organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-1,5-di­phenyl-3-tosyl­imidazolidin-4-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 13 January 2011; accepted 5 March 2011; online 12 March 2011)

In the title compound, C28H23ClN2O3S, the central imidazolidine ring adopts a twisted conformation and the S atom has distorted tetra­hedral geometry. The crystal packing is stabilized by C—H⋯O, C—H⋯π and ππ inter­actions [centroid–centroid distance = 3.8302 (10) Å].

Related literature

For the biological activity of sulfonamides, see: Zareef et al. (2007[Zareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301-308.]); Chohan et al. (2007[Chohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369-379.]); Pomarnacka & Kozlarska-Kedra (2003[Pomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423-429.]); Nieto et al. (2005[Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361-369.]); Wang et al. (1995[Wang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181-1184.]). For a related structure, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli et al. (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H23ClN2O3S

  • Mr = 503.00

  • Monoclinic, P 21 /n

  • a = 10.8458 (3) Å

  • b = 13.0191 (4) Å

  • c = 17.6720 (5) Å

  • β = 103.757 (2)°

  • V = 2423.75 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 32315 measured reflections

  • 7313 independent reflections

  • 5098 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.05

  • 7313 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.98 2.44 3.3659 (17) 158
C14—H14⋯O3i 0.93 2.57 3.3855 (19) 146
C24—H24⋯O2ii 0.93 2.59 3.289 (2) 132
C1—H1CCg4iii 0.96 2.90 3.484 (2) 120
C11—H11⋯Cg2iii 0.93 2.88 3.619 (17) 138
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides have widely been recognized for their wide variety of pharmacological activities such as antibacterial, antitumor, anti-carbonic anhydrase, diuretic, hypoglycaemic, antithyroid and protease inhibitory activity. Sulfonamides have also been used clinically as antimalarial agents (Zareef et al., 2007), particularly sulfadiazine and sulfadoxine. Due to their significant pharmacology applications and widespread use in medicine, these compounds have also gained attention in bioinorganic and metal-based (Chohan et al., 2007) drug chemistry. Sulfonamide derivatives are well known drugs and are used to control diseases caused by bacterial infections. Benzene sulfonamide derivatives are known to exhibit anticancer and HIV activities (Pomarnacka & Kozlarska-Kedra, 2003) and antibacterial activities (Nieto et al., 2005). Imidazolidine compounds are important intermediates and building blocks in the construction of various biologically active compounds (Wang et al., 1995). Against this background, and in order to obtain detailed information on molecular conformations in the solid state, an X-ray study of the title compound was carried out.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry around the S atom is distorted tetrahedral, comprising two O atoms of the sulfonyl group, a C atom of a benzene ring and the imidazolidine N atom. The S–O, S–C, and S–N distances are 1.418 (1), 1.747 (1) and 1.677 (1) Å, respectively. These are comparable to those in similar structures (Chakkaravarthi et al., 2008). The atom Cl1 deviates by 0.130 (1)Å from the least-squares plane of the ring C9–C14. The S atom exhibits significant deviation from that of a regular tetrahedron, with the largest deviations for the O–S–O [O1–S1–O2 120.9 (7)°] and O–S–N angles [O1–S1–N1 106.5 (6)°]. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008). The chlorobenzene ring makes the dihedral angles of 39.4 (8), 85.1 (8) and 1.9 (9)° with respect to the C2–C7, C15–C20 and C23–C28 benzene rings.

The imidazolidine ring adopts a twisted conformation, with puckering parameters q2 and ϕ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.1300 (14) Å, ϕ = 21.9 (6)°, Δs(C8) = 4.70 (15). The intramolecular C6–H6···O2 hydrogen bond completes a five-membered ring, which generates an S(5) motif (Bernstein et al., 1995). Atoms C8 and C14 act as donors to form bifurcated hydrogen bonds with atom O3 as an acceptor, results in the formation of R21(6) bifurcated ring. In addition to van der Waals interactions, the crystal packing is stabilized by C–H..O, C–H···π and π···π interactions (Table. 1).

Related literature top

For the biological activity of sulfonamides, see: Zareef et al. (2007); Chohan et al. (2007); Pomarnacka & Kozlarska-Kedra (2003); Nieto et al. (2005); Wang et al. (1995). For a related structure, see: Chakkaravarthi et al. (2008). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli et al. (1983). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

4-Toluenesulfonyl azide (1.3 mmol), phenylacetylene (1.2 mmol), 4-chlorophenyl N-phenylnitrone (1.0 mmol) and triethylamine (2 mmol) were successively added to Cu1—Y zeolite (30 mg) in dichloromethane under N2 atmosphere. After stirring at room temperature for 6 h, the mixture was diluted with dichloromethane. After removing the catalyst by filtration, followed by solvent evaporation, the resulting crude product was finally purified by column chromatography (silica gel). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. ππ, C–H···π interactions (dotted lines) in the title compound and also bifurcated hydrogen bonds formed by C8–H8···O3 and C14–H14···O3 at 3/2 - x,-1/2 + y,1/2 - z, results in the formation of R21(6) [O3,H8,C8,C9,C14,H14] bifurcated ring. Cg denotes ring centroid.[Symmetry code: (i) 2 - x,1 - y,-z;(ii) 1 - x,1 - y,-z; (iii) 3/2 - x,-1/2 + y,1/2 - z.]
2-(4-Chlorophenyl)-1,5-diphenyl-3-tosylimidazolidin-4-one top
Crystal data top
C28H23ClN2O3SF(000) = 1048
Mr = 503.00Dx = 1.378 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7313 reflections
a = 10.8458 (3) Åθ = 2.4–30.4°
b = 13.0191 (4) ŵ = 0.28 mm1
c = 17.6720 (5) ÅT = 293 K
β = 103.757 (2)°Block, colourless
V = 2423.75 (12) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7313 independent reflections
Radiation source: fine-focus sealed tube5098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scansθmax = 30.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.981, Tmax = 0.985k = 1718
32315 measured reflectionsl = 2225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.5408P]
where P = (Fo2 + 2Fc2)/3
7313 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C28H23ClN2O3SV = 2423.75 (12) Å3
Mr = 503.00Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8458 (3) ŵ = 0.28 mm1
b = 13.0191 (4) ÅT = 293 K
c = 17.6720 (5) Å0.25 × 0.22 × 0.19 mm
β = 103.757 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7313 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5098 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.030
32315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.05Δρmax = 0.28 e Å3
7313 reflectionsΔρmin = 0.35 e Å3
317 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8204 (2)0.6211 (2)0.10561 (13)0.0944 (10)
H1A0.82930.57570.14680.142*
H1B0.88430.67350.09870.142*
H1C0.73780.65230.11880.142*
C20.83550 (16)0.5610 (2)0.03116 (10)0.0615 (6)
C30.87311 (18)0.60888 (16)0.03995 (11)0.0592 (5)
H30.89030.67890.04170.071*
C40.88600 (16)0.55548 (13)0.10884 (10)0.0477 (4)
H40.91070.58920.15650.057*
C50.86169 (13)0.45127 (12)0.10598 (8)0.0370 (3)
C60.82418 (16)0.40127 (16)0.03542 (10)0.0524 (4)
H60.80790.33110.03340.063*
C70.81134 (17)0.4579 (2)0.03242 (10)0.0649 (6)
H70.78550.42480.08020.078*
C80.65428 (12)0.31035 (10)0.20980 (7)0.0301 (3)
H80.69290.24450.22910.036*
C90.58939 (12)0.30175 (10)0.12399 (8)0.0298 (3)
C100.51246 (13)0.37975 (11)0.08615 (8)0.0359 (3)
H100.49420.43550.11450.043*
C110.46242 (14)0.37599 (12)0.00672 (9)0.0396 (3)
H110.41020.42840.01840.048*
C120.49087 (14)0.29372 (12)0.03472 (8)0.0398 (3)
C130.56268 (16)0.21323 (13)0.00174 (9)0.0455 (4)
H130.57820.15660.02680.055*
C140.61182 (14)0.21732 (11)0.08156 (9)0.0389 (3)
H140.66020.16290.10680.047*
C150.46241 (13)0.29610 (11)0.26339 (8)0.0336 (3)
C160.43733 (14)0.19730 (12)0.23351 (9)0.0388 (3)
H160.49520.16440.21040.047*
C170.32626 (16)0.14799 (14)0.23816 (10)0.0491 (4)
H170.31050.08180.21850.059*
C180.23885 (16)0.19555 (16)0.27141 (11)0.0551 (5)
H180.16380.16230.27350.066*
C190.26360 (15)0.29236 (15)0.30142 (10)0.0516 (4)
H190.20500.32460.32420.062*
C200.37404 (14)0.34271 (13)0.29837 (9)0.0429 (3)
H200.38980.40810.31970.052*
C210.60120 (14)0.45092 (11)0.28719 (8)0.0353 (3)
H210.53060.49610.26300.042*
C230.63258 (14)0.46406 (11)0.37521 (8)0.0364 (3)
C280.70564 (19)0.39176 (15)0.42268 (10)0.0578 (5)
H280.73020.33210.40130.069*
C270.7424 (2)0.40811 (19)0.50230 (11)0.0731 (6)
H270.79140.35930.53440.088*
C260.7067 (2)0.49587 (19)0.53377 (11)0.0694 (6)
H260.73240.50700.58720.083*
C250.6339 (2)0.56698 (16)0.48732 (11)0.0628 (5)
H250.60890.62610.50920.075*
C240.59660 (18)0.55168 (13)0.40753 (10)0.0491 (4)
H240.54720.60070.37590.059*
N10.75179 (11)0.39178 (9)0.22299 (6)0.0318 (2)
N20.57393 (11)0.34697 (10)0.25969 (7)0.0368 (3)
O10.98232 (10)0.43180 (9)0.25004 (6)0.0459 (3)
O20.89588 (10)0.27584 (9)0.17703 (7)0.0479 (3)
C220.71777 (14)0.47825 (11)0.25818 (8)0.0350 (3)
S10.88693 (3)0.38196 (3)0.19302 (2)0.03485 (10)
Cl10.43640 (5)0.29404 (4)0.13549 (2)0.06360 (15)
O30.77172 (11)0.55951 (8)0.26593 (7)0.0480 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0684 (13)0.165 (3)0.0561 (13)0.0392 (16)0.0268 (11)0.0549 (15)
C20.0390 (9)0.1076 (17)0.0414 (10)0.0192 (10)0.0163 (7)0.0250 (10)
C30.0596 (11)0.0658 (12)0.0559 (11)0.0111 (9)0.0209 (9)0.0236 (9)
C40.0540 (9)0.0509 (9)0.0390 (8)0.0006 (8)0.0131 (7)0.0051 (7)
C50.0329 (7)0.0504 (9)0.0292 (7)0.0002 (6)0.0099 (5)0.0016 (6)
C60.0496 (9)0.0714 (12)0.0382 (8)0.0063 (8)0.0148 (7)0.0099 (8)
C70.0507 (10)0.1166 (19)0.0283 (8)0.0025 (11)0.0110 (7)0.0052 (10)
C80.0323 (6)0.0316 (7)0.0269 (6)0.0013 (5)0.0078 (5)0.0011 (5)
C90.0304 (6)0.0323 (7)0.0273 (6)0.0012 (5)0.0081 (5)0.0016 (5)
C100.0387 (7)0.0351 (7)0.0338 (7)0.0041 (6)0.0087 (6)0.0029 (6)
C110.0372 (7)0.0431 (8)0.0359 (7)0.0017 (6)0.0033 (6)0.0054 (6)
C120.0383 (7)0.0527 (9)0.0267 (7)0.0074 (7)0.0041 (6)0.0027 (6)
C130.0533 (9)0.0458 (9)0.0369 (8)0.0005 (7)0.0097 (7)0.0129 (7)
C140.0440 (8)0.0370 (8)0.0343 (7)0.0054 (6)0.0067 (6)0.0031 (6)
C150.0331 (7)0.0423 (8)0.0247 (6)0.0014 (6)0.0057 (5)0.0036 (5)
C160.0390 (7)0.0424 (8)0.0338 (7)0.0032 (6)0.0067 (6)0.0011 (6)
C170.0489 (9)0.0514 (9)0.0452 (9)0.0129 (8)0.0076 (7)0.0015 (7)
C180.0379 (8)0.0745 (13)0.0525 (10)0.0143 (8)0.0098 (7)0.0071 (9)
C190.0374 (8)0.0731 (12)0.0467 (9)0.0013 (8)0.0149 (7)0.0025 (8)
C200.0408 (8)0.0524 (9)0.0372 (8)0.0006 (7)0.0123 (6)0.0024 (7)
C210.0404 (7)0.0353 (7)0.0313 (7)0.0007 (6)0.0106 (6)0.0028 (6)
C230.0420 (7)0.0387 (7)0.0314 (7)0.0048 (6)0.0144 (6)0.0054 (6)
C280.0711 (12)0.0630 (11)0.0390 (9)0.0181 (9)0.0122 (8)0.0029 (8)
C270.0816 (14)0.0961 (16)0.0380 (10)0.0180 (13)0.0067 (10)0.0061 (10)
C260.0871 (15)0.0886 (15)0.0351 (9)0.0171 (12)0.0198 (10)0.0148 (10)
C250.0907 (14)0.0578 (11)0.0477 (10)0.0143 (11)0.0320 (10)0.0208 (9)
C240.0671 (11)0.0402 (8)0.0462 (9)0.0046 (8)0.0255 (8)0.0058 (7)
N10.0336 (6)0.0333 (6)0.0298 (6)0.0039 (5)0.0101 (5)0.0039 (5)
N20.0402 (6)0.0400 (6)0.0341 (6)0.0072 (5)0.0165 (5)0.0096 (5)
O10.0361 (5)0.0592 (7)0.0382 (6)0.0085 (5)0.0003 (4)0.0051 (5)
O20.0454 (6)0.0413 (6)0.0606 (7)0.0060 (5)0.0200 (6)0.0006 (5)
C220.0427 (7)0.0357 (7)0.0269 (6)0.0005 (6)0.0088 (6)0.0004 (5)
S10.03133 (17)0.0400 (2)0.03336 (18)0.00022 (14)0.00796 (13)0.00157 (14)
Cl10.0700 (3)0.0859 (4)0.02902 (19)0.0131 (3)0.00031 (19)0.0035 (2)
O30.0615 (7)0.0359 (6)0.0511 (7)0.0115 (5)0.0225 (6)0.0069 (5)
Geometric parameters (Å, º) top
C1—C21.506 (3)C15—N21.3941 (18)
C1—H1A0.9600C15—C201.397 (2)
C1—H1B0.9600C16—C171.385 (2)
C1—H1C0.9600C16—H160.9300
C2—C71.366 (3)C17—C181.376 (3)
C2—C31.375 (3)C17—H170.9300
C3—C41.380 (2)C18—C191.369 (3)
C3—H30.9300C18—H180.9300
C4—C51.381 (2)C19—C201.378 (2)
C4—H40.9300C19—H190.9300
C5—C61.380 (2)C20—H200.9300
C5—S11.7478 (15)C21—N21.4446 (19)
C6—C71.386 (3)C21—C221.5154 (19)
C6—H60.9300C21—C231.5207 (19)
C7—H70.9300C21—H210.9800
C8—N21.4592 (17)C23—C241.373 (2)
C8—N11.4764 (17)C23—C281.379 (2)
C8—C91.5165 (18)C28—C271.385 (3)
C8—H80.9800C28—H280.9300
C9—C101.3817 (19)C27—C261.366 (3)
C9—C141.3844 (19)C27—H270.9300
C10—C111.380 (2)C26—C251.359 (3)
C10—H100.9300C26—H260.9300
C11—C121.373 (2)C25—C241.386 (2)
C11—H110.9300C25—H250.9300
C12—C131.372 (2)C24—H240.9300
C12—Cl11.7377 (15)N1—C221.3782 (18)
C13—C141.385 (2)N1—S11.6776 (11)
C13—H130.9300O1—S11.4181 (11)
C14—H140.9300O2—S11.4181 (12)
C15—C161.393 (2)C22—O31.2008 (17)
C2—C1—H1A109.5C15—C16—H16120.0
C2—C1—H1B109.5C18—C17—C16120.95 (17)
H1A—C1—H1B109.5C18—C17—H17119.5
C2—C1—H1C109.5C16—C17—H17119.5
H1A—C1—H1C109.5C19—C18—C17119.23 (16)
H1B—C1—H1C109.5C19—C18—H18120.4
C7—C2—C3118.31 (17)C17—C18—H18120.4
C7—C2—C1121.0 (2)C18—C19—C20121.00 (16)
C3—C2—C1120.7 (2)C18—C19—H19119.5
C2—C3—C4121.58 (19)C20—C19—H19119.5
C2—C3—H3119.2C19—C20—C15120.34 (16)
C4—C3—H3119.2C19—C20—H20119.8
C3—C4—C5118.97 (17)C15—C20—H20119.8
C3—C4—H4120.5N2—C21—C22103.10 (11)
C5—C4—H4120.5N2—C21—C23115.32 (12)
C6—C5—C4120.63 (15)C22—C21—C23108.53 (11)
C6—C5—S1120.18 (13)N2—C21—H21109.9
C4—C5—S1119.11 (12)C22—C21—H21109.9
C5—C6—C7118.55 (19)C23—C21—H21109.9
C5—C6—H6120.7C24—C23—C28119.54 (15)
C7—C6—H6120.7C24—C23—C21120.15 (14)
C2—C7—C6121.95 (18)C28—C23—C21120.13 (13)
C2—C7—H7119.0C23—C28—C27119.88 (17)
C6—C7—H7119.0C23—C28—H28120.1
N2—C8—N1100.27 (10)C27—C28—H28120.1
N2—C8—C9115.24 (11)C26—C27—C28120.1 (2)
N1—C8—C9110.82 (10)C26—C27—H27120.0
N2—C8—H8110.0C28—C27—H27120.0
N1—C8—H8110.0C25—C26—C27120.27 (18)
C9—C8—H8110.0C25—C26—H26119.9
C10—C9—C14119.01 (13)C27—C26—H26119.9
C10—C9—C8120.87 (12)C26—C25—C24120.25 (18)
C14—C9—C8120.04 (12)C26—C25—H25119.9
C11—C10—C9120.82 (13)C24—C25—H25119.9
C11—C10—H10119.6C23—C24—C25119.98 (18)
C9—C10—H10119.6C23—C24—H24120.0
C12—C11—C10119.08 (14)C25—C24—H24120.0
C12—C11—H11120.5C22—N1—C8113.53 (11)
C10—C11—H11120.5C22—N1—S1123.54 (9)
C13—C12—C11121.32 (14)C8—N1—S1122.84 (9)
C13—C12—Cl1120.00 (12)C15—N2—C21122.66 (12)
C11—C12—Cl1118.67 (12)C15—N2—C8121.51 (11)
C12—C13—C14119.14 (14)C21—N2—C8113.92 (11)
C12—C13—H13120.4O3—C22—N1126.55 (13)
C14—C13—H13120.4O3—C22—C21126.26 (13)
C9—C14—C13120.49 (14)N1—C22—C21107.17 (11)
C9—C14—H14119.8O1—S1—O2120.96 (7)
C13—C14—H14119.8O1—S1—N1106.58 (6)
C16—C15—N2120.96 (13)O2—S1—N1104.10 (6)
C16—C15—C20118.45 (14)O1—S1—C5108.92 (7)
N2—C15—C20120.58 (14)O2—S1—C5109.35 (7)
C17—C16—C15120.01 (15)N1—S1—C5105.82 (6)
C17—C16—H16120.0
C7—C2—C3—C40.3 (3)C27—C26—C25—C240.8 (3)
C1—C2—C3—C4179.17 (17)C28—C23—C24—C250.1 (3)
C2—C3—C4—C50.7 (3)C21—C23—C24—C25174.97 (15)
C3—C4—C5—C60.5 (2)C26—C25—C24—C230.4 (3)
C3—C4—C5—S1176.25 (13)N2—C8—N1—C2214.57 (14)
C4—C5—C6—C70.1 (2)C9—C8—N1—C22107.61 (13)
S1—C5—C6—C7176.75 (13)N2—C8—N1—S1168.83 (9)
C3—C2—C7—C60.2 (3)C9—C8—N1—S169.00 (14)
C1—C2—C7—C6179.74 (17)C16—C15—N2—C21177.49 (13)
C5—C6—C7—C20.4 (3)C20—C15—N2—C213.5 (2)
N2—C8—C9—C1045.41 (17)C16—C15—N2—C814.2 (2)
N1—C8—C9—C1067.56 (15)C20—C15—N2—C8166.84 (13)
N2—C8—C9—C14137.83 (13)C22—C21—N2—C15170.26 (12)
N1—C8—C9—C14109.21 (14)C23—C21—N2—C1571.64 (17)
C14—C9—C10—C112.5 (2)C22—C21—N2—C85.78 (16)
C8—C9—C10—C11174.27 (13)C23—C21—N2—C8123.89 (13)
C9—C10—C11—C120.5 (2)N1—C8—N2—C15176.67 (12)
C10—C11—C12—C133.2 (2)C9—C8—N2—C1557.67 (17)
C10—C11—C12—Cl1175.62 (11)N1—C8—N2—C2111.99 (15)
C11—C12—C13—C142.8 (2)C9—C8—N2—C21107.01 (14)
Cl1—C12—C13—C14176.03 (12)C8—N1—C22—O3169.50 (14)
C10—C9—C14—C132.9 (2)S1—N1—C22—O37.1 (2)
C8—C9—C14—C13173.88 (13)C8—N1—C22—C2111.90 (15)
C12—C13—C14—C90.3 (2)S1—N1—C22—C21171.52 (9)
N2—C15—C16—C17179.67 (14)N2—C21—C22—O3177.75 (14)
C20—C15—C16—C170.7 (2)C23—C21—C22—O359.49 (19)
C15—C16—C17—C180.6 (2)N2—C21—C22—N13.64 (15)
C16—C17—C18—C191.1 (3)C23—C21—C22—N1119.12 (13)
C17—C18—C19—C200.4 (3)C22—N1—S1—O138.67 (13)
C18—C19—C20—C150.9 (3)C8—N1—S1—O1145.07 (10)
C16—C15—C20—C191.4 (2)C22—N1—S1—O2167.58 (11)
N2—C15—C20—C19179.58 (14)C8—N1—S1—O216.15 (12)
N2—C21—C23—C24145.95 (14)C22—N1—S1—C577.18 (12)
C22—C21—C23—C2499.02 (16)C8—N1—S1—C599.08 (11)
N2—C21—C23—C2839.0 (2)C6—C5—S1—O1149.38 (12)
C22—C21—C23—C2876.01 (18)C4—C5—S1—O127.35 (14)
C24—C23—C28—C270.2 (3)C6—C5—S1—O215.21 (14)
C21—C23—C28—C27174.86 (17)C4—C5—S1—O2161.53 (12)
C23—C28—C27—C260.2 (3)C6—C5—S1—N196.37 (13)
C28—C27—C26—C250.7 (4)C4—C5—S1—N186.89 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.592.934 (2)102
C8—H8···O3i0.982.443.3659 (17)158
C14—H14···O3i0.932.573.3855 (19)146
C24—H24···O2ii0.932.593.289 (2)132
C1—H1C···Cg4iii0.962.903.484 (2)120
C11—H11···Cg2iii0.932.883.619 (17)138
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC28H23ClN2O3S
Mr503.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8458 (3), 13.0191 (4), 17.6720 (5)
β (°) 103.757 (2)
V3)2423.75 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
32315, 7313, 5098
Rint0.030
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.05
No. of reflections7313
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.592.934 (2)102
C8—H8···O3i0.982.443.3659 (17)158
C14—H14···O3i0.932.573.3855 (19)146
C24—H24···O2ii0.932.593.289 (2)132
C1—H1C···Cg4iii0.962.903.484 (2)120
C11—H11···Cg2iii0.932.883.619 (17)138
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

SR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H. & Shad, H. A. (2007). J. Enz. Inhib. Med. Chem. 23, 369–379.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPomarnacka, E. & Kozlarska-Kedra, I. (2003). Farmaco, 58, 423–429.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W., Liang, T. C., Zheng, M. & Gao, X. (1995). Tetrahedron Lett. 36, 1181–1184.  CrossRef CAS Web of Science Google Scholar
First citationZareef, M., Iqbal, R., De Dominguez, N. G., Rodrigues, J., Zaidi, J. H., Arfan, M. & Supuran, C. T. (2007). J. Enz. Inhib. Med. Chem. 22, 301–308.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds