metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Ethane-1,1,2,2-tetra­carboxyl­ato)bis­­[tetra­aqua­manganese(II)]

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: cychen@njxzc.edu.cn

(Received 26 February 2011; accepted 3 March 2011; online 15 March 2011)

In the centrosymmetric title molecule, [Mn2(C6H2O8)(H2O)8], the MnII atom is in an octa­hedral environment coordinated by six O-atom donors from water mol­ecules and ethane-1,1,2,2-tetra­carboxyl­ate ligands. The crystal structure features a three-dimensional hydrogen-bonding network based on a strong and distinctive pattern of O—H⋯O hydrogen-bonding inter­actions.

Related literature

For related literature on metal–organic frameworks, see: Chen et al. (2007[Chen, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738-15739.]); Fan & Zhu (2006[Fan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935-7942.]); Li & Yang (2006[Li, Y. N. & Yang, R. T. (2006). J. Am. Chem. Soc. 128, 726-727.]). For related literature on hydrogen bonding, see: Forster & Cheetham (2002[Forster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457-459.]); Kim & Jung (2000[Kim, Y. J. & Jung, D. Y. (2000). Inorg. Chem. 39, 1470-1475.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C6H2O8)(H2O)8]

  • Mr = 456.08

  • Triclinic, [P \overline 1]

  • a = 6.2901 (12) Å

  • b = 8.0212 (15) Å

  • c = 8.0769 (15) Å

  • α = 108.522 (3)°

  • β = 95.068 (3)°

  • γ = 97.086 (3)°

  • V = 379.92 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.785, Tmax = 0.823

  • 1956 measured reflections

  • 1379 independent reflections

  • 1309 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.05

  • 1379 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and synthesis of metal-organic frameworks(MOFs) has become a very interesting research field. This not only stems from their potential application as functional materials but also from their intriguing structural topologies(Chen et al., 2007; Fan & Zhu, 2006; Li & Yang, 2006). However, frankly speaking, the designed synthesis of coordination networks and supramolecular architectures is still a difficult challenge. The formation of coordination polymers is not only influenced by the geometrical and electronic properties of metal ions but also relying on other factors such as the rigidity or flexibility of the ligands and diversity of metal ions and organic ligands in coordination and noncovalent interactions such as hydrogen bonding (Kim & Jung, 2000; Forster et al., 2002). Therefore, the rational design and construction of coordination polymers based upon assembly of metal ions and multifunctional organic ligands is an interesting research field. Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1., where selected bond distances and bond angles are given in Table 1.

Single-crystal X-ray analysis reveals that 1 crystallizes in the triclinic space group P-1, The structure of 1 is a single molecule in which the asymmetric unit contains one Mn atom, half tce anion, four coordinated water molecules. In complex 1, there is one kind of crystallographically independent MnII center.1 features a 3-D hydrogen bonding network based on a strong and distinctive pattern of hydrogen bonding interactions. As show in Fig. 2., a one-dimensional chain is formed by bond generated by coordinated water molecule and uncoordinated oxygen atom of ligand tce, Further, one-dimensional chains are linked by bonds to form two-dimensional layers, and two-dimensional layers are also jointed by hydrogen bonds to give rise to three-dimensional structure.

Related literature top

For related literature on metal–organic frameworks, see: Chen et al. (2007); Fan & Zhu (2006); Li & Yang (2006). For related literature on hydrogen bonding, see: Forster & Cheetham (2002); Kim & Jung (2000).

Experimental top

A H2O solution (10 ml) of sodium 1,1,2,2-tetracarboxyl-ethylene (29.4 mg, 1 mmol) was added to a CH3OH solution (10 ml) of Mn(OAc)22.5H2O (17.3 mg,1 mmol). The pH of the mixture was adjusted to about 7. The mixture was stirred for 2 h and then filtered.Single crystals appeared after the filtered solution was allowed to stand at room temperature for 2 days.

Refinement top

The C-bound H atoms were placed to the bonded parent atoms in geometrically idealized positions (C—H = 0.93, and 0.98 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in difference Fourier maps and refined as riding in their as-found relative positions(O—H =0.96 Å) with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing diagram of l.
(µ-Ethane-1,1,2,2-tetracarboxylato)bis[tetraaquamanganese(II)] top
Crystal data top
[Mn2(C6H2O8)(H2O)8]Z = 1
Mr = 456.08F(000) = 232.0
Triclinic, P1Dx = 1.993 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2901 (12) ÅCell parameters from 924 reflections
b = 8.0212 (15) Åθ = 2.2–20.2°
c = 8.0769 (15) ŵ = 1.75 mm1
α = 108.522 (3)°T = 293 K
β = 95.068 (3)°Block, brown
γ = 97.086 (3)°0.30 × 0.26 × 0.24 mm
V = 379.92 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1379 independent reflections
Radiation source: fine-focus sealed tube1309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 67
Tmin = 0.785, Tmax = 0.823k = 99
1956 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0451P)2]
where P = (Fo2 + 2Fc2)/3
1379 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mn2(C6H2O8)(H2O)8]γ = 97.086 (3)°
Mr = 456.08V = 379.92 (12) Å3
Triclinic, P1Z = 1
a = 6.2901 (12) ÅMo Kα radiation
b = 8.0212 (15) ŵ = 1.75 mm1
c = 8.0769 (15) ÅT = 293 K
α = 108.522 (3)°0.30 × 0.26 × 0.24 mm
β = 95.068 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1379 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1309 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.823Rint = 0.044
1956 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
1379 reflectionsΔρmin = 0.30 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.30762 (4)0.25813 (4)0.70315 (3)0.02040 (14)
O10.0280 (3)0.2382 (3)0.6000 (2)0.0407 (4)
O20.6555 (2)0.3118 (2)0.8276 (2)0.0249 (3)
O30.3825 (3)0.5167 (2)0.6758 (2)0.0388 (4)
O40.3632 (3)0.1354 (2)0.43505 (19)0.0293 (3)
O50.2172 (2)0.34158 (18)0.96515 (17)0.0238 (3)
O60.2933 (2)0.00729 (18)0.72542 (18)0.0246 (3)
O70.1900 (2)0.28929 (19)1.21579 (17)0.0282 (3)
O80.3028 (2)0.1656 (2)0.90616 (19)0.0297 (3)
C10.1621 (3)0.2406 (2)1.0530 (2)0.0186 (4)
C20.0577 (3)0.0477 (2)0.9454 (2)0.0184 (4)
H90.050 (3)0.053 (3)0.853 (3)0.022*
C30.2319 (3)0.0512 (2)0.8542 (2)0.0192 (4)
H30.685 (4)0.421 (5)0.890 (4)0.046 (8)*
H40.669 (4)0.260 (4)0.883 (4)0.036 (8)*
H70.292 (4)0.177 (4)0.373 (3)0.034 (7)*
H80.475 (6)0.111 (5)0.400 (5)0.077 (12)*
H50.519 (9)0.581 (8)0.691 (7)0.15 (2)*
H10.108 (7)0.278 (6)0.663 (6)0.100 (15)*
H20.092 (6)0.175 (5)0.510 (5)0.067 (11)*
H60.332 (6)0.591 (6)0.719 (5)0.077 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0220 (2)0.02101 (19)0.01841 (19)0.00202 (12)0.00384 (12)0.00706 (13)
O10.0267 (9)0.0621 (12)0.0257 (9)0.0078 (8)0.0007 (7)0.0045 (8)
O20.0274 (8)0.0220 (8)0.0251 (8)0.0022 (6)0.0024 (6)0.0086 (7)
O30.0508 (11)0.0237 (8)0.0427 (10)0.0047 (8)0.0128 (8)0.0110 (7)
O40.0338 (9)0.0375 (9)0.0210 (7)0.0145 (7)0.0088 (7)0.0114 (7)
O50.0331 (8)0.0176 (7)0.0200 (7)0.0006 (6)0.0069 (6)0.0059 (5)
O60.0310 (8)0.0234 (7)0.0234 (7)0.0073 (6)0.0126 (6)0.0098 (6)
O70.0389 (8)0.0245 (7)0.0180 (7)0.0011 (6)0.0012 (6)0.0057 (6)
O80.0345 (8)0.0312 (8)0.0317 (8)0.0145 (6)0.0116 (6)0.0168 (6)
C10.0167 (9)0.0192 (9)0.0200 (9)0.0048 (7)0.0041 (7)0.0056 (7)
C20.0196 (9)0.0184 (9)0.0177 (9)0.0023 (7)0.0031 (7)0.0067 (7)
C30.0216 (9)0.0163 (9)0.0173 (9)0.0006 (7)0.0024 (7)0.0032 (7)
Geometric parameters (Å, º) top
Mn1—O32.1541 (18)O3—H60.71 (4)
Mn1—O42.1552 (15)O4—H70.82 (3)
Mn1—O52.1578 (13)O4—H80.80 (4)
Mn1—O12.1674 (18)O5—C11.273 (2)
Mn1—O62.1845 (14)O6—C31.275 (2)
Mn1—O22.2557 (16)O7—C11.236 (2)
O1—H10.77 (4)O8—C31.237 (2)
O1—H20.78 (4)C1—C21.541 (3)
O2—H30.85 (3)C2—C2i1.515 (3)
O2—H40.71 (3)C2—C31.536 (2)
O3—H50.92 (6)C2—H90.98 (2)
O3—Mn1—O489.71 (7)Mn1—O3—H5126 (3)
O3—Mn1—O598.50 (6)Mn1—O3—H6123 (3)
O4—Mn1—O5170.75 (6)H5—O3—H696 (4)
O3—Mn1—O190.76 (8)Mn1—O4—H7107.7 (18)
O4—Mn1—O187.24 (7)Mn1—O4—H8128 (3)
O5—Mn1—O188.40 (6)H7—O4—H8113 (3)
O3—Mn1—O6169.57 (7)C1—O5—Mn1126.22 (12)
O4—Mn1—O686.03 (6)C3—O6—Mn1125.18 (11)
O5—Mn1—O686.55 (5)O7—C1—O5123.56 (17)
O1—Mn1—O698.54 (7)O7—C1—C2120.04 (16)
O3—Mn1—O284.27 (8)O5—C1—C2116.39 (16)
O4—Mn1—O296.98 (6)C2i—C2—C3112.65 (19)
O5—Mn1—O288.12 (6)C2i—C2—C1112.95 (19)
O1—Mn1—O2173.45 (7)C3—C2—C1108.56 (14)
O6—Mn1—O286.79 (6)C2i—C2—H9107.6 (13)
Mn1—O1—H1120 (3)C3—C2—H9107.4 (13)
Mn1—O1—H2129 (3)C1—C2—H9107.4 (15)
H1—O1—H2109 (4)O8—C3—O6124.24 (16)
Mn1—O2—H3107.8 (18)O8—C3—C2120.15 (16)
Mn1—O2—H4110 (2)O6—C3—C2115.61 (16)
H3—O2—H4109 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O5ii0.85 (3)1.88 (3)2.726 (2)174 (3)
O2—H4···O8iii0.71 (3)2.07 (3)2.765 (2)166 (3)
O4—H7···O7iv0.82 (3)1.89 (3)2.689 (2)167 (2)
O4—H8···O6v0.80 (4)1.97 (4)2.757 (2)167 (4)
O3—H5···O7ii0.92 (6)1.95 (6)2.847 (2)165 (5)
O1—H1···O2vi0.77 (4)2.07 (4)2.818 (2)164 (5)
O1—H2···O6vii0.78 (4)2.14 (4)2.914 (2)175 (4)
O3—H6···O8viii0.71 (4)2.10 (4)2.771 (2)158 (4)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x+1, y, z+2; (iv) x, y, z1; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x, y, z+1; (viii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn2(C6H2O8)(H2O)8]
Mr456.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2901 (12), 8.0212 (15), 8.0769 (15)
α, β, γ (°)108.522 (3), 95.068 (3), 97.086 (3)
V3)379.92 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.785, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
1956, 1379, 1309
Rint0.044
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.05
No. of reflections1379
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.30

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H3···O5i0.85 (3)1.88 (3)2.726 (2)174 (3)
O2—H4···O8ii0.71 (3)2.07 (3)2.765 (2)166 (3)
O4—H7···O7iii0.82 (3)1.89 (3)2.689 (2)167 (2)
O4—H8···O6iv0.80 (4)1.97 (4)2.757 (2)167 (4)
O3—H5···O7i0.92 (6)1.95 (6)2.847 (2)165 (5)
O1—H1···O2v0.77 (4)2.07 (4)2.818 (2)164 (5)
O1—H2···O6vi0.78 (4)2.14 (4)2.914 (2)175 (4)
O3—H6···O8vii0.71 (4)2.10 (4)2.771 (2)158 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x, y, z1; (iv) x+1, y, z+1; (v) x1, y, z; (vi) x, y, z+1; (vii) x, y+1, z.
 

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. N., Zhang, W. X. & Chen, X. M. (2007). J. Am. Chem. Soc. 129, 15738–15739.  Web of Science PubMed Google Scholar
First citationFan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935–7942.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationForster, P. M. & Cheetham, A. K. (2002). Angew. Chem. Int. Ed. 41, 457–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, Y. J. & Jung, D. Y. (2000). Inorg. Chem. 39, 1470–1475.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Y. N. & Yang, R. T. (2006). J. Am. Chem. Soc. 128, 726–727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds