metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-(5,5′-diazenediyldi­tetra­zolido)-dicaesium]

aSchool of Environmental Engineering, Chang'an University, South Second Cycle Road 368#, Xi'an 710064, Shaanxi, People's Republic of China
*Correspondence e-mail: myancau@163.com

(Received 6 February 2011; accepted 4 March 2011; online 15 March 2011)

The asymmetric unit of the title compound, [Cs2(C2N10)]n, comprises a Cs+ cation, and one-half of a 5,5′-diazenediylditetra­zolide anion. The Cs+ cation is six-coordinated by N atoms from six 5,5′-diazenediylditetra­zolide ligands. Each 5,5′-diazenediylditetra­zolide ligand is surrounded by 12 Cs+ cations, coordinating through ten N atoms. The Cs+ cations are arranged in a chain along the a-axis direction with a Cs⋯Cs separation of 4.4393 (10) Å. Such coordination leads to the formation of the three-dimensional framework.

Related literature

For applications of 5,5′-diazenediylditetra­zolide salts, see: Hammerl et al. (2001[Hammerl, A., Holl, G., Kaiser, M., Klapötke, T. M., Nöth, H., Ticmanis, U. & Warchhold, M. (2001). Inorg. Chem. 40, 3570-3575.]). For the synthesis of sodium 5,5′-diazenediylditetra­zolide, see: Thiele (1892[Thiele, J. (1892). Justus Liebigs Ann. Chem. 270, 54-63.]). For the synthesis and characterization of alkali and alkaline earth metal salts of 5,5′-diazenediylditetra­zolide, see: Hammerl et al. (2002[Hammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834-845.]); Steinhauser et al. (2009[Steinhauser, G., Giester, G., Wagner, C., Leopold, N., Sterba, J. H., Lendl, B. & Bichler, M. (2009). Helv. Chim. Acta, 92, 1371-1384.]). For Cs—N bond lengths, see: Ebespächer et al. (2009[Ebespächer, M., Klapötke, T. M. & Sabaté, C. M. (2009). New J. Chem. 33, 517-527.]).

[Scheme 1]

Experimental

Crystal data
  • [Cs2(C2N10)]

  • Mr = 429.94

  • Monoclinic, P 21 /c

  • a = 4.4393 (9) Å

  • b = 8.7151 (17) Å

  • c = 11.860 (2) Å

  • β = 93.83 (3)°

  • V = 457.82 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.94 mm−1

  • T = 293 K

  • 0.42 × 0.26 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.135, Tmax = 0.606

  • 4146 measured reflections

  • 842 independent reflections

  • 747 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.15

  • 842 reflections

  • 64 parameters

  • Δρmax = 1.36 e Å−3

  • Δρmin = −1.47 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Salts of 5,5'-diazenediylditetrazolide are powerful gas generation agents and can be used in gas generators for airbags and fire extinguishing systems (Hammerl et al., 2001). Thiele first prepared sodium 5,5'-diazenediylditetrazolide (Thiele, 1892), which is usually used as the starting material for other 5,5'-diazenediylditetrazolide compounds. Up to now, although many alkali-and alkaline earth metal salts of 5,5'-diazenediylditetrazolide have been prepared (Hammerl et al., 2002; Steinhauser et al.,2009), more work still needs to be done. In this paper, we report the crystal structure of the title compound, (I), a new Cs complex obtained by the reaction of sodium 5,5'-diazenediylditetrazolide and CsCl in water.

The asymmetric unit of the title compound comprises a Cs+ cation, and a half of 5,5'-diazenediylditetrazolide anion. The central cation is coordinated to six N atoms from six 5,5'-diazenediylditetrazolide ligands (Fig. 1) with the Cs—N distances ranging from 3.225 (6) Å to 3.341 (5) Å, which are well within the range reported in the literature (Ebespächer et al., 2009). The atom N2 from the tetrazole rings acts as µ3-bridge. Thus, each 5,5'-diazenediylditetrazolide anion links twelve Cs+ cations through ten nitrogen atoms. The Cs+ cations are arranged in a one-dimensional chain along the a-axis direction with the Cs+ ··· Cs+ separation of 4.4393 (10) Å. Such linking mode leads to the formation of the three-dimensional framework of the title compound (Fig. 2).

Related literature top

For applications of 5,5'-diazenediylditetrazolide salts, see: Hammerl et al. (2001). For the synthesis of sodium 5,5'-diazenediylditetrazolide, see: Thiele (1892). For the synthesis and characterization of alkali and alkaline earth metal salts of 5,5'-diazenediylditetrazolide, see: Hammerl et al. (2002); Steinhauser et al. (2009). For the Cs—N bond lengths, see: Ebespächer et al. (2009). Author: scheme should show the polymeric nature of the title compound

Experimental top

To a solution of sodium 5,5'-diazenediylditetrazolide in 20 ml bidistilled water, a solution of CsCl was added dropwise at room temperature. After stirring for 30 minutes a yellow solution was obtained after filtration. The filtrate was then set aside for crystallization at room temperature. Three weeks later, yellow block crystals of the title compound suitable for X-ray determination were isolated.

Refinement top

All atoms were refined anisotropically. The maximum residual electron density of 1.36 e Å-3 is located 1.11 Å from Cs1 and the minimum density of -1.46 e Å-3 lies 0.83 Å from Cs1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), with 30% probability displacement ellipsoids. Symmetry code: (i) – x, – y + 1, – z + 1; (ii) x + 1, y, z; (iii) – x, y – 1/2, – z + 1/2; (iv) x + 1, – y + 1/2, z – 1/2; (v) – x – 1, y + 1/2, – z + 1/2;(vi) x, – y + 1/2, z – 1/2.
[Figure 2] Fig. 2. The three-dimensional framework of (I).
Poly[µ-(5,5'-diazenediylditetrazolido)-dicaesium] top
Crystal data top
[Cs2(C2N10)]F(000) = 384
Mr = 429.94Dx = 3.119 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1601 reflections
a = 4.4393 (9) Åθ = 3.4–25.4°
b = 8.7151 (17) ŵ = 7.94 mm1
c = 11.860 (2) ÅT = 293 K
β = 93.83 (3)°Block, yellow
V = 457.82 (16) Å30.42 × 0.26 × 0.07 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
842 independent reflections
Radiation source: fine-focus sealed tube747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.3°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 54
Tmin = 0.135, Tmax = 0.606k = 1010
4146 measured reflectionsl = 1214
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.031Secondary atom site location: difference Fourier map
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.5977P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
842 reflectionsΔρmax = 1.36 e Å3
64 parametersΔρmin = 1.47 e Å3
Crystal data top
[Cs2(C2N10)]V = 457.82 (16) Å3
Mr = 429.94Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.4393 (9) ŵ = 7.94 mm1
b = 8.7151 (17) ÅT = 293 K
c = 11.860 (2) Å0.42 × 0.26 × 0.07 mm
β = 93.83 (3)°
Data collection top
Bruker SMART CCD
diffractometer
842 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
747 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.606Rint = 0.047
4146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03164 parameters
wR(F2) = 0.0820 restraints
S = 1.15Δρmax = 1.36 e Å3
842 reflectionsΔρmin = 1.47 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.08959 (8)0.47092 (5)0.19017 (3)0.0345 (2)
C10.2743 (12)0.3536 (7)0.4829 (5)0.0246 (13)
N10.3813 (11)0.3517 (6)0.3756 (4)0.0320 (12)
N20.5901 (11)0.2386 (6)0.3729 (5)0.0346 (13)
N30.6023 (13)0.1805 (6)0.4744 (5)0.0389 (14)
N40.4029 (13)0.2515 (7)0.5477 (5)0.0379 (14)
N50.0545 (11)0.4536 (6)0.5334 (5)0.0293 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0288 (3)0.0391 (3)0.0354 (3)0.00007 (16)0.0014 (2)0.00540 (17)
C10.022 (3)0.026 (3)0.026 (3)0.005 (3)0.001 (2)0.001 (3)
N10.028 (3)0.035 (3)0.032 (3)0.004 (2)0.001 (2)0.007 (3)
N20.026 (3)0.034 (3)0.043 (3)0.002 (2)0.001 (2)0.009 (3)
N30.031 (3)0.029 (3)0.057 (4)0.003 (2)0.004 (3)0.008 (3)
N40.031 (3)0.040 (3)0.042 (3)0.001 (3)0.001 (3)0.009 (3)
N50.025 (3)0.032 (3)0.031 (3)0.002 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
Cs1—N2i3.225 (6)N1—N21.352 (7)
Cs1—N3ii3.260 (6)N2—N31.311 (8)
Cs1—N2iii3.270 (5)N2—Cs1vi3.225 (6)
Cs1—N4iv3.301 (6)N2—Cs1vii3.270 (5)
Cs1—N13.301 (5)N2—Cs1viii3.341 (5)
Cs1—N2v3.341 (5)N3—N41.349 (8)
C1—N11.329 (7)N3—Cs1ix3.260 (6)
C1—N41.329 (8)N4—Cs1x3.301 (6)
C1—N51.411 (8)N5—N5xi1.252 (10)
N2i—Cs1—N3ii94.82 (14)N4—C1—N5118.7 (5)
N2i—Cs1—N2iii149.65 (5)C1—N1—N2103.4 (5)
N3ii—Cs1—N2iii115.02 (14)C1—N1—Cs1115.6 (4)
N3ii—Cs1—N1i94.53 (14)N2—N1—Cs1132.6 (4)
N2iii—Cs1—N1i145.48 (14)N3—N2—N1109.3 (5)
N2i—Cs1—N4iv102.85 (14)N3—N2—Cs1vi144.7 (4)
N3ii—Cs1—N4iv70.05 (14)N1—N2—Cs1vi80.2 (3)
N2iii—Cs1—N4iv83.47 (14)N3—N2—Cs1vii82.3 (4)
N2i—Cs1—N168.00 (13)N1—N2—Cs1vii168.2 (4)
N3ii—Cs1—N1135.48 (14)N3—N2—Cs1viii90.3 (4)
N2iii—Cs1—N185.81 (13)N1—N2—Cs1viii92.8 (3)
N4iv—Cs1—N174.28 (13)N2—N3—N4110.4 (5)
N2i—Cs1—N2v108.58 (7)N2—N3—Cs1ix157.3 (4)
N3ii—Cs1—N2v77.69 (14)N4—N3—Cs1ix88.4 (4)
N2iii—Cs1—N2v84.36 (13)C1—N4—N3102.9 (5)
N4iv—Cs1—N2v136.31 (13)C1—N4—Cs1x113.2 (4)
N1—Cs1—N2v146.00 (14)N3—N4—Cs1x116.4 (4)
N1—C1—N4113.9 (5)N5xi—N5—C1114.6 (7)
N1—C1—N5127.4 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z1/2; (iii) x1, y+1/2, z+1/2; (iv) x, y+1/2, z1/2; (v) x, y+1/2, z+1/2; (vi) x1, y, z; (vii) x1, y1/2, z+1/2; (viii) x, y1/2, z+1/2; (ix) x1, y+1/2, z+1/2; (x) x, y+1/2, z+1/2; (xi) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cs2(C2N10)]
Mr429.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.4393 (9), 8.7151 (17), 11.860 (2)
β (°) 93.83 (3)
V3)457.82 (16)
Z2
Radiation typeMo Kα
µ (mm1)7.94
Crystal size (mm)0.42 × 0.26 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.135, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
4146, 842, 747
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.15
No. of reflections842
No. of parameters64
Δρmax, Δρmin (e Å3)1.36, 1.47

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported financially by two grants from the Scientific Research Plan Projects of Shaanxi Education Department (08 J K414, 09 J K702).

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEbespächer, M., Klapötke, T. M. & Sabaté, C. M. (2009). New J. Chem. 33, 517–527.  Google Scholar
First citationHammerl, A., Holl, G., Kaiser, M., Klapötke, T. M., Nöth, H., Ticmanis, U. & Warchhold, M. (2001). Inorg. Chem. 40, 3570–3575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHammerl, A., Holl, G., Klapötke, T. M., Mayer, P., Nöth, H., Piotrowski, H. & Warchhold, M. (2002). Eur. J. Inorg. Chem. pp. 834–845.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteinhauser, G., Giester, G., Wagner, C., Leopold, N., Sterba, J. H., Lendl, B. & Bichler, M. (2009). Helv. Chim. Acta, 92, 1371–1384.  CrossRef CAS Google Scholar
First citationThiele, J. (1892). Justus Liebigs Ann. Chem. 270, 54–63.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds