organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro­phen­yl)-6-hy­dr­oxy-5-(thio­phen-2-ylcarbon­yl)-6-tri­fluoro­methyl-1,3-diazinan-2-one

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and bInstitute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xuchang_hq@yahoo.com.cn

(Received 20 January 2011; accepted 23 February 2011; online 2 March 2011)

In the title compound, C16H12F4N2O3S, the pyrimidine ring adopts a half-chair conformation; the mean plane formed by the ring atoms excluding the C atom bonded to the thio­phen-2-ylcarbonyl group has an r.m.s. deviation of 0.059 Å. The dihedral angle between the benzene and thio­phene rings is 62.26 (7)°. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, generating an S(6) ring. In the crystal, adjacent mol­ecules are connected via a centrosymmetric R22(6) motif, formed by N—H⋯O hydrogen bonds.

Related literature

For the bioactivity of dihydro­pyrimidines, see: Cochran et al. (2005[Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658-12667.]); Zorkun et al. (2006[Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582-8589.]); Moran et al. (2007[Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.]). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003[Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.]); Ulrich (2004[Ulrich, H. (2004). US Patent No. 2 004 033 897.]). For a related structure, see: Mosslemin et al. (2009[Mosslemin, M. H., Nateghi, M. R., Sadoughi, H. & Lamei, A. (2009). Acta Cryst. E65, o1339.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12F4N2O3S

  • Mr = 388.34

  • Triclinic, [P \overline 1]

  • a = 6.6032 (10) Å

  • b = 10.4541 (16) Å

  • c = 12.4906 (18) Å

  • α = 77.136 (12)°

  • β = 78.940 (13)°

  • γ = 72.839 (11)°

  • V = 795.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 113 K

  • 0.18 × 0.06 × 0.06 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.953, Tmax = 0.984

  • 10393 measured reflections

  • 3784 independent reflections

  • 2531 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.082

  • S = 0.95

  • 3784 reflections

  • 247 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.79 (2) 2.38 (2) 2.9609 (18) 131.7 (19)
N1—H1⋯O3i 0.858 (19) 1.99 (2) 2.851 (2) 175.9 (18)
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2009[Rigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun et al., 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran et al., 2005) and as TRPA1 modulators for treating pain (Moran et al., 2007). In addition, compounds that contain fluorine have special bioactivity, e.g. flumioxazin is a widely used herbicide (Hermann et al., 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate C16H12F4N2O3S (I) was isolated and the structure confirmed by X-ray diffraction.

In the structure of the title compound, the dihydropyrimidine ring adopts a half-chair conformation with the C7/C8/C9/N1/N2 are nearly coplanar. The dihedral angle is 53.77 (5) ° between the dihydropyrimidine rings and the phenyl rings, and 80.57 (6) ° between the dihydropyrimidine rings and thiophene rings, respectively. The dihedral angle between the phenyl rings and thiophene rings is 62.26 (7) °. The molecular conformation is stabilized by intramolecular O—H···O hydrogen bond, generating an S(6) ring. In the crystal, adjacent molecules are connected via a centrosymmetric R22(6) motif, formed by N—H···O hydrogen bonds. For a crystal structure related to the title compound, see: Mosslemin et al., 2009.

Related literature top

For the bioactivity of dihydropyrimidines, see: Cochran et al. (2005); Zorkun et al. (2006); Moran et al. (2007). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004). For a related structure, see: Mosslemin et al. (2009).

Experimental top

The title compound was synthesized refluxing for 3 h a stirred solution of 3-fluorobenzaldehyde (0.24 g, 2 mmol), 4,4,4-trifluoro-1- (thiophen-2-yl)butane-1,3-dione (0.51 g, 2.3 mmol) and urea (0.18 g, 3 mmol) in 3 ml of anhydrous ethanol, the reaction catalyzed by sulfamic acid (0.06 g). The solvent was evaporated in vacuo and the residue was washed with water. The title compound was recrystallized from 50% aqueous ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement top

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C–H(aromatic) = 0.95 Å and C–H(aliphatic) = 1.00 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2009); cell refinement: CrystalClear (Rigaku, 2009); data reduction: CrystalClear (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 50% probability level.
4-(3-Fluorophenyl)-6-hydroxy-5-(thiophen-2-ylcarbonyl)-6-trifluoromethyl- 1,3-diazinan-2-one top
Crystal data top
C16H12F4N2O3SZ = 2
Mr = 388.34F(000) = 396
Triclinic, P1Dx = 1.621 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6032 (10) ÅCell parameters from 3248 reflections
b = 10.4541 (16) Åθ = 1.7–31.2°
c = 12.4906 (18) ŵ = 0.27 mm1
α = 77.136 (12)°T = 113 K
β = 78.940 (13)°Prism, colourless
γ = 72.839 (11)°0.18 × 0.06 × 0.06 mm
V = 795.8 (2) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3784 independent reflections
Radiation source: rotating anode2531 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.045
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω and ϕ scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
k = 1313
Tmin = 0.953, Tmax = 0.984l = 1616
10393 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0352P)2]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H12F4N2O3Sγ = 72.839 (11)°
Mr = 388.34V = 795.8 (2) Å3
Triclinic, P1Z = 2
a = 6.6032 (10) ÅMo Kα radiation
b = 10.4541 (16) ŵ = 0.27 mm1
c = 12.4906 (18) ÅT = 113 K
α = 77.136 (12)°0.18 × 0.06 × 0.06 mm
β = 78.940 (13)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3784 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)
2531 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.984Rint = 0.045
10393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.36 e Å3
3784 reflectionsΔρmin = 0.24 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10178 (8)0.67205 (5)0.43354 (4)0.02686 (14)
F10.54415 (17)0.42910 (11)0.11049 (10)0.0313 (3)
F20.38941 (17)1.06273 (11)0.41921 (8)0.0275 (3)
F30.26149 (16)1.25835 (10)0.32224 (9)0.0227 (3)
F40.09036 (16)1.10363 (11)0.35651 (9)0.0267 (3)
O10.15491 (18)0.87185 (12)0.22648 (10)0.0199 (3)
O20.2727 (2)1.13183 (13)0.14128 (10)0.0167 (3)
H20.178 (3)1.097 (2)0.1497 (18)0.036 (7)*
O30.89825 (18)1.13035 (12)0.07872 (10)0.0176 (3)
N10.7582 (2)0.95351 (15)0.08904 (13)0.0146 (3)
N20.5923 (2)1.12219 (16)0.19491 (12)0.0153 (3)
C10.1989 (3)0.5998 (2)0.55599 (16)0.0278 (5)
H1A0.13690.53940.61200.033*
C20.3737 (3)0.63720 (19)0.56549 (16)0.0254 (5)
H2B0.44740.60650.62860.031*
C30.4332 (3)0.72758 (18)0.46990 (15)0.0198 (4)
H30.55230.76400.46150.024*
C40.3001 (3)0.75680 (18)0.39064 (15)0.0174 (4)
C50.2979 (3)0.84873 (17)0.28367 (15)0.0152 (4)
C60.4813 (3)0.91633 (17)0.24203 (14)0.0131 (4)
H60.58620.88330.29660.016*
C70.4045 (3)1.07322 (17)0.22502 (14)0.0130 (4)
C80.7569 (3)1.07005 (17)0.11741 (14)0.0140 (4)
C90.5952 (3)0.87853 (17)0.12902 (14)0.0130 (4)
H90.48800.90890.07570.016*
C100.6952 (3)0.72647 (17)0.13508 (14)0.0135 (4)
C110.5744 (3)0.64573 (18)0.11689 (15)0.0161 (4)
H110.43200.68460.10050.019*
C120.6671 (3)0.50868 (18)0.12332 (15)0.0187 (4)
C130.8746 (3)0.44660 (18)0.14207 (15)0.0196 (4)
H130.93450.35180.14340.024*
C140.9932 (3)0.52851 (18)0.15906 (15)0.0203 (4)
H141.13750.48930.17220.024*
C150.9039 (3)0.66661 (18)0.15703 (14)0.0168 (4)
H150.98600.72070.17080.020*
C160.2862 (3)1.12363 (18)0.33183 (15)0.0174 (4)
H2A0.572 (3)1.207 (2)0.1936 (16)0.021 (5)*
H10.862 (3)0.9241 (19)0.0400 (16)0.023 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0281 (3)0.0272 (3)0.0271 (3)0.0167 (2)0.0034 (2)0.0019 (2)
F10.0319 (7)0.0164 (6)0.0517 (8)0.0106 (5)0.0110 (6)0.0081 (5)
F20.0390 (7)0.0251 (6)0.0174 (6)0.0029 (5)0.0083 (5)0.0050 (5)
F30.0261 (6)0.0143 (5)0.0276 (6)0.0042 (5)0.0008 (5)0.0086 (5)
F40.0218 (6)0.0281 (6)0.0318 (6)0.0120 (5)0.0092 (5)0.0122 (5)
O10.0183 (7)0.0207 (7)0.0236 (7)0.0083 (6)0.0065 (6)0.0020 (6)
O20.0158 (7)0.0149 (7)0.0209 (7)0.0060 (6)0.0054 (6)0.0011 (5)
O30.0141 (6)0.0139 (6)0.0258 (7)0.0070 (5)0.0009 (5)0.0041 (6)
N10.0133 (8)0.0118 (8)0.0193 (8)0.0052 (6)0.0008 (7)0.0041 (6)
N20.0151 (8)0.0112 (8)0.0208 (8)0.0045 (7)0.0011 (6)0.0052 (7)
C10.0352 (12)0.0204 (10)0.0217 (10)0.0081 (9)0.0087 (9)0.0009 (8)
C20.0341 (12)0.0215 (10)0.0170 (10)0.0047 (9)0.0016 (9)0.0008 (8)
C30.0221 (10)0.0180 (10)0.0191 (10)0.0067 (8)0.0010 (8)0.0023 (8)
C40.0178 (9)0.0158 (9)0.0189 (9)0.0069 (8)0.0029 (8)0.0052 (8)
C50.0156 (9)0.0122 (9)0.0187 (9)0.0042 (8)0.0017 (8)0.0070 (7)
C60.0123 (9)0.0115 (9)0.0161 (9)0.0039 (7)0.0028 (7)0.0020 (7)
C70.0143 (9)0.0114 (8)0.0149 (9)0.0049 (7)0.0039 (7)0.0021 (7)
C80.0136 (9)0.0115 (9)0.0167 (9)0.0028 (7)0.0062 (7)0.0005 (7)
C90.0127 (9)0.0118 (9)0.0159 (9)0.0066 (7)0.0012 (7)0.0017 (7)
C100.0172 (9)0.0114 (9)0.0118 (8)0.0048 (8)0.0007 (7)0.0014 (7)
C110.0147 (9)0.0137 (9)0.0205 (9)0.0042 (7)0.0034 (8)0.0029 (7)
C120.0243 (10)0.0157 (9)0.0211 (10)0.0124 (8)0.0032 (8)0.0036 (8)
C130.0233 (10)0.0116 (9)0.0198 (10)0.0019 (8)0.0011 (8)0.0010 (8)
C140.0162 (10)0.0177 (10)0.0242 (10)0.0024 (8)0.0034 (8)0.0001 (8)
C150.0179 (10)0.0153 (9)0.0182 (9)0.0068 (8)0.0039 (8)0.0002 (8)
C160.0177 (10)0.0124 (9)0.0220 (10)0.0041 (8)0.0026 (8)0.0028 (8)
Geometric parameters (Å, º) top
S1—C11.702 (2)C3—C41.374 (2)
S1—C41.7293 (18)C3—H30.9500
F1—C121.3730 (19)C4—C51.462 (2)
F2—C161.335 (2)C5—C61.528 (2)
F3—C161.3495 (19)C6—C91.543 (2)
F4—C161.3372 (19)C6—C71.545 (2)
O1—C51.228 (2)C6—H61.0000
O2—C71.406 (2)C7—C161.529 (2)
O2—H20.79 (2)C9—C101.521 (2)
O3—C81.2414 (19)C9—H91.0000
N1—C81.340 (2)C10—C151.388 (2)
N1—C91.462 (2)C10—C111.397 (2)
N1—H10.858 (19)C11—C121.373 (2)
N2—C81.377 (2)C11—H110.9500
N2—C71.433 (2)C12—C131.372 (2)
N2—H2A0.855 (19)C13—C141.390 (2)
C1—C21.356 (3)C13—H130.9500
C1—H1A0.9500C14—C151.386 (2)
C2—C31.417 (2)C14—H140.9500
C2—H2B0.9500C15—H150.9500
C1—S1—C491.22 (10)C16—C7—C6111.98 (14)
C7—O2—H2111.1 (16)O3—C8—N1123.00 (17)
C8—N1—C9126.08 (16)O3—C8—N2119.39 (16)
C8—N1—H1115.4 (13)N1—C8—N2117.60 (16)
C9—N1—H1118.4 (13)N1—C9—C10110.62 (14)
C8—N2—C7121.26 (15)N1—C9—C6107.74 (14)
C8—N2—H2A113.8 (13)C10—C9—C6112.89 (14)
C7—N2—H2A115.5 (12)N1—C9—H9108.5
C2—C1—S1113.23 (15)C10—C9—H9108.5
C2—C1—H1A123.4C6—C9—H9108.5
S1—C1—H1A123.4C15—C10—C11119.36 (16)
C1—C2—C3111.78 (18)C15—C10—C9121.52 (15)
C1—C2—H2B124.1C11—C10—C9119.11 (15)
C3—C2—H2B124.1C12—C11—C10118.21 (16)
C4—C3—C2112.76 (17)C12—C11—H11120.9
C4—C3—H3123.6C10—C11—H11120.9
C2—C3—H3123.6C13—C12—C11123.99 (17)
C3—C4—C5130.49 (16)C13—C12—F1118.16 (16)
C3—C4—S1111.01 (14)C11—C12—F1117.84 (16)
C5—C4—S1118.45 (14)C12—C13—C14117.07 (17)
O1—C5—C4121.99 (16)C12—C13—H13121.5
O1—C5—C6119.49 (16)C14—C13—H13121.5
C4—C5—C6118.52 (15)C15—C14—C13120.89 (17)
C5—C6—C9109.89 (14)C15—C14—H14119.6
C5—C6—C7112.76 (14)C13—C14—H14119.6
C9—C6—C7106.99 (13)C14—C15—C10120.42 (17)
C5—C6—H6109.0C14—C15—H15119.8
C9—C6—H6109.0C10—C15—H15119.8
C7—C6—H6109.0F2—C16—F4107.48 (14)
O2—C7—N2108.42 (14)F2—C16—F3106.62 (15)
O2—C7—C16108.32 (14)F4—C16—F3106.94 (14)
N2—C7—C16107.11 (14)F2—C16—C7112.78 (14)
O2—C7—C6113.95 (14)F4—C16—C7111.68 (15)
N2—C7—C6106.77 (14)F3—C16—C7111.02 (14)
C4—S1—C1—C20.06 (16)C8—N1—C9—C624.5 (2)
S1—C1—C2—C30.2 (2)C5—C6—C9—N1175.83 (13)
C1—C2—C3—C40.4 (2)C7—C6—C9—N153.10 (17)
C2—C3—C4—C5176.81 (18)C5—C6—C9—C1061.73 (18)
C2—C3—C4—S10.3 (2)C7—C6—C9—C10175.53 (13)
C1—S1—C4—C30.16 (15)N1—C9—C10—C1530.8 (2)
C1—S1—C4—C5177.37 (15)C6—C9—C10—C1590.03 (19)
C3—C4—C5—O1173.57 (18)N1—C9—C10—C11148.51 (15)
S1—C4—C5—O13.4 (2)C6—C9—C10—C1190.68 (19)
C3—C4—C5—C67.1 (3)C15—C10—C11—C121.0 (3)
S1—C4—C5—C6175.94 (13)C9—C10—C11—C12179.65 (16)
O1—C5—C6—C957.9 (2)C10—C11—C12—C132.8 (3)
C4—C5—C6—C9121.40 (17)C10—C11—C12—F1177.01 (15)
O1—C5—C6—C761.3 (2)C11—C12—C13—C142.2 (3)
C4—C5—C6—C7119.34 (17)F1—C12—C13—C14177.57 (16)
C8—N2—C7—O278.04 (19)C12—C13—C14—C150.0 (3)
C8—N2—C7—C16165.27 (15)C13—C14—C15—C101.7 (3)
C8—N2—C7—C645.1 (2)C11—C10—C15—C141.1 (3)
C5—C6—C7—O264.89 (19)C9—C10—C15—C14178.19 (16)
C9—C6—C7—O256.04 (18)O2—C7—C16—F2173.58 (13)
C5—C6—C7—N2175.45 (14)N2—C7—C16—F269.67 (18)
C9—C6—C7—N263.62 (17)C6—C7—C16—F247.07 (19)
C5—C6—C7—C1658.50 (19)O2—C7—C16—F452.41 (18)
C9—C6—C7—C16179.43 (14)N2—C7—C16—F4169.17 (13)
C9—N1—C8—O3178.49 (15)C6—C7—C16—F474.09 (18)
C9—N1—C8—N22.9 (2)O2—C7—C16—F366.84 (18)
C7—N2—C8—O3167.11 (15)N2—C7—C16—F349.92 (18)
C7—N2—C8—N114.3 (2)C6—C7—C16—F3166.66 (14)
C8—N1—C9—C10148.29 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.79 (2)2.38 (2)2.9609 (18)131.7 (19)
N1—H1···O3i0.858 (19)1.99 (2)2.851 (2)175.9 (18)
Symmetry code: (i) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H12F4N2O3S
Mr388.34
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.6032 (10), 10.4541 (16), 12.4906 (18)
α, β, γ (°)77.136 (12), 78.940 (13), 72.839 (11)
V3)795.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.18 × 0.06 × 0.06
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2009)
Tmin, Tmax0.953, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10393, 3784, 2531
Rint0.045
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.082, 0.95
No. of reflections3784
No. of parameters247
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: CrystalClear (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.79 (2)2.38 (2)2.9609 (18)131.7 (19)
N1—H1···O3i0.858 (19)1.99 (2)2.851 (2)175.9 (18)
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

This work was supported by the Foundation of Henan Educational Committee (grant Nos. 2009B150023, 2010B150026).

References

First citationCochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284.  Google Scholar
First citationMoran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent No. 2 007 073 505.  Google Scholar
First citationMosslemin, M. H., Nateghi, M. R., Sadoughi, H. & Lamei, A. (2009). Acta Cryst. E65, o1339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2009). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUlrich, H. (2004). US Patent No. 2 004 033 897.  Google Scholar
First citationZorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). Bioorg. Med. Chem. 14, 8582–8589.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds