metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,6-Bis[(di­phenyl­phosphan­yl)­­oxy]phen­yl-κ3P,C1,P′}iodidonickel(II)

aDépartement de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: zargarian.davit@umontreal.ca

(Received 17 February 2011; accepted 8 March 2011; online 12 March 2011)

In the title complex, [Ni(C30H23O2P2)I], the divalent Ni atom is coordinated by two P atoms and one C atom from the 1,3-bis­[(diphenyl­phosphan­yl)­oxy]benzene ligand; the distorted square-planar geometry is completed by an iodide ligand. The largest distortions from ideal square-planar geometry are reflected in the P—Ni—P angle of 164.20 (2)° and the P—Ni—C angles of 82.09 (6) and 82.11 (6)°. The rather short Ni—C bond length [1.890 (2) Å] is anti­cipated in light of the much stronger trans influence of the aryl moiety compared to the iodide ligand. The P-bound phenyl rings adopt different orientations to minimize steric repulsion among themselves.

Related literature

For general background to pincer complexes and their applications, see: Leis et al. (2008[Leis, W., Mayer, H. A. & Kaska, W. C. (2008). Coord. Chem. Rev. 252, 1787-1797.]); Dijkstra et al. (2001[Dijkstra, H. P., Meijer, M. D., Patel, J., Kreiter, R., van Klink, G. P. M., Lutz, M., Spek, A. L., Canty, A. J. & van Koten, G. (2001). Organometallics, 20, 3159-3168.]); Naghipour et al. (2007[Naghipour, A. J., Sabounchei, S., Morales-Morales, D., Canseco-González, D. & Jensen, C. M. (2007). Polyhedron, 26, 1445-1448.]); van der Boom & Milstein (2003[Boom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759-1792.]); Nishiyama (2007[Nishiyama, H. (2007). Chem. Soc. Rev. 36, 1133-1141.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C30H23O2P2)I]

  • Mr = 663.03

  • Monoclinic, P 21 /c

  • a = 16.4446 (3) Å

  • b = 10.8531 (2) Å

  • c = 17.3131 (3) Å

  • β = 120.429 (1)°

  • V = 2664.33 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.49 mm−1

  • T = 150 K

  • 0.18 × 0.10 × 0.09 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.198, Tmax = 0.356

  • 35047 measured reflections

  • 5259 independent reflections

  • 5142 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.07

  • 5259 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Selected geometric parameters (Å, °)

I1—Ni1 2.4976 (3)
Ni1—P1 2.1553 (5)
Ni1—P2 2.1601 (5)
C1—Ni1—I1 178.93 (6)
P1—Ni1—I1 97.239 (17)
P2—Ni1—I1 98.556 (16)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: UdMX (Maris, 2004[Maris, T. (2004). UdMX. University of Montréal, QC, Canada.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recently, much attention has been paid to the chemistry of pincer complexes (Leis et al. 2008; Dijkstra et al. 2001; Naghipour et al. 2007; van der Boom et al. 2003; Nishiyama 2007). These compounds have found applications as promising materials and highly versatile catalysts. Here we report the crystal structure and the synthesis of{m-(Ph2PO)2 C6H3}NiI. The formation of the title complex was serendipitous in that the original goal of the synthesis was to prepare the corresponding methyl derivative {m-(Ph2PO)2C6H3}Ni(CH3). To our surprise, reaction of the bromo precursor with the Grignard reagent MeMgI gave instead the iodo derivative. It appears that the target methyl complex is not sufficiently stable, undergoing a salt metathesis with MgX2 (X= Br or I) to furnish the iodo derivative. As shown in Fig. 1, the Ni(II) center in the title complex exists in the center of a square plane defined by the donor atoms P1 and P2, the iodide ligand, and the carbon atom of the aromatic moiety of the pincer ligand. Despite the rigid meridional coordination of the tridentate pincer-type ligand, a slight distortion is evident in the solid state of this complex from the P—Ni—P angles of 82.09 (6) and 82.11 (6)°; such distortions are commonly found in this family of Ni(II) pincer complexes (van der Boom et al. 2003).

Related literature top

For general background to pincer complexes and their applications, see: Leis et al. (2008); Dijkstra et al. (2001); Naghipour et al. (2007); van der Boom et al. (2003); Nishiyama (2007).

Experimental top

Transfer of MeMgI (0.12 ml of a 3.0 M solution in THF, 0.24 mmol) to a stirred solution of {m-(Ph2PO)2 C6H3}NiBr(50 mg, 0.08 mmol) in dry and degassed toluene (1.5 ml) caused an immediate color change from deep yellow to a red orange. The resulting mixture was stirred under an inert atmosphere of nitrogen for 15 min and was then filtered through cellulose. Evaporation of the solvent gave an orange solid. Single crystals suitable for X-ray diffraction studies were grown by slowly diffusing hexane into a saturated toluene solution.

Refinement top

All hydrogen atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
{2,6-Bis[(diphenylphosphanyl)oxy]phenyl- κ3P,C1,P'}iodidonickel(II) top
Crystal data top
[Ni(C30H23O2P2)I]F(000) = 1320
Mr = 663.03Dx = 1.653 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 24450 reflections
a = 16.4446 (3) Åθ = 5.1–72.4°
b = 10.8531 (2) ŵ = 11.49 mm1
c = 17.3131 (3) ÅT = 150 K
β = 120.429 (1)°Block, yellow
V = 2664.33 (8) Å30.18 × 0.10 × 0.09 mm
Z = 4
Data collection top
Bruker SMART 6000
diffractometer
5259 independent reflections
Radiation source: X-ray Sealed Tube5142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 5.5 pixels mm-1θmax = 72.4°, θmin = 3.1°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.198, Tmax = 0.356l = 2121
35047 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.5043P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.007
5259 reflectionsΔρmax = 0.75 e Å3
326 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00190 (6)
Crystal data top
[Ni(C30H23O2P2)I]V = 2664.33 (8) Å3
Mr = 663.03Z = 4
Monoclinic, P21/cCu Kα radiation
a = 16.4446 (3) ŵ = 11.49 mm1
b = 10.8531 (2) ÅT = 150 K
c = 17.3131 (3) Å0.18 × 0.10 × 0.09 mm
β = 120.429 (1)°
Data collection top
Bruker SMART 6000
diffractometer
5259 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5142 reflections with I > 2σ(I)
Tmin = 0.198, Tmax = 0.356Rint = 0.034
35047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.07Δρmax = 0.75 e Å3
5259 reflectionsΔρmin = 0.78 e Å3
326 parameters
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.214929 (9)0.790060 (11)0.756156 (8)0.02460 (7)
Ni10.23502 (2)0.56348 (3)0.74669 (2)0.01757 (9)
P10.10949 (3)0.50611 (4)0.74657 (3)0.01912 (11)
P20.36537 (3)0.56701 (4)0.74486 (3)0.01912 (11)
O10.10883 (9)0.35423 (13)0.74495 (10)0.0252 (3)
O20.39191 (10)0.42230 (12)0.73844 (10)0.0254 (3)
C10.24998 (13)0.39159 (18)0.74142 (11)0.0192 (4)
C20.18453 (14)0.30761 (18)0.73952 (13)0.0204 (4)
C30.19118 (15)0.18122 (19)0.73052 (14)0.0257 (4)
H30.14700.12740.73020.031*
C40.26582 (15)0.13764 (19)0.72202 (15)0.0291 (4)
H40.27120.05340.71560.035*
C50.33263 (16)0.21712 (18)0.72286 (16)0.0278 (5)
H50.38150.18760.71570.033*
C60.32412 (13)0.34153 (18)0.73477 (13)0.0214 (4)
C110.00440 (13)0.54428 (17)0.65138 (12)0.0217 (4)
C120.08627 (14)0.5049 (2)0.64934 (14)0.0269 (4)
H120.08190.46290.69810.032*
C130.17438 (15)0.5282 (2)0.57474 (15)0.0335 (5)
H130.22880.50110.57330.040*
C140.18063 (16)0.5921 (2)0.50231 (14)0.0342 (5)
H140.23940.60890.45260.041*
C150.09947 (16)0.6307 (2)0.50407 (14)0.0345 (5)
H150.10410.67270.45520.041*
C160.01117 (15)0.6074 (2)0.57815 (13)0.0292 (4)
H160.04310.63370.57890.035*
C210.09797 (13)0.53687 (19)0.84293 (12)0.0226 (4)
C220.12540 (17)0.4497 (2)0.91095 (14)0.0345 (5)
H220.14690.37270.90570.041*
C230.1204 (2)0.4787 (3)0.98674 (16)0.0452 (6)
H230.13850.42061.03210.054*
C240.08858 (17)0.5934 (3)0.99508 (14)0.0401 (6)
H240.08540.61211.04590.048*
C250.06161 (16)0.6797 (2)0.92806 (16)0.0345 (5)
H250.04050.75680.93380.041*
C260.06594 (14)0.6518 (2)0.85174 (14)0.0273 (4)
H260.04740.71010.80650.033*
C310.47066 (13)0.61934 (18)0.84480 (12)0.0226 (4)
C320.52646 (18)0.5369 (2)0.91276 (17)0.0422 (6)
H320.51220.45330.90530.051*
C330.60360 (19)0.5792 (3)0.99183 (17)0.0501 (7)
H330.64080.52341.03690.060*
C340.62544 (17)0.7026 (2)1.00406 (17)0.0372 (5)
H340.67670.73041.05740.045*
C350.57086 (17)0.7847 (2)0.93671 (16)0.0310 (5)
H350.58590.86820.94440.037*
C360.49354 (14)0.7437 (2)0.85732 (14)0.0271 (4)
H360.45700.79990.81240.033*
C410.37335 (13)0.63478 (18)0.65338 (12)0.0211 (4)
C420.44862 (15)0.5993 (2)0.64218 (14)0.0287 (4)
H420.49370.54430.68220.034*
C430.45609 (16)0.6459 (2)0.57138 (15)0.0333 (5)
H430.50600.62210.56390.040*
C440.38928 (17)0.7279 (2)0.51212 (15)0.0334 (5)
H440.39460.75960.46500.040*
C450.31474 (17)0.7628 (3)0.52257 (16)0.0378 (5)
H450.27000.81790.48240.045*
C460.30611 (16)0.7159 (2)0.59306 (16)0.0311 (5)
H460.25540.73890.59950.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.03220 (10)0.01565 (9)0.03019 (10)0.00088 (4)0.01890 (7)0.00007 (4)
Ni10.01882 (16)0.01435 (16)0.02162 (16)0.00080 (11)0.01176 (13)0.00051 (11)
P10.0198 (2)0.0171 (2)0.0232 (2)0.00065 (16)0.01296 (18)0.00082 (17)
P20.0197 (2)0.0161 (2)0.0239 (2)0.00070 (16)0.01278 (18)0.00062 (17)
O10.0243 (7)0.0182 (6)0.0383 (8)0.0022 (5)0.0198 (6)0.0004 (6)
O20.0234 (7)0.0175 (7)0.0417 (8)0.0002 (5)0.0211 (6)0.0003 (6)
C10.0209 (8)0.0176 (9)0.0187 (8)0.0007 (7)0.0097 (7)0.0011 (7)
C20.0219 (9)0.0171 (8)0.0228 (9)0.0014 (7)0.0118 (7)0.0017 (7)
C30.0296 (10)0.0161 (9)0.0302 (10)0.0044 (8)0.0144 (8)0.0015 (8)
C40.0344 (10)0.0134 (9)0.0401 (11)0.0001 (8)0.0192 (9)0.0011 (8)
C50.0293 (11)0.0198 (10)0.0380 (12)0.0038 (7)0.0197 (10)0.0011 (8)
C60.0225 (9)0.0168 (9)0.0254 (9)0.0013 (7)0.0125 (7)0.0016 (7)
C110.0227 (9)0.0196 (9)0.0238 (9)0.0003 (7)0.0124 (7)0.0026 (7)
C120.0249 (10)0.0289 (10)0.0282 (10)0.0000 (8)0.0145 (8)0.0022 (8)
C130.0232 (10)0.0415 (12)0.0342 (11)0.0032 (9)0.0135 (9)0.0029 (10)
C140.0291 (10)0.0389 (12)0.0256 (10)0.0038 (9)0.0072 (8)0.0020 (9)
C150.0369 (11)0.0404 (12)0.0230 (10)0.0017 (10)0.0128 (9)0.0037 (9)
C160.0311 (10)0.0332 (11)0.0260 (9)0.0055 (9)0.0163 (8)0.0005 (9)
C210.0205 (9)0.0272 (10)0.0223 (9)0.0027 (7)0.0125 (7)0.0003 (8)
C220.0413 (12)0.0316 (11)0.0300 (11)0.0001 (9)0.0177 (9)0.0052 (9)
C230.0555 (15)0.0526 (15)0.0276 (11)0.0079 (13)0.0211 (11)0.0087 (11)
C240.0401 (12)0.0596 (16)0.0271 (10)0.0152 (11)0.0219 (9)0.0107 (11)
C250.0299 (11)0.0447 (12)0.0345 (11)0.0043 (10)0.0205 (9)0.0110 (10)
C260.0253 (9)0.0320 (11)0.0269 (10)0.0015 (8)0.0148 (8)0.0003 (8)
C310.0210 (8)0.0245 (9)0.0240 (9)0.0001 (7)0.0128 (7)0.0020 (8)
C320.0398 (13)0.0273 (11)0.0401 (13)0.0020 (10)0.0060 (10)0.0076 (10)
C330.0427 (14)0.0417 (15)0.0380 (13)0.0005 (11)0.0002 (11)0.0131 (11)
C340.0274 (11)0.0459 (15)0.0294 (11)0.0047 (9)0.0078 (9)0.0019 (9)
C350.0299 (11)0.0304 (12)0.0320 (11)0.0054 (8)0.0150 (9)0.0044 (8)
C360.0252 (10)0.0257 (10)0.0289 (10)0.0005 (8)0.0126 (8)0.0014 (9)
C410.0231 (9)0.0200 (9)0.0231 (9)0.0054 (7)0.0137 (7)0.0025 (7)
C420.0306 (10)0.0277 (10)0.0337 (10)0.0003 (8)0.0205 (9)0.0007 (9)
C430.0362 (11)0.0383 (12)0.0373 (11)0.0046 (9)0.0274 (10)0.0034 (10)
C440.0372 (12)0.0413 (12)0.0252 (10)0.0112 (10)0.0184 (9)0.0015 (9)
C450.0356 (12)0.0468 (13)0.0314 (11)0.0053 (11)0.0172 (10)0.0146 (10)
C460.0277 (11)0.0387 (13)0.0313 (11)0.0026 (8)0.0181 (9)0.0057 (9)
Geometric parameters (Å, º) top
I1—Ni12.4976 (3)C21—C221.395 (3)
Ni1—C11.890 (2)C22—C231.392 (3)
Ni1—P12.1553 (5)C22—H220.9300
Ni1—P22.1601 (5)C23—C241.386 (4)
P1—O11.6486 (15)C23—H230.9300
P1—C211.8028 (19)C24—C251.378 (4)
P1—C111.8080 (19)C24—H240.9300
P2—O21.6488 (14)C25—C261.392 (3)
P2—C411.8101 (19)C25—H250.9300
P2—C311.811 (2)C26—H260.9300
O1—C21.390 (2)C31—C361.389 (3)
O2—C61.394 (2)C31—C321.391 (3)
C1—C61.392 (3)C32—C331.391 (3)
C1—C21.398 (3)C32—H320.9300
C2—C31.391 (3)C33—C341.375 (4)
C3—C41.391 (3)C33—H330.9300
C3—H30.9300C34—C351.379 (3)
C4—C51.391 (3)C34—H340.9300
C4—H40.9300C35—C361.391 (3)
C5—C61.384 (3)C35—H350.9300
C5—H50.9300C36—H360.9300
C11—C161.395 (3)C41—C461.385 (3)
C11—C121.396 (3)C41—C421.401 (3)
C12—C131.391 (3)C42—C431.388 (3)
C12—H120.9300C42—H420.9300
C13—C141.391 (3)C43—C441.381 (3)
C13—H130.9300C43—H430.9300
C14—C151.385 (3)C44—C451.380 (4)
C14—H140.9300C44—H440.9300
C15—C161.390 (3)C45—C461.394 (3)
C15—H150.9300C45—H450.9300
C16—H160.9300C46—H460.9300
C21—C261.392 (3)
C1—Ni1—P182.11 (6)C11—C16—H16120.2
C1—Ni1—P282.09 (6)C26—C21—C22119.56 (19)
P1—Ni1—P2164.20 (2)C26—C21—P1119.36 (15)
C1—Ni1—I1178.93 (6)C22—C21—P1120.99 (17)
P1—Ni1—I197.239 (17)C23—C22—C21119.6 (2)
P2—Ni1—I198.556 (16)C23—C22—H22120.2
O1—P1—C21101.43 (9)C21—C22—H22120.2
O1—P1—C11102.63 (8)C24—C23—C22120.4 (2)
C21—P1—C11104.79 (9)C24—C23—H23119.8
O1—P1—Ni1106.67 (5)C22—C23—H23119.8
C21—P1—Ni1119.68 (6)C25—C24—C23120.0 (2)
C11—P1—Ni1118.96 (7)C25—C24—H24120.0
O2—P2—C41100.90 (8)C23—C24—H24120.0
O2—P2—C31101.86 (8)C24—C25—C26120.1 (2)
C41—P2—C31104.52 (9)C24—C25—H25120.0
O2—P2—Ni1106.42 (5)C26—C25—H25120.0
C41—P2—Ni1122.15 (7)C21—C26—C25120.2 (2)
C31—P2—Ni1117.85 (6)C21—C26—H26119.9
C2—O1—P1111.50 (12)C25—C26—H26119.9
C6—O2—P2111.67 (12)C36—C31—C32118.88 (19)
C6—C1—C2116.09 (18)C36—C31—P2120.42 (15)
C6—C1—Ni1122.02 (15)C32—C31—P2120.56 (16)
C2—C1—Ni1121.82 (15)C33—C32—C31120.2 (2)
O1—C2—C3119.35 (18)C33—C32—H32119.9
O1—C2—C1117.79 (17)C31—C32—H32119.9
C3—C2—C1122.84 (19)C34—C33—C32120.6 (2)
C2—C3—C4118.08 (19)C34—C33—H33119.7
C2—C3—H3121.0C32—C33—H33119.7
C4—C3—H3121.0C33—C34—C35119.5 (2)
C3—C4—C5121.50 (19)C33—C34—H34120.2
C3—C4—H4119.2C35—C34—H34120.2
C5—C4—H4119.2C34—C35—C36120.4 (2)
C6—C5—C4117.9 (2)C34—C35—H35119.8
C6—C5—H5121.1C36—C35—H35119.8
C4—C5—H5121.1C31—C36—C35120.34 (19)
C5—C6—O2118.79 (17)C31—C36—H36119.8
C5—C6—C1123.51 (19)C35—C36—H36119.8
O2—C6—C1117.68 (18)C46—C41—C42119.63 (19)
C16—C11—C12119.70 (18)C46—C41—P2122.28 (15)
C16—C11—P1120.66 (15)C42—C41—P2118.04 (15)
C12—C11—P1119.57 (15)C43—C42—C41120.1 (2)
C13—C12—C11120.37 (19)C43—C42—H42119.9
C13—C12—H12119.8C41—C42—H42119.9
C11—C12—H12119.8C44—C43—C42119.9 (2)
C14—C13—C12119.6 (2)C44—C43—H43120.1
C14—C13—H13120.2C42—C43—H43120.1
C12—C13—H13120.2C45—C44—C43120.3 (2)
C15—C14—C13120.1 (2)C45—C44—H44119.8
C15—C14—H14120.0C43—C44—H44119.8
C13—C14—H14120.0C44—C45—C46120.4 (2)
C14—C15—C16120.7 (2)C44—C45—H45119.8
C14—C15—H15119.7C46—C45—H45119.8
C16—C15—H15119.7C41—C46—C45119.7 (2)
C15—C16—C11119.56 (19)C41—C46—H46120.1
C15—C16—H16120.2C45—C46—H46120.1
C1—Ni1—P1—O11.53 (8)Ni1—P1—C11—C12178.33 (13)
P2—Ni1—P1—O11.95 (11)C16—C11—C12—C130.1 (3)
I1—Ni1—P1—O1177.60 (6)P1—C11—C12—C13176.83 (17)
C1—Ni1—P1—C21115.66 (9)C11—C12—C13—C140.6 (3)
P2—Ni1—P1—C21116.08 (11)C12—C13—C14—C150.9 (4)
I1—Ni1—P1—C2163.48 (8)C13—C14—C15—C160.6 (4)
C1—Ni1—P1—C11113.72 (9)C14—C15—C16—C110.1 (4)
P2—Ni1—P1—C11113.30 (11)C12—C11—C16—C150.2 (3)
I1—Ni1—P1—C1167.14 (7)P1—C11—C16—C15177.08 (17)
C1—Ni1—P2—O20.95 (8)O1—P1—C21—C26159.66 (16)
P1—Ni1—P2—O20.53 (11)C11—P1—C21—C2653.15 (18)
I1—Ni1—P2—O2179.91 (6)Ni1—P1—C21—C2683.46 (16)
C1—Ni1—P2—C41115.66 (9)O1—P1—C21—C2223.79 (19)
P1—Ni1—P2—C41115.25 (11)C11—P1—C21—C22130.30 (18)
I1—Ni1—P2—C4165.20 (8)Ni1—P1—C21—C2293.08 (18)
C1—Ni1—P2—C31112.50 (9)C26—C21—C22—C230.0 (3)
P1—Ni1—P2—C31112.92 (11)P1—C21—C22—C23176.56 (18)
I1—Ni1—P2—C3166.63 (7)C21—C22—C23—C240.1 (4)
C21—P1—O1—C2129.06 (13)C22—C23—C24—C250.0 (4)
C11—P1—O1—C2122.75 (13)C23—C24—C25—C260.2 (4)
Ni1—P1—O1—C23.06 (14)C22—C21—C26—C250.2 (3)
C41—P2—O2—C6127.56 (13)P1—C21—C26—C25176.37 (16)
C31—P2—O2—C6124.90 (13)C24—C25—C26—C210.4 (3)
Ni1—P2—O2—C60.88 (13)O2—P2—C31—C36156.25 (16)
P1—Ni1—C1—C6176.95 (16)C41—P2—C31—C3651.53 (18)
P2—Ni1—C1—C62.93 (15)Ni1—P2—C31—C3687.80 (16)
P1—Ni1—C1—C20.18 (14)O2—P2—C31—C3228.0 (2)
P2—Ni1—C1—C2179.71 (15)C41—P2—C31—C32132.69 (19)
P1—O1—C2—C3175.11 (15)Ni1—P2—C31—C3288.0 (2)
P1—O1—C2—C13.5 (2)C36—C31—C32—C330.2 (4)
C6—C1—C2—O1179.27 (17)P2—C31—C32—C33175.7 (2)
Ni1—C1—C2—O12.3 (2)C31—C32—C33—C340.3 (5)
C6—C1—C2—C30.7 (3)C32—C33—C34—C350.8 (5)
Ni1—C1—C2—C3176.24 (15)C33—C34—C35—C360.8 (4)
O1—C2—C3—C4177.74 (19)C32—C31—C36—C350.2 (3)
C1—C2—C3—C40.8 (3)P2—C31—C36—C35175.67 (17)
C2—C3—C4—C50.3 (3)C34—C35—C36—C310.3 (3)
C3—C4—C5—C61.6 (3)O2—P2—C41—C46135.38 (17)
C4—C5—C6—O2178.15 (19)C31—P2—C41—C46119.19 (18)
C4—C5—C6—C13.3 (3)Ni1—P2—C41—C4617.9 (2)
P2—O2—C6—C5175.50 (15)O2—P2—C41—C4242.10 (17)
P2—O2—C6—C13.1 (2)C31—P2—C41—C4263.33 (17)
C2—C1—C6—C52.8 (3)Ni1—P2—C41—C42159.56 (13)
Ni1—C1—C6—C5174.11 (16)C46—C41—C42—C430.5 (3)
C2—C1—C6—O2178.60 (16)P2—C41—C42—C43178.06 (17)
Ni1—C1—C6—O24.4 (2)C41—C42—C43—C440.2 (3)
O1—P1—C11—C16115.96 (17)C42—C43—C44—C450.5 (4)
C21—P1—C11—C16138.43 (17)C43—C44—C45—C460.0 (4)
Ni1—P1—C11—C161.43 (19)C42—C41—C46—C451.0 (3)
O1—P1—C11—C1260.93 (17)P2—C41—C46—C45178.41 (19)
C21—P1—C11—C1244.68 (18)C44—C45—C46—C410.7 (4)

Experimental details

Crystal data
Chemical formula[Ni(C30H23O2P2)I]
Mr663.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)16.4446 (3), 10.8531 (2), 17.3131 (3)
β (°) 120.429 (1)
V3)2664.33 (8)
Z4
Radiation typeCu Kα
µ (mm1)11.49
Crystal size (mm)0.18 × 0.10 × 0.09
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.198, 0.356
No. of measured, independent and
observed [I > 2σ(I)] reflections
35047, 5259, 5142
Rint0.034
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.07
No. of reflections5259
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.78

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
I1—Ni12.4976 (3)Ni1—P22.1601 (5)
Ni1—P12.1553 (5)
C1—Ni1—I1178.93 (6)P2—Ni1—I198.556 (16)
P1—Ni1—I197.239 (17)
 

Acknowledgements

The authors gratefully acknowledge financial support from the University of Montreal, the Universities Mission of Tunisia in Montreal (MUT) (fellowships to ABS) and the NSERC of Canada (Research Tools and Instruments and Discovery grants to DZ).

References

First citationBoom, M. E. van der & Milstein, D. (2003). Chem. Rev. 103, 1759–1792.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDijkstra, H. P., Meijer, M. D., Patel, J., Kreiter, R., van Klink, G. P. M., Lutz, M., Spek, A. L., Canty, A. J. & van Koten, G. (2001). Organometallics, 20, 3159–3168.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeis, W., Mayer, H. A. & Kaska, W. C. (2008). Coord. Chem. Rev. 252, 1787–1797.  CrossRef CAS Google Scholar
First citationMaris, T. (2004). UdMX. University of Montréal, QC, Canada.  Google Scholar
First citationNaghipour, A. J., Sabounchei, S., Morales-Morales, D., Canseco-González, D. & Jensen, C. M. (2007). Polyhedron, 26, 1445–1448.  CrossRef CAS Google Scholar
First citationNishiyama, H. (2007). Chem. Soc. Rev. 36, 1133–1141.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds