metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ-2-hy­dr­oxy-3,5-di­nitro­benzoato)rubidium]

aSchool of Environmental Engineering, Chang'an University, South Second Cycle Road 368#, Xi'an 710064, Shaanxi, People's Republic of China
*Correspondence e-mail: myancau@163.com

(Received 6 February 2011; accepted 6 March 2011; online 15 March 2011)

The asymmetric unit of the title compound, [Rb(C7H3N2O7)]n, comprises an Rb+ cation and a 3,5-dinitro­salicylate ligand. The Rb+ cation is 10-coordinated by O atoms from eight 3,5-dinitro­salicylate anions and is linked by three μ2-O atoms, forming a zigzag chain along the b-axis direction, which is further linked by the phenyl groups, giving the three-dimensional framework. The crystal structure involves intra-anionic O—H⋯O hydrogen bonds and strong ππ stacking inter­actions [centroid-centroid distance = 3.6755 (7) Å].

Related literature

For 3,5-dinitro­salicylate complexes, see: Hu et al. (2005[Hu, M. C., Geng, C. Y., Li, S. N., Du, Y. P., Jiang, Y. C. & Liu, Z. H. (2005). J. Organomet. Chem. 690, 3118-3124.]); Song et al. (2007[Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399-m401.], 2008[Song, W.-D., Fan, R.-Z., Gu, C.-S. & Hao, X.-M. (2008). Acta Cryst. E64, m551.]). For Rb–O bond lengths, see: Cametti et al. (2005[Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831-3837.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb(C7H3N2O7)]

  • Mr = 312.58

  • Monoclinic, P 21 /c

  • a = 7.5957 (15) Å

  • b = 7.2971 (15) Å

  • c = 17.036 (3) Å

  • β = 95.10 (3)°

  • V = 940.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.30 mm−1

  • T = 293 K

  • 0.64 × 0.60 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.219, Tmax = 0.548

  • 8781 measured reflections

  • 1715 independent reflections

  • 1548 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.107

  • S = 1.07

  • 1715 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2 0.85 1.67 2.459 (4) 153

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 3,5-dinitrosalicylate complexes, it has been found that the 3,5-dinitrosalicylate moiety functions as a multidentate ligand (Hu et al., 2005; Song et al., 2007; Song et al., 2008) with versatile bonding and coordination modes. In this paper, we report the crystal structure of the title compound, a new Rb complex obtained by the reaction of 3,5-dinitrosalicylic acid and RbOH in water.

The asymmetric unit of the title compound comprises a Rb cation, and a 3,5-dinitrosalicylate anion. The central cation is coordinated to ten O atoms from eight 3,5-dinitrosalicylate anions (Fig. 1) with the Rb–O distances ranging from 2.821 (3) Å to 3.385 (4) Å, which are well within the range reported in the literature (Cametti et al., 2005). The Rb centre is firstly linked by three µ2-oygen atoms to form a one-dimensional zigzag-shaped chain along the b-axis direction, which is further linked by the phenyl groups to give the three-dimensional framework of the title compound (Fig. 2). The shortest intra-anionic hydrogen bond is established between O7–H7A···O2 with the bond distances of 2.459 (4) Å. Furthermore, strong aromatic ππ stacking interactions between adjacent phenyl rings with a center-to-center distance of 3.6755 (7) Å help to stabilize the three-dimensional framework.

Related literature top

For 3,5-dinitrosalicylate complexes, see: Hu et al. (2005); Song et al. (2007, 2008). For Rb–O bond lengths, see: Cametti et al. (2005).

Experimental top

Analysis grade 3,5-dinitrosalicylic acid and RbOH (purity > 99.5%, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were commercially available and used without further purification. To a solution of 10 mmol 3,5-dinitrosalicylic acid in 50 ml double-distilled water, a solution of an equimolar amount of RbOH in 40 ml double-distilled water was added dropwise at room temperature. After vigorous stirring for 3 h, the resulting solution was evaporated to a volume of about 20 ml in vacuum and filtered hot. The filtrate was then set aside for crystallization at room temperature. One month later, yellow block crystals of the title compound suitable for X-ray determination were isolated.

Refinement top

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C–H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Oxygen-bound H atoms were originally located in difference Fourier maps and were refined with distance restraints of O–H = 0.85 Å, and and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT(Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids. Symmetry code: (i) -x + 2, -y + 2, -z; (ii) -x + 3, -y + 2, -z; (iii) x + 1, y + 1, z; (iv) -x + 3, y + 1/2, -z + 1/2; (v) x + 1, -y + 3/2, z + 1/2; (vi) -x + 2, y + 1/2, -z + 1/2; (vii) x + 1, y, z.
[Figure 2] Fig. 2. The three-dimensional framework of the title compound viewed along the b-axis direction, and the broken lines represent the ππ stacking interactions. The H atoms were omitted for clarity.
Poly[(µ-2-hydroxy-3,5-dinitrobenzoato)rubidium] top
Crystal data top
[Rb(C7H3N2O7)]F(000) = 608
Mr = 312.58Dx = 2.208 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3447 reflections
a = 7.5957 (15) Åθ = 3.0–25.4°
b = 7.2971 (15) ŵ = 5.30 mm1
c = 17.036 (3) ÅT = 293 K
β = 95.10 (3)°Block, yellow
V = 940.5 (3) Å30.64 × 0.60 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1715 independent reflections
Radiation source: fine-focus sealed tube1548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.219, Tmax = 0.548k = 78
8781 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
1715 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
[Rb(C7H3N2O7)]V = 940.5 (3) Å3
Mr = 312.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5957 (15) ŵ = 5.30 mm1
b = 7.2971 (15) ÅT = 293 K
c = 17.036 (3) Å0.64 × 0.60 × 0.20 mm
β = 95.10 (3)°
Data collection top
Bruker SMART CCD
diffractometer
1715 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1548 reflections with I > 2σ(I)
Tmin = 0.219, Tmax = 0.548Rint = 0.065
8781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
1715 reflectionsΔρmin = 1.28 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb11.61252 (5)1.14921 (5)0.20167 (2)0.0369 (2)
C11.2759 (5)0.8926 (5)0.1057 (2)0.0273 (8)
C21.1105 (5)0.8137 (5)0.0645 (2)0.0242 (8)
C31.0990 (5)0.7877 (5)0.0199 (2)0.0241 (8)
C40.9370 (5)0.7063 (5)0.0527 (2)0.0247 (8)
C50.8025 (5)0.6593 (4)0.0081 (2)0.0251 (8)
H50.69980.60560.03140.030*
C60.8215 (5)0.6929 (5)0.0721 (2)0.0248 (8)
C70.9735 (5)0.7708 (5)0.1085 (2)0.0240 (8)
H70.98260.79390.16240.029*
N10.9095 (5)0.6663 (4)0.13724 (19)0.0310 (8)
N20.6787 (5)0.6448 (4)0.1190 (2)0.0335 (8)
O11.2938 (4)0.9117 (4)0.17699 (15)0.0361 (7)
O21.3980 (3)0.9418 (4)0.06105 (15)0.0377 (7)
O31.0271 (5)0.6878 (6)0.17888 (19)0.0680 (11)
O40.7641 (5)0.6080 (5)0.16227 (18)0.0562 (9)
O50.5666 (4)0.5376 (5)0.09310 (19)0.0554 (9)
O60.6775 (4)0.7154 (5)0.18481 (17)0.0500 (8)
O71.2245 (4)0.8369 (4)0.05933 (16)0.0356 (7)
H7A1.30730.88130.02820.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0346 (3)0.0485 (3)0.0288 (3)0.01148 (17)0.0097 (2)0.00679 (15)
C10.022 (2)0.0290 (18)0.031 (2)0.0011 (16)0.0012 (16)0.0035 (15)
C20.023 (2)0.0228 (17)0.027 (2)0.0013 (15)0.0019 (16)0.0008 (14)
C30.025 (2)0.0243 (17)0.0238 (18)0.0021 (16)0.0059 (15)0.0050 (15)
C40.031 (2)0.0272 (18)0.0160 (17)0.0016 (16)0.0020 (15)0.0024 (14)
C50.020 (2)0.0239 (18)0.031 (2)0.0034 (14)0.0018 (16)0.0013 (14)
C60.021 (2)0.0265 (17)0.028 (2)0.0020 (15)0.0036 (15)0.0017 (15)
C70.027 (2)0.0227 (17)0.0233 (17)0.0006 (15)0.0049 (15)0.0017 (14)
N10.032 (2)0.0367 (19)0.0237 (17)0.0022 (14)0.0004 (16)0.0025 (13)
N20.026 (2)0.042 (2)0.033 (2)0.0057 (15)0.0073 (16)0.0027 (14)
O10.0316 (16)0.0488 (17)0.0275 (15)0.0104 (14)0.0005 (12)0.0017 (12)
O20.0226 (14)0.0557 (18)0.0351 (15)0.0144 (14)0.0048 (11)0.0052 (13)
O30.042 (2)0.136 (4)0.0265 (17)0.015 (2)0.0110 (16)0.0129 (18)
O40.054 (2)0.086 (2)0.0274 (16)0.0344 (19)0.0043 (15)0.0013 (15)
O50.0378 (18)0.070 (2)0.060 (2)0.0309 (17)0.0149 (15)0.0087 (17)
O60.0384 (19)0.086 (2)0.0284 (16)0.0061 (17)0.0174 (13)0.0040 (16)
O70.0283 (17)0.0526 (18)0.0267 (15)0.0122 (12)0.0067 (12)0.0018 (11)
Geometric parameters (Å, º) top
Rb1—O7i2.821 (3)C5—C61.383 (5)
Rb1—O1ii2.861 (3)C5—H50.9300
Rb1—O12.977 (3)C6—C71.383 (5)
Rb1—O3i3.041 (4)C6—N21.447 (5)
Rb1—O6iii3.096 (3)C7—H70.9300
Rb1—O4iv3.122 (3)N1—O31.199 (5)
Rb1—O23.161 (3)N1—O41.224 (4)
Rb1—O6v3.221 (4)N2—O51.210 (4)
Rb1—O4vi3.381 (4)N2—O61.234 (4)
Rb1—O5vii3.385 (4)O1—Rb1viii2.861 (3)
C1—O11.218 (4)O3—Rb1i3.041 (4)
C1—O21.301 (5)O4—Rb1ix3.122 (3)
C1—C21.498 (5)O4—Rb1vi3.381 (4)
C2—C71.371 (5)O5—Rb1x3.385 (4)
C2—C31.446 (5)O6—Rb1xi3.096 (3)
C3—O71.266 (5)O6—Rb1xii3.221 (4)
C3—C41.434 (5)O7—Rb1i2.821 (3)
C4—C51.370 (5)O7—H7A0.8500
C4—N11.465 (5)
O7i—Rb1—O1ii119.80 (8)O4vi—Rb1—O5vii53.74 (8)
O7i—Rb1—O1108.25 (8)O1—C1—O2122.0 (3)
O1ii—Rb1—O1129.70 (4)O1—C1—C2121.7 (3)
O7i—Rb1—O3i53.65 (9)O2—C1—C2116.4 (3)
O1ii—Rb1—O3i70.22 (9)C7—C2—C3122.1 (3)
O1—Rb1—O3i160.00 (9)C7—C2—C1118.5 (3)
O7i—Rb1—O6iii157.29 (9)C3—C2—C1119.4 (3)
O1ii—Rb1—O6iii65.76 (9)O7—C3—C4124.8 (3)
O1—Rb1—O6iii64.16 (8)O7—C3—C2120.6 (3)
O3i—Rb1—O6iii135.84 (10)C4—C3—C2114.6 (3)
O7i—Rb1—O4iv119.92 (9)C5—C4—C3122.9 (3)
O1ii—Rb1—O4iv79.29 (9)C5—C4—N1116.5 (3)
O1—Rb1—O4iv89.80 (9)C3—C4—N1120.6 (3)
O3i—Rb1—O4iv93.04 (11)C4—C5—C6119.1 (3)
O6iii—Rb1—O4iv82.29 (9)C4—C5—H5120.4
O7i—Rb1—O266.53 (7)C6—C5—H5120.4
O1ii—Rb1—O2161.17 (8)C5—C6—C7121.7 (4)
O1—Rb1—O241.94 (7)C5—C6—N2119.0 (3)
O3i—Rb1—O2119.98 (8)C7—C6—N2119.2 (3)
O6iii—Rb1—O2101.58 (8)C2—C7—C6119.5 (3)
O4iv—Rb1—O2113.97 (9)C2—C7—H7120.3
O7i—Rb1—O6v82.90 (7)C6—C7—H7120.3
O1ii—Rb1—O6v133.80 (8)O3—N1—O4122.4 (3)
O1—Rb1—O6v62.88 (8)O3—N1—C4120.4 (3)
O3i—Rb1—O6v103.08 (10)O4—N1—C4117.2 (3)
O6iii—Rb1—O6v109.40 (9)O5—N2—O6122.6 (3)
O4iv—Rb1—O6v54.97 (8)O5—N2—C6119.5 (3)
O2—Rb1—O6v62.26 (8)O6—N2—C6117.9 (3)
O7i—Rb1—O4vi103.81 (8)C1—O1—Rb1viii130.0 (3)
O1ii—Rb1—O4vi86.82 (8)C1—O1—Rb1103.0 (2)
O1—Rb1—O4vi67.29 (9)Rb1viii—O1—Rb198.09 (8)
O3i—Rb1—O4vi121.68 (10)C1—O2—Rb192.0 (2)
O6iii—Rb1—O4vi53.55 (8)N1—O3—Rb1i148.5 (3)
O4iv—Rb1—O4vi135.41 (5)N1—O4—Rb1ix136.8 (3)
O2—Rb1—O4vi74.36 (8)N1—O4—Rb1vi127.5 (3)
O6v—Rb1—O4vi129.12 (8)Rb1ix—O4—Rb1vi85.29 (8)
O7i—Rb1—O5vii62.09 (8)N2—O5—Rb1x107.8 (3)
O1ii—Rb1—O5vii80.87 (8)N2—O6—Rb1xi124.4 (2)
O1—Rb1—O5vii111.55 (8)N2—O6—Rb1xii120.3 (2)
O3i—Rb1—O5vii69.70 (10)Rb1xi—O6—Rb1xii88.53 (8)
O6iii—Rb1—O5vii99.57 (8)C3—O7—Rb1i151.1 (2)
O4iv—Rb1—O5vii157.25 (9)C3—O7—H7A109.0
O2—Rb1—O5vii88.03 (8)Rb1i—O7—H7A99.6
O6v—Rb1—O5vii141.57 (7)
Symmetry codes: (i) x+3, y+2, z; (ii) x+3, y+1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y+3/2, z+1/2; (v) x+1, y, z; (vi) x+2, y+2, z; (vii) x+1, y+1, z; (viii) x+3, y1/2, z+1/2; (ix) x1, y+3/2, z1/2; (x) x1, y1, z; (xi) x+2, y1/2, z+1/2; (xii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O20.851.672.459 (4)153

Experimental details

Crystal data
Chemical formula[Rb(C7H3N2O7)]
Mr312.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5957 (15), 7.2971 (15), 17.036 (3)
β (°) 95.10 (3)
V3)940.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.30
Crystal size (mm)0.64 × 0.60 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.219, 0.548
No. of measured, independent and
observed [I > 2σ(I)] reflections
8781, 1715, 1548
Rint0.065
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.07
No. of reflections1715
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 1.28

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT(Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O20.851.672.459 (4)153
 

Acknowledgements

This work was supported by two grants from the Scientific Research Plan Projects of Shaanxi Education Department (08 J K414, 09 J K702).

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHu, M. C., Geng, C. Y., Li, S. N., Du, Y. P., Jiang, Y. C. & Liu, Z. H. (2005). J. Organomet. Chem. 690, 3118–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Fan, R.-Z., Gu, C.-S. & Hao, X.-M. (2008). Acta Cryst. E64, m551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds