pyridin-4-one with nitric acid in ratio of reagents - substrate:HNO3 - 1:4 in concentrated sulfuric acid leads to the formation of 3-hydroxycarbonyl-2- methylthieno[2',3':4,5]pyrimidino[1,2-a]pyridin-4-one (Figure 1). We report here the synthesis and crystal structure.

The asymmetric unit contains two crystallographically unique molecules (Figure 2). With the exception of the methylene group, a mean plane fitted through all non-H atoms of each molecule has an rms deviation of 0.035 for one molecule, and 0.120 for the second. In one of the unique molecules the methylene group was refined using a disorder model with an occupancy ratio of 0.53:0.47 (14). An S(7) intramolecular O—H···O hydrogen bond is observed in each unique molecule (Bernstein et al., 1995).

Related literature top

For the synthesis of thieno[2,3-d]pyrimidin-4-ones and their derivatives, see: Litvinov (2004); Elmuradov et al. (2010); Csukonyi et al. (1986). For the physiological activity of thieno[2,3-d]pyrimidin-4-ones and their derivatives, see: Lilienkampf et al. (2007). For a related structure, see: Bozorov et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Into a flask supplied with a mixer was poured 2 ml H2SO4 and cooled by an ice bath (0.25 h). Then 1 g (4.26 mmole) 2,3-dimethylthieno[2',3':4,5]pyrimidino[1,2-a]pyridin-4-one was added in portions, mixed before complete dissolution, nitrating acid consisting of 1.89 g (1.4 ml, d1.35 g/ml) (17.08 mmole) HNO3 and 1.4 ml (d1.835 g/ml) H2SO4 were added (0.5 h) drop wise. A reactionary mixture were mixed 1 h at room temperature and left 2 days at room temperature and a mixture is decomposed in cold. The formed yellow crystals were filtered off and washed with water and dried. Yield 1.0 g (89%), m.p. 478–479 K (ethanol). The yellow crystals suitable for X-ray analysis were obtained from absolute methanol at room temperature.

Refinement top

C-bound H atoms were placed geometrically (with C—H distances of 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C) for methyl H atoms]. O-bound H atoms involved in the intermolecular hydrogen bonding were found by difference Fourier synthesis and refined isotropically with a distance restrains of 0.85 (2) Å. [O2—H2O = 0.870 (20) Å, O52—H52O = 0.871 (19) Å]. Atoms C56, C57, C58 and C59 were refined using a disorder model with an occupancy ratio of 0.53:0.47 (14)

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Reaction scheme.
[Figure 2] Fig. 2. The asymmetric unit of the title compound, with H atoms and the minor disorder component omitted. Displacement ellipsoids are at the 30% probability level.
2-Methyl-4-oxo-6,7,8,9-tetrahydrothieno[2',3':4,5]pyrimidino[1,2- a]pyridine-3-carboxylic acid top
Crystal data top
C12H12N2O3SF(000) = 1104
Mr = 264.30Dx = 1.502 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 12 reflections
a = 7.2550 (15) Åθ = 10–20°
b = 20.506 (4) ŵ = 2.50 mm1
c = 15.824 (3) ÅT = 296 K
β = 96.93 (3)°Prism, yellow
V = 2337.0 (8) Å30.60 × 0.40 × 0.15 mm
Z = 8
Data collection top
Stoe STADI4
diffractometer
2420 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 60.0°, θmin = 3.5°
Scan width (ω) = 1.56 – 1.80, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = 88
Absorption correction: ψ scan
(Blessing, 1987)
k = 023
Tmin = 0.346, Tmax = 0.687l = 017
4297 measured reflections3 standard reflections every 60 min
3438 independent reflections intensity decay: 4.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.0601P)2 + 2.3488P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3438 reflectionsΔρmax = 0.20 e Å3
348 parametersΔρmin = 0.28 e Å3
23 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0018 (3)
Crystal data top
C12H12N2O3SV = 2337.0 (8) Å3
Mr = 264.30Z = 8
Monoclinic, P21/nCu Kα radiation
a = 7.2550 (15) ŵ = 2.50 mm1
b = 20.506 (4) ÅT = 296 K
c = 15.824 (3) Å0.60 × 0.40 × 0.15 mm
β = 96.93 (3)°
Data collection top
Stoe STADI4
diffractometer
2420 reflections with I > 2σ(I)
Absorption correction: ψ scan
(Blessing, 1987)
Rint = 0.047
Tmin = 0.346, Tmax = 0.687θmax = 60.0°
4297 measured reflections3 standard reflections every 60 min
3438 independent reflections intensity decay: 4.7%
Refinement top
R[F2 > 2σ(F2)] = 0.06323 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.20 e Å3
3438 reflectionsΔρmin = 0.28 e Å3
348 parameters
Special details top

Experimental. ψ Scan Reflections used µ * R = 0.00

H K L, θ, χ, Imin/Imax: -1 -1 0 13.0 84.8 0.563

1H NMR (400 MHz, CDCl3): 15.46 (1H, s, OH), 4.06 (2H, t, J6.1 Hz, H-6), 3.01 (2H, t, J6.6 Hz, H-9), 2.76 (3H, s, CH3-2), 1.93–2.07 (4H, m, H-7, 8).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.04758 (17)0.79444 (6)0.42793 (7)0.0671 (4)
O10.2734 (6)0.78157 (17)0.7344 (2)0.0980 (12)
O20.3136 (6)0.66799 (17)0.6820 (3)0.0995 (13)
H2O0.304 (9)0.7074 (15)0.701 (4)0.119*
O30.2595 (6)0.61070 (18)0.5666 (3)0.1034 (13)
N50.1590 (6)0.87759 (18)0.6804 (2)0.0722 (11)
N100.0491 (5)0.89415 (17)0.5367 (2)0.0619 (10)
C20.1269 (6)0.7205 (2)0.4683 (3)0.0651 (12)
C30.1810 (6)0.7225 (2)0.5538 (3)0.0580 (11)
C3A0.1573 (5)0.7869 (2)0.5876 (2)0.0538 (10)
C40.2008 (7)0.8123 (2)0.6711 (3)0.0680 (13)
C60.2045 (12)0.9053 (3)0.7664 (3)0.132 (3)
H6A0.13580.88100.80480.159*
H6B0.33540.89770.78410.159*
C70.1711 (14)0.9690 (3)0.7773 (4)0.146 (3)
H7A0.26720.98510.82020.175*
H7B0.05460.97220.80130.175*
C80.1608 (11)1.0132 (3)0.7067 (4)0.114 (2)
H8A0.28491.02210.69270.136*
H8B0.10701.05420.72230.136*
C90.0451 (9)0.9853 (2)0.6305 (4)0.0967 (18)
H9A0.08480.98890.63880.116*
H9B0.06421.01100.58090.116*
C9A0.0868 (7)0.9159 (2)0.6132 (3)0.0679 (12)
C10A0.0859 (6)0.8302 (2)0.5262 (2)0.0533 (10)
C110.1308 (8)0.6661 (3)0.4061 (3)0.0911 (17)
H11A0.25700.65280.40360.137*
H11B0.07700.68040.35090.137*
H11C0.06100.62990.42390.137*
C120.2532 (7)0.6630 (3)0.6007 (4)0.0745 (14)
S510.54855 (18)0.78491 (7)0.40855 (7)0.0753 (4)
O510.7745 (6)0.74580 (18)0.71060 (19)0.0938 (12)
O520.7039 (7)0.8660 (2)0.7032 (3)0.1067 (14)
H52O0.756 (9)0.8281 (18)0.715 (4)0.129*
O530.5648 (7)0.9368 (2)0.6164 (3)0.1136 (15)
N550.7534 (5)0.65997 (19)0.6203 (2)0.0672 (10)
N600.6566 (5)0.66871 (19)0.4739 (2)0.0684 (10)
C520.5490 (6)0.8492 (2)0.4774 (3)0.0683 (13)
C53A0.6617 (5)0.7637 (2)0.5653 (2)0.0535 (10)
C530.6134 (6)0.8322 (2)0.5592 (3)0.0615 (11)
C540.7323 (6)0.7256 (2)0.6369 (3)0.0642 (12)
C560.792 (9)0.6213 (13)0.7004 (13)0.089 (7)0.468 (14)
H56A0.91110.63470.72980.106*0.468 (14)
H56B0.69790.63120.73700.106*0.468 (14)
C570.795 (7)0.5546 (14)0.6872 (16)0.138 (8)0.468 (14)
H57A0.67420.53810.69690.166*0.468 (14)
H57B0.88400.53660.73190.166*0.468 (14)
C580.838 (3)0.5262 (9)0.6076 (14)0.104 (4)0.468 (14)
H58A0.80130.48070.60530.125*0.468 (14)
H58B0.97030.52850.60500.125*0.468 (14)
C590.737 (8)0.5619 (7)0.5322 (15)0.107 (3)0.468 (14)
H59A0.80120.55340.48320.129*0.468 (14)
H59B0.61340.54320.52030.129*0.468 (14)
C56'0.832 (7)0.6170 (11)0.6917 (12)0.089 (7)0.532 (14)
H56C0.95760.63180.71080.106*0.532 (14)
H56D0.75970.62300.73870.106*0.532 (14)
C57'0.840 (6)0.5505 (13)0.6745 (15)0.138 (8)0.532 (14)
H57C0.81240.52750.72510.166*0.532 (14)
H57D0.96680.54010.66650.166*0.532 (14)
C58'0.719 (3)0.5234 (7)0.6019 (12)0.104 (4)0.532 (14)
H58C0.59060.52490.61300.125*0.532 (14)
H58D0.75190.47820.59320.125*0.532 (14)
C59'0.744 (7)0.5631 (6)0.5233 (13)0.107 (3)0.532 (14)
H59C0.86760.55630.50770.129*0.532 (14)
H59D0.65490.54900.47620.129*0.532 (14)
C59A0.7158 (7)0.6339 (2)0.5402 (3)0.0706 (13)
C60A0.6315 (6)0.7326 (2)0.4885 (3)0.0587 (11)
C610.4852 (9)0.9139 (3)0.4415 (4)0.0991 (19)
H61A0.37150.92590.46280.149*
H61B0.46490.91120.38050.149*
H61C0.57830.94620.45820.149*
C620.6225 (8)0.8821 (3)0.6276 (4)0.0836 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0690 (8)0.0763 (8)0.0541 (6)0.0001 (6)0.0000 (5)0.0014 (6)
O10.138 (3)0.083 (2)0.064 (2)0.010 (2)0.025 (2)0.0097 (18)
O20.132 (3)0.069 (2)0.091 (3)0.012 (2)0.014 (2)0.020 (2)
O30.135 (4)0.062 (2)0.114 (3)0.012 (2)0.018 (2)0.004 (2)
N50.094 (3)0.060 (2)0.058 (2)0.001 (2)0.009 (2)0.0030 (18)
N100.065 (2)0.056 (2)0.062 (2)0.0013 (18)0.0050 (18)0.0081 (18)
C20.062 (3)0.065 (3)0.068 (3)0.006 (2)0.011 (2)0.007 (2)
C30.051 (3)0.056 (3)0.069 (3)0.001 (2)0.012 (2)0.004 (2)
C3A0.050 (2)0.056 (3)0.054 (2)0.004 (2)0.0020 (18)0.006 (2)
C40.076 (3)0.066 (3)0.058 (3)0.004 (2)0.004 (2)0.006 (2)
C60.230 (9)0.094 (5)0.064 (4)0.010 (5)0.022 (4)0.022 (3)
C70.252 (11)0.097 (5)0.089 (5)0.004 (6)0.016 (5)0.026 (4)
C80.164 (7)0.083 (4)0.097 (4)0.021 (4)0.030 (4)0.023 (4)
C90.115 (5)0.058 (3)0.112 (4)0.006 (3)0.008 (4)0.001 (3)
C9A0.072 (3)0.055 (3)0.074 (3)0.002 (2)0.003 (2)0.002 (2)
C10A0.048 (2)0.056 (3)0.055 (2)0.003 (2)0.0022 (18)0.003 (2)
C110.100 (4)0.091 (4)0.083 (4)0.001 (3)0.010 (3)0.018 (3)
C120.071 (3)0.061 (3)0.093 (4)0.004 (3)0.014 (3)0.011 (3)
S510.0716 (8)0.0943 (10)0.0577 (7)0.0027 (7)0.0013 (6)0.0137 (6)
O510.132 (3)0.094 (3)0.0509 (19)0.001 (2)0.0072 (19)0.0014 (18)
O520.162 (4)0.082 (3)0.076 (3)0.003 (3)0.016 (3)0.009 (2)
O530.153 (4)0.072 (3)0.121 (3)0.013 (3)0.041 (3)0.002 (2)
N550.072 (3)0.067 (3)0.062 (2)0.003 (2)0.0049 (19)0.0116 (19)
N600.075 (3)0.068 (3)0.062 (2)0.006 (2)0.0056 (19)0.008 (2)
C520.058 (3)0.078 (3)0.070 (3)0.002 (2)0.014 (2)0.014 (2)
C53A0.047 (2)0.062 (3)0.052 (2)0.006 (2)0.0081 (19)0.005 (2)
C530.055 (3)0.066 (3)0.066 (3)0.007 (2)0.019 (2)0.000 (2)
C540.063 (3)0.073 (3)0.056 (3)0.007 (2)0.008 (2)0.004 (2)
C560.105 (19)0.086 (5)0.074 (5)0.014 (6)0.009 (7)0.031 (4)
C570.202 (19)0.090 (6)0.116 (9)0.012 (8)0.011 (10)0.030 (6)
C580.107 (10)0.064 (4)0.138 (7)0.019 (9)0.005 (12)0.012 (5)
C590.147 (7)0.059 (4)0.120 (6)0.002 (4)0.030 (6)0.002 (4)
C56'0.105 (19)0.086 (5)0.074 (5)0.014 (6)0.009 (7)0.031 (4)
C57'0.202 (19)0.090 (6)0.116 (9)0.012 (8)0.011 (10)0.030 (6)
C58'0.107 (10)0.064 (4)0.138 (7)0.019 (9)0.005 (12)0.012 (5)
C59'0.147 (7)0.059 (4)0.120 (6)0.002 (4)0.030 (6)0.002 (4)
C59A0.073 (3)0.064 (3)0.075 (3)0.004 (2)0.009 (3)0.001 (3)
C60A0.047 (2)0.075 (3)0.054 (2)0.003 (2)0.0043 (19)0.004 (2)
C610.107 (5)0.085 (4)0.108 (4)0.012 (3)0.024 (3)0.039 (3)
C620.090 (4)0.080 (4)0.085 (4)0.013 (3)0.027 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—C10A1.712 (4)N55—C541.382 (6)
S1—C21.717 (5)N55—C561.492 (13)
O1—C41.245 (5)N55—C56'1.492 (12)
O2—C121.313 (6)N60—C59A1.299 (6)
O2—H2O0.87 (2)N60—C60A1.346 (6)
O3—C121.204 (6)C52—C531.367 (6)
N5—C9A1.374 (5)C52—C611.495 (6)
N5—C41.384 (6)C53A—C60A1.368 (5)
N5—C61.474 (6)C53A—C541.420 (6)
N10—C9A1.288 (5)C53A—C531.447 (6)
N10—C10A1.352 (5)C53—C621.485 (7)
C2—C31.363 (6)C54—O511.241 (5)
C2—C111.491 (6)C56—C571.385 (13)
C3—C3A1.444 (6)C56—H56A0.9700
C3—C121.489 (6)C56—H56B0.9700
C3A—C10A1.370 (5)C57—C581.45 (2)
C3A—C41.421 (6)C57—H57A0.9700
C4—O11.245 (5)C57—H57B0.9700
C6—C71.342 (7)C58—C591.512 (18)
C6—H6A0.9700C58—H58A0.9700
C6—H6B0.9700C58—H58B0.9700
C7—C81.435 (8)C59—C59A1.490 (13)
C7—H7A0.9700C59—H59A0.9700
C7—H7B0.9700C59—H59B0.9700
C8—C91.498 (7)C56'—C57'1.392 (12)
C8—H8A0.9700C56'—H56C0.9700
C8—H8B0.9700C56'—H56D0.9700
C9—C9A1.487 (6)C57'—C58'1.47 (2)
C9—H9A0.9700C57'—H57C0.9700
C9—H9B0.9700C57'—H57D0.9700
C11—H11A0.9600C58'—C59'1.516 (18)
C11—H11B0.9600C58'—H58C0.9700
C11—H11C0.9600C58'—H58D0.9700
S51—C521.709 (5)C59'—C59A1.494 (12)
S51—C60A1.711 (4)C59'—H59C0.9700
O51—C541.241 (5)C59'—H59D0.9700
O52—C621.312 (7)C61—H61A0.9600
O52—H52O0.871 (19)C61—H61B0.9600
O53—C621.202 (6)C61—H61C0.9600
N55—C59A1.372 (6)
C10A—S1—C291.7 (2)C52—C53—C53A111.3 (4)
C12—O2—H2O113 (4)C52—C53—C62119.6 (5)
C9A—N5—C4122.6 (4)C53A—C53—C62129.1 (4)
C9A—N5—C6121.0 (4)O51—C54—N55118.9 (4)
C4—N5—C6116.4 (4)O51—C54—N55118.9 (4)
C9A—N10—C10A115.4 (4)O51—C54—C53A126.1 (5)
C3—C2—C11130.6 (5)O51—C54—C53A126.1 (5)
C3—C2—S1112.8 (3)N55—C54—C53A115.0 (4)
C11—C2—S1116.6 (4)C57—C56—N55114 (2)
C2—C3—C3A111.1 (4)C57—C56—H56A108.8
C2—C3—C12120.8 (4)N55—C56—H56A108.8
C3A—C3—C12128.0 (4)C57—C56—H56B108.8
C10A—C3A—C4116.4 (4)N55—C56—H56B108.8
C10A—C3A—C3112.5 (4)H56A—C56—H56B107.7
C4—C3A—C3131.0 (4)C56—C57—C58122 (3)
O1—C4—N5118.8 (4)C56—C57—H57A106.8
O1—C4—N5118.8 (4)C58—C57—H57A106.8
O1—C4—C3A126.0 (4)C56—C57—H57B106.8
O1—C4—C3A126.0 (4)C58—C57—H57B106.8
N5—C4—C3A115.2 (4)H57A—C57—H57B106.6
C7—C6—N5118.0 (6)C57—C58—C59110.9 (19)
C7—C6—H6A107.8C57—C58—H58A109.5
N5—C6—H6A107.8C59—C58—H58A109.5
C7—C6—H6B107.8C57—C58—H58B109.5
N5—C6—H6B107.8C59—C58—H58B109.5
H6A—C6—H6B107.1H58A—C58—H58B108.0
C6—C7—C8120.6 (6)C59A—C59—C58117.1 (17)
C6—C7—H7A107.2C59A—C59—H59A108.0
C8—C7—H7A107.2C58—C59—H59A108.0
C6—C7—H7B107.2C59A—C59—H59B108.0
C8—C7—H7B107.2C58—C59—H59B108.0
H7A—C7—H7B106.8H59A—C59—H59B107.3
C7—C8—C9110.9 (5)C57'—C56'—N55116.8 (18)
C7—C8—H8A109.5C57'—C56'—H56C108.1
C9—C8—H8A109.5N55—C56'—H56C108.1
C7—C8—H8B109.5C57'—C56'—H56D108.1
C9—C8—H8B109.5N55—C56'—H56D108.1
H8A—C8—H8B108.1H56C—C56'—H56D107.3
C9A—C9—C8114.1 (5)C56'—C57'—C58'119 (2)
C9A—C9—H9A108.7C56'—C57'—H57C107.4
C8—C9—H9A108.7C58'—C57'—H57C107.4
C9A—C9—H9B108.7C56'—C57'—H57D107.4
C8—C9—H9B108.7C58'—C57'—H57D107.5
H9A—C9—H9B107.6H57C—C57'—H57D107.0
N10—C9A—N5123.2 (4)C57'—C58'—C59'108.7 (19)
N10—C9A—C9118.6 (4)C57'—C58'—H58C110.0
N5—C9A—C9118.2 (4)C59'—C58'—H58C110.0
N10—C10A—C3A127.2 (4)C57'—C58'—H58D110.0
N10—C10A—S1121.0 (3)C59'—C58'—H58D110.0
C3A—C10A—S1111.8 (3)H58C—C58'—H58D108.3
C2—C11—H11A109.5C59A—C59'—C58'110.1 (15)
C2—C11—H11B109.5C59A—C59'—H59C109.6
H11A—C11—H11B109.5C58'—C59'—H59C109.6
C2—C11—H11C109.5C59A—C59'—H59D109.6
H11A—C11—H11C109.5C58'—C59'—H59D109.6
H11B—C11—H11C109.5H59C—C59'—H59D108.2
O3—C12—O2118.8 (5)N60—C59A—N55122.8 (4)
O3—C12—C3122.5 (5)N60—C59A—C59120.2 (10)
O2—C12—C3118.7 (5)N55—C59A—C59117.0 (10)
C52—S51—C60A92.2 (2)N60—C59A—C59'115.4 (9)
C62—O52—H52O124 (3)N55—C59A—C59'121.9 (9)
C59A—N55—C54122.7 (4)N60—C60A—C53A126.6 (4)
C59A—N55—C56124.9 (12)N60—C60A—S51121.8 (3)
C54—N55—C56111.7 (12)C53A—C60A—S51111.6 (3)
C59A—N55—C56'119.0 (10)C52—C61—H61A109.5
C54—N55—C56'118.2 (10)C52—C61—H61B109.5
C59A—N60—C60A115.8 (4)H61A—C61—H61B109.5
C53—C52—C61129.8 (5)C52—C61—H61C109.5
C53—C52—S51112.4 (4)H61A—C61—H61C109.5
C61—C52—S51117.8 (4)H61B—C61—H61C109.5
C60A—C53A—C54117.1 (4)O53—C62—O52118.6 (6)
C60A—C53A—C53112.4 (4)O53—C62—C53123.5 (6)
C54—C53A—C53130.5 (4)O52—C62—C53117.9 (5)
C10A—S1—C2—C30.1 (4)C59A—N55—C54—O51177.8 (4)
C10A—S1—C2—C11178.4 (4)C56—N55—C54—O5111 (3)
C11—C2—C3—C3A178.0 (5)C56'—N55—C54—O512 (2)
S1—C2—C3—C3A0.2 (5)C59A—N55—C54—O51177.8 (4)
C11—C2—C3—C122.1 (8)C56—N55—C54—O5111 (3)
S1—C2—C3—C12179.7 (3)C56'—N55—C54—O512 (2)
C2—C3—C3A—C10A0.3 (5)C59A—N55—C54—C53A2.4 (6)
C12—C3—C3A—C10A179.6 (4)C56—N55—C54—C53A169 (3)
C2—C3—C3A—C4177.3 (4)C56'—N55—C54—C53A178 (2)
C12—C3—C3A—C42.8 (8)C60A—C53A—C54—O51177.1 (5)
C9A—N5—C4—O1177.0 (5)C53—C53A—C54—O513.2 (8)
C6—N5—C4—O10.2 (8)C60A—C53A—C54—O51177.1 (5)
C9A—N5—C4—O1177.0 (5)C53—C53A—C54—O513.2 (8)
C6—N5—C4—O10.2 (8)C60A—C53A—C54—N553.1 (6)
C9A—N5—C4—C3A2.2 (7)C53—C53A—C54—N55176.6 (4)
C6—N5—C4—C3A179.5 (5)C59A—N55—C56—C573 (6)
C10A—C3A—C4—O1176.9 (5)C54—N55—C56—C57174 (4)
C3—C3A—C4—O10.6 (8)C56'—N55—C56—C5765 (10)
C10A—C3A—C4—O1176.9 (5)N55—C56—C57—C5825 (7)
C3—C3A—C4—O10.6 (8)C56—C57—C58—C5944 (6)
C10A—C3A—C4—N52.2 (6)C57—C58—C59—C59A37 (5)
C3—C3A—C4—N5179.7 (4)C59A—N55—C56'—C57'9 (5)
C9A—N5—C6—C70.7 (11)C54—N55—C56'—C57'176 (3)
C4—N5—C6—C7178.0 (8)C56—N55—C56'—C57'111 (15)
N5—C6—C7—C823.3 (14)N55—C56'—C57'—C58'20 (6)
C6—C7—C8—C945.4 (12)C56'—C57'—C58'—C59'52 (4)
C7—C8—C9—C9A45.3 (8)C57'—C58'—C59'—C59A53 (4)
C10A—N10—C9A—N50.1 (7)C60A—N60—C59A—N550.8 (7)
C10A—N10—C9A—C9178.2 (5)C60A—N60—C59A—C59176 (3)
C4—N5—C9A—N101.2 (8)C60A—N60—C59A—C59'180 (2)
C6—N5—C9A—N10178.3 (6)C54—N55—C59A—N600.4 (7)
C4—N5—C9A—C9179.4 (5)C56—N55—C59A—N60170 (3)
C6—N5—C9A—C93.6 (8)C56'—N55—C59A—N60176 (2)
C8—C9—C9A—N10155.3 (5)C54—N55—C59A—C59177 (3)
C8—C9—C9A—N526.4 (8)C56—N55—C59A—C597 (4)
C9A—N10—C10A—C3A0.2 (7)C56'—N55—C59A—C597 (4)
C9A—N10—C10A—S1178.8 (3)C54—N55—C59A—C59'179 (2)
C4—C3A—C10A—N101.3 (7)C56—N55—C59A—C59'11 (4)
C3—C3A—C10A—N10179.3 (4)C56'—N55—C59A—C59'3 (3)
C4—C3A—C10A—S1177.7 (3)C58—C59—C59A—N60169 (2)
C3—C3A—C10A—S10.2 (5)C58—C59—C59A—N5514 (5)
C2—S1—C10A—N10179.2 (4)C58—C59—C59A—C59'131 (38)
C2—S1—C10A—C3A0.1 (3)C58'—C59'—C59A—N60152.3 (19)
C2—C3—C12—O33.2 (8)C58'—C59'—C59A—N5529 (4)
C3A—C3—C12—O3176.6 (5)C58'—C59'—C59A—C599 (33)
C2—C3—C12—O2176.1 (5)C59A—N60—C60A—C53A0.1 (7)
C3A—C3—C12—O24.0 (7)C59A—N60—C60A—S51178.3 (4)
C60A—S51—C52—C531.0 (4)C54—C53A—C60A—N602.2 (7)
C60A—S51—C52—C61179.9 (4)C53—C53A—C60A—N60177.5 (4)
C61—C52—C53—C53A179.5 (5)C54—C53A—C60A—S51179.5 (3)
S51—C52—C53—C53A0.7 (5)C53—C53A—C60A—S510.8 (5)
C61—C52—C53—C621.5 (8)C52—S51—C60A—N60177.4 (4)
S51—C52—C53—C62179.7 (4)C52—S51—C60A—C53A1.0 (3)
C60A—C53A—C53—C520.0 (5)C52—C53—C62—O534.9 (8)
C54—C53A—C53—C52179.7 (4)C53A—C53—C62—O53173.9 (5)
C60A—C53A—C53—C62178.8 (5)C52—C53—C62—O52172.6 (5)
C54—C53A—C53—C620.8 (8)C53A—C53—C62—O528.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.87 (2)1.63 (2)2.501 (5)177 (7)
O52—H52O···O510.87 (2)1.71 (3)2.518 (6)154 (4)

Experimental details

Crystal data
Chemical formulaC12H12N2O3S
Mr264.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.2550 (15), 20.506 (4), 15.824 (3)
β (°) 96.93 (3)
V3)2337.0 (8)
Z8
Radiation typeCu Kα
µ (mm1)2.50
Crystal size (mm)0.60 × 0.40 × 0.15
Data collection
DiffractometerStoe STADI4
diffractometer
Absorption correctionψ scan
(Blessing, 1987)
Tmin, Tmax0.346, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
4297, 3438, 2420
Rint0.047
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.169, 1.10
No. of reflections3438
No. of parameters348
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.87 (2)1.63 (2)2.501 (5)177 (7)
O52—H52O···O510.871 (19)1.71 (3)2.518 (6)154 (4)
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grants FA-F3-T045 and FA-F3-T047)

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1987). Crystallogr. Rev. 1, 3–58.  CrossRef Google Scholar
First citationBozorov, K. A., Elmuradov, B. Z., Okmanov, R. Y., Tashkhodjaev, B. & Shakhidoyatov, K. M. (2010). Acta Cryst. E66, o552–o553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCsukonyi, K., Lazar, J., Bernath, G., Hermecz, I. & Meszaros, Z. (1986). Monatsh. Chem. 117, 1295–1303.  CrossRef CAS Web of Science Google Scholar
First citationElmuradov, B. Zh., Bozorov, Kh. A. & Shakhidoyatov, Kh. M. (2010). Khim. Get. Soedin. pp. 1717–1724.  Google Scholar
First citationLilienkampf, A., Heikkinen, S., Mutikainen, I. & Wähäla, K. (2007). Synthesis, pp. 2699–2705.  Google Scholar
First citationLitvinov, V. P. (2004). Izv. Akad. Nauk. Ser. Khim. 3, 463–490.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds