metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[{N,N-di­methyl-N′-[1-(pyridin-2-yl)ethyl­­idene]ethane-1,2-di­amine-κ3N,N′,N′′}(thio­cyanato-κN)cadmium]-μ-thio­cyanato-κ2S:N]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 3 March 2011; accepted 17 March 2011; online 26 March 2011)

In the title compound, [Cd(NCS)2(C11H17N3)]n, the CdII atom is octa­hedrally coordinated by the N,N′,N′′-tridentate Schiff base ligand and one terminal thio­cyanate N atom. Two trans-N:S-bridging thio­cyanates complete the N5S donor set around the Cd atom. In the crystal, adjacent CdII ions are linked by the thio­cyanate N:S-bridges into polymeric chains along the c axis.

Related literature

For the structures of some cadmium thio­cyanate complexes with nitro­gen-based ligands, see: Banerjee et al. (2005[Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]). For a singly bridged cadmium thio­cyanate complex, see: Bose et al. (2004[Bose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045-2053.]). For a triply bridged cadmium thio­cyanate complex, see: Chen et al. (2002[Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119-125.]). For an S-bound terminal thio­cyanate cadmium complex, see: Nfor et al. (2006[Nfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837-841.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NCS)2(C11H17N3)]

  • Mr = 419.84

  • Monoclinic, P 21 /c

  • a = 14.602 (2) Å

  • b = 9.5827 (14) Å

  • c = 12.8714 (19) Å

  • β = 107.483 (2)°

  • V = 1717.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 100 K

  • 0.35 × 0.29 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.619, Tmax = 0.889

  • 19975 measured reflections

  • 3756 independent reflections

  • 3298 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.07

  • 3756 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N4 2.2406 (18)
Cd1—N5 2.3008 (19)
Cd1—N2 2.3345 (17)
Cd1—N1 2.3801 (18)
Cd1—N3 2.3820 (19)
Cd1—S2 2.7803 (6)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiocyanate anion is known to bind the cadmium ion in different modes: terminal N-bound, terminal S-bound (Nfor et al. 2006) or N:S-bridging ligand. As a bridging ligand, it may give rise to a singly bridged (Bose et al. 2004), doubly bridged or triply bridged (Chen et al. 2002) cadmium complex. The title compound is a mixed-ligand cadmium complex with thiocyanate and the Schiff base N,N-dimethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine. Similar to what was observed in the cadmium thiocyanate adduct of the similar Schiff base, N,N-diethyl-N'-[methyl(2-pyridyl)methylene]ethane-1,2-diamine (Banerjee et al. 2005), the thiocyanate ions act as either bridging or terminal ligands. However, different from the doubly bridged dimeric structure of the former, in the present structure the bridging thiocyanate ligands singly bridge the adjacent metal centers, related by symmetry x, –y+1/2, z - 1/2, into infinite chains along the c axis. Within this coordination polymer, the CdII ions are separated by the distance of 8.0234 (9) Å. Two thiocyanate N:S-bridges, one terminal thiocyanate N atom and the N,N',N"-tridentate Schiff base make a distorted octahedral geometry around the Cd(II) atoms.

Related literature top

For the structures of some cadmium(II) thiocyanate complexes with nitrogen-based ligands, see: Banerjee et al. (2005). For a singly bridged cadmium(II) thiocyanate complex, see: Bose et al. (2004). For a triply bridged cadmium(II) thiocyanate complex, see: Chen et al. (2002). For an S-bound terminal thiocyanate cadmium complex, see: Nfor et al. (2006).

Experimental top

A mixture of 2-acetylpyridine (0.2 g, 1.65 mmol) and N,N-dimethylethyldiamine (0.15 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of cadmium(II) acetate dihydrate (0.44 g, 1.65 mmol) and sodium thiocyanate (0.27 g, 3.3 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then set aside at room temperature. The crystals of the title compound were obtained in a few days.

Refinement top

Hydrogen atoms were placed at calculated positions at distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively, and were treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5 times Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms have been omitted for clarity. Symmetry code: ' = x, –y+1/2, z - 1/2.
catena-Poly[[{N,N-dimethyl-N'-[1-(pyridin-2- yl)ethylidene]ethane-1,2-diamine- κ3N,N',N''}(thiocyanato-κN)cadmium(II)]- µ-thiocyanato-κ2S:N] top
Crystal data top
[Cd(NCS)2(C11H17N3)]F(000) = 840
Mr = 419.84Dx = 1.623 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9975 reflections
a = 14.602 (2) Åθ = 2.6–31.2°
b = 9.5827 (14) ŵ = 1.51 mm1
c = 12.8714 (19) ÅT = 100 K
β = 107.483 (2)°Needle, colorless
V = 1717.9 (4) Å30.35 × 0.29 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3756 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.619, Tmax = 0.889k = 1212
19975 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0162P)2 + 1.0805P]
where P = (Fo2 + 2Fc2)/3
3756 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Cd(NCS)2(C11H17N3)]V = 1717.9 (4) Å3
Mr = 419.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.602 (2) ŵ = 1.51 mm1
b = 9.5827 (14) ÅT = 100 K
c = 12.8714 (19) Å0.35 × 0.29 × 0.08 mm
β = 107.483 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3756 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3298 reflections with I > 2σ(I)
Tmin = 0.619, Tmax = 0.889Rint = 0.047
19975 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.07Δρmax = 0.54 e Å3
3756 reflectionsΔρmin = 0.73 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.234091 (10)0.221072 (15)0.070761 (11)0.01927 (6)
S10.37258 (4)0.22496 (6)0.01149 (6)0.03326 (14)
S20.23783 (5)0.02652 (6)0.23222 (5)0.03374 (15)
N10.07134 (13)0.27035 (18)0.05811 (14)0.0217 (4)
N20.22324 (12)0.41643 (18)0.17479 (13)0.0208 (4)
N30.39458 (13)0.30157 (18)0.14777 (15)0.0234 (4)
N40.26943 (14)0.0221 (2)0.00030 (15)0.0279 (4)
N50.20178 (16)0.3205 (2)0.09914 (16)0.0353 (5)
C10.00422 (17)0.2001 (2)0.00390 (18)0.0265 (5)
H10.00670.12640.04810.032*
C20.09807 (18)0.2296 (2)0.0070 (2)0.0307 (5)
H20.15020.17790.05270.037*
C30.11374 (16)0.3359 (3)0.05798 (19)0.0298 (5)
H30.17700.35750.05890.036*
C40.03583 (16)0.4107 (2)0.12192 (18)0.0271 (5)
H40.04520.48440.16710.033*
C50.05605 (15)0.3770 (2)0.11946 (16)0.0210 (4)
C60.14267 (15)0.4573 (2)0.18289 (16)0.0212 (4)
C70.12885 (17)0.5799 (2)0.25002 (18)0.0288 (5)
H7A0.11800.54610.31720.043*
H7B0.07320.63450.20820.043*
H7C0.18640.63880.26830.043*
C80.31469 (16)0.4832 (2)0.23056 (18)0.0255 (5)
H8A0.31290.52200.30120.031*
H8B0.32720.56050.18570.031*
C90.39357 (16)0.3735 (2)0.24905 (17)0.0257 (5)
H9A0.45660.41900.28170.031*
H9B0.38460.30350.30170.031*
C100.42503 (18)0.3962 (2)0.0739 (2)0.0310 (5)
H10A0.48910.43290.11120.047*
H10B0.37940.47360.05270.047*
H10C0.42680.34470.00870.047*
C110.46237 (17)0.1834 (3)0.1762 (2)0.0332 (5)
H11A0.46390.13530.10960.050*
H11B0.44150.11810.22320.050*
H11C0.52670.21820.21480.050*
C120.31368 (15)0.0797 (2)0.00673 (16)0.0226 (4)
C130.21670 (16)0.1178 (2)0.33052 (17)0.0260 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02395 (9)0.01941 (9)0.01697 (9)0.00128 (6)0.01000 (6)0.00108 (5)
S10.0287 (3)0.0286 (3)0.0440 (4)0.0061 (2)0.0131 (3)0.0010 (3)
S20.0595 (4)0.0236 (3)0.0247 (3)0.0007 (3)0.0226 (3)0.0017 (2)
N10.0258 (9)0.0225 (9)0.0191 (9)0.0010 (7)0.0103 (7)0.0004 (7)
N20.0246 (9)0.0216 (9)0.0181 (8)0.0009 (7)0.0092 (7)0.0013 (7)
N30.0233 (9)0.0225 (9)0.0267 (10)0.0032 (7)0.0110 (8)0.0003 (7)
N40.0385 (11)0.0240 (10)0.0254 (10)0.0025 (8)0.0160 (8)0.0052 (8)
N50.0485 (13)0.0398 (12)0.0220 (10)0.0145 (10)0.0175 (9)0.0068 (9)
C10.0308 (12)0.0250 (12)0.0246 (11)0.0028 (9)0.0096 (9)0.0011 (9)
C20.0286 (12)0.0326 (13)0.0298 (12)0.0068 (10)0.0071 (10)0.0041 (10)
C30.0244 (11)0.0348 (13)0.0327 (12)0.0014 (10)0.0120 (10)0.0065 (10)
C40.0271 (12)0.0297 (12)0.0273 (11)0.0035 (9)0.0123 (9)0.0021 (9)
C50.0262 (11)0.0226 (10)0.0163 (9)0.0013 (8)0.0094 (8)0.0035 (8)
C60.0287 (11)0.0216 (10)0.0145 (9)0.0033 (8)0.0084 (8)0.0030 (8)
C70.0305 (12)0.0306 (12)0.0253 (11)0.0066 (10)0.0084 (9)0.0062 (9)
C80.0270 (11)0.0263 (11)0.0252 (11)0.0034 (9)0.0109 (9)0.0066 (9)
C90.0240 (11)0.0285 (12)0.0239 (11)0.0020 (9)0.0061 (9)0.0008 (9)
C100.0355 (13)0.0274 (12)0.0374 (13)0.0006 (10)0.0220 (11)0.0000 (10)
C110.0263 (12)0.0304 (12)0.0412 (14)0.0079 (10)0.0078 (10)0.0026 (11)
C120.0239 (11)0.0280 (11)0.0182 (10)0.0064 (9)0.0097 (8)0.0032 (8)
C130.0318 (12)0.0282 (11)0.0187 (10)0.0093 (9)0.0087 (9)0.0006 (9)
Geometric parameters (Å, º) top
Cd1—N42.2406 (18)C3—C41.387 (3)
Cd1—N52.3008 (19)C3—H30.9500
Cd1—N22.3345 (17)C4—C51.390 (3)
Cd1—N12.3801 (18)C4—H40.9500
Cd1—N32.3820 (19)C5—C61.496 (3)
Cd1—S22.7803 (6)C6—C71.507 (3)
S1—C121.628 (2)C7—H7A0.9800
S2—C131.642 (2)C7—H7B0.9800
N1—C11.333 (3)C7—H7C0.9800
N1—C51.351 (3)C8—C91.524 (3)
N2—C61.274 (3)C8—H8A0.9900
N2—C81.460 (3)C8—H8B0.9900
N3—C101.475 (3)C9—H9A0.9900
N3—C111.476 (3)C9—H9B0.9900
N3—C91.479 (3)C10—H10A0.9800
N4—C121.159 (3)C10—H10B0.9800
N5—C13i1.155 (3)C10—H10C0.9800
C1—C21.388 (3)C11—H11A0.9800
C1—H10.9500C11—H11B0.9800
C2—C31.380 (3)C11—H11C0.9800
C2—H20.9500C13—N5ii1.155 (3)
N4—Cd1—N588.34 (7)C3—C4—H4120.3
N4—Cd1—N2168.52 (7)C5—C4—H4120.3
N5—Cd1—N2100.55 (7)N1—C5—C4121.3 (2)
N4—Cd1—N1119.25 (7)N1—C5—C6116.56 (18)
N5—Cd1—N186.41 (7)C4—C5—C6122.14 (19)
N2—Cd1—N169.01 (6)N2—C6—C5116.59 (18)
N4—Cd1—N397.29 (7)N2—C6—C7124.9 (2)
N5—Cd1—N399.00 (7)C5—C6—C7118.48 (18)
N2—Cd1—N374.30 (6)C6—C7—H7A109.5
N1—Cd1—N3143.28 (6)C6—C7—H7B109.5
N4—Cd1—S277.26 (5)H7A—C7—H7B109.5
N5—Cd1—S2160.16 (6)C6—C7—H7C109.5
N2—Cd1—S295.65 (4)H7A—C7—H7C109.5
N1—Cd1—S288.81 (4)H7B—C7—H7C109.5
N3—Cd1—S296.33 (5)N2—C8—C9108.16 (17)
C13—S2—Cd1104.63 (8)N2—C8—H8A110.1
C1—N1—C5118.65 (19)C9—C8—H8A110.1
C1—N1—Cd1124.79 (15)N2—C8—H8B110.1
C5—N1—Cd1116.56 (14)C9—C8—H8B110.1
C6—N2—C8123.78 (18)H8A—C8—H8B108.4
C6—N2—Cd1121.13 (14)N3—C9—C8113.02 (18)
C8—N2—Cd1115.06 (12)N3—C9—H9A109.0
C10—N3—C11108.77 (18)C8—C9—H9A109.0
C10—N3—C9111.49 (17)N3—C9—H9B109.0
C11—N3—C9108.82 (18)C8—C9—H9B109.0
C10—N3—Cd1112.34 (14)H9A—C9—H9B107.8
C11—N3—Cd1110.94 (14)N3—C10—H10A109.5
C9—N3—Cd1104.40 (12)N3—C10—H10B109.5
C12—N4—Cd1151.16 (18)H10A—C10—H10B109.5
C13i—N5—Cd1157.5 (2)N3—C10—H10C109.5
N1—C1—C2123.1 (2)H10A—C10—H10C109.5
N1—C1—H1118.4H10B—C10—H10C109.5
C2—C1—H1118.4N3—C11—H11A109.5
C3—C2—C1118.4 (2)N3—C11—H11B109.5
C3—C2—H2120.8H11A—C11—H11B109.5
C1—C2—H2120.8N3—C11—H11C109.5
C2—C3—C4119.0 (2)H11A—C11—H11C109.5
C2—C3—H3120.5H11B—C11—H11C109.5
C4—C3—H3120.5N4—C12—S1177.5 (2)
C3—C4—C5119.5 (2)N5ii—C13—S2178.5 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C11H17N3)]
Mr419.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.602 (2), 9.5827 (14), 12.8714 (19)
β (°) 107.483 (2)
V3)1717.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.35 × 0.29 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.619, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
19975, 3756, 3298
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.07
No. of reflections3756
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.73

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N42.2406 (18)Cd1—S22.7803 (6)
Cd1—N52.3008 (19)S1—C121.628 (2)
Cd1—N22.3345 (17)S2—C131.642 (2)
Cd1—N12.3801 (18)N4—C121.159 (3)
Cd1—N32.3820 (19)N5—C13i1.155 (3)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B).

References

First citationBanerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBose, D., Banerjee, J., Rahaman, S. H., Mostafa, G., Fun, H.-K., Walsh, R. D. B., Zaworotko, M. J. & Ghosh, B. K. (2004). Polyhedron, 23, 2045–2053.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationNfor, E. N., Liu, W., Zuo, J.-L. & You, X.-Z. (2006). Transition Met. Chem. 31, 837-841.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds