metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­glutarato(2,4,6-tri-2-pyridyl-1,3,5-triazine)nickel(II) trihydrate

aKey Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: jinchunhua@nbu.edu.cn

(Received 20 January 2011; accepted 22 February 2011; online 2 March 2011)

In the title compound, [Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O, the NiII atom shows a distorted octa­hedral coordination by three N atoms of the tridentate chelating ligand and three O atoms of two aqua ligands and an O atom of one carboxylate group of the glutarate anion. Mol­ecules are self-assembled via inter­molecular O—H⋯O and O—H⋯N hydrogen-bonding inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.836 (3) Å] into a supra­molecular network.

Related literature

For general background to 2,4,6-tris­(2-pyrid­yl)-1,3,5-triazine (tptz), see: Glaser et al. (2004[Glaser, T., Lügger, T. & Fröhlich, R. (2004). Eur. J. Inorg. Chem. pp. 394-400.]); Zibaseresht & Hartshorn (2005[Zibaseresht, R. & Hartshorn, R. M. (2005). Aust. J. Chem. 58, 345-353.]); Zheng et al. (2006[Zheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825-1834.]); Zhou et al. (2007[Zhou, X. P., Zhang, X. J., Lin, S. H. & Li, D. (2007). Cryst. Growth Des. 7, 485-487.]). For potential applications of tptz-containing complexes, see: Gupta et al. (1993[Gupta, N., Grover, N., Neyhart, G. A., Singh, P. & Thorp, H. H. (1993). Inorg. Chem. 32, 310-316]); Witter & Luther (2002[Witter, A. E. & Luther, G. W. (2002). Mar. Chem. 77, 143-156.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O

  • Mr = 591.22

  • Triclinic, [P \overline 1]

  • a = 9.3437 (19) Å

  • b = 10.486 (2) Å

  • c = 14.320 (3) Å

  • α = 83.09 (3)°

  • β = 87.16 (3)°

  • γ = 69.02 (3)°

  • V = 1300.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 295 K

  • 0.30 × 0.23 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.796, Tmax = 0.868

  • 12866 measured reflections

  • 5901 independent reflections

  • 4575 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.087

  • S = 1.14

  • 5901 reflections

  • 382 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O8 0.77 (3) 1.97 (3) 2.719 (3) 167 (3)
O5—H5C⋯O4i 0.87 (3) 1.79 (3) 2.651 (2) 176 (4)
O6—H6B⋯O3i 0.86 (2) 1.80 (3) 2.655 (2) 173 (3)
O6—H6C⋯O3ii 0.82 (3) 1.90 (3) 2.706 (3) 166 (3)
O7—H7B⋯O4i 0.82 (3) 2.12 (3) 2.940 (3) 172 (3)
O7—H7C⋯O2i 0.86 (4) 1.91 (4) 2.747 (3) 166 (3)
O8—H8B⋯O9iii 0.82 (4) 1.92 (4) 2.695 (3) 157 (4)
O8—H8C⋯O7 0.84 (4) 1.96 (4) 2.753 (3) 156 (4)
O9—H9B⋯O8 0.86 (4) 2.06 (4) 2.907 (3) 170 (4)
O9—H9C⋯N6iv 0.75 (4) 2.18 (4) 2.854 (3) 150 (4)
Symmetry codes: (i) x+1, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z; (iv) -x, -y, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As an interesting polydentate nitrogen donor ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) has attracted increasing attention in the synthesis of novel transition metal complexes (Glaser, et al., 2004; Zibaseresht & Hartshorn, 2005; Zheng, et al., 2006; Zhou, et al., 2007). It was applied in the extraction and separation of metal ions, and in the preparation of DNA cleaving agents. It has also been widely empolyed to determine the concentration of mono- and polysaccharides in seawater (Gupta, et al., 1993; Witter & Luther, et al., 2002). Our interest in tptz transition metal complexes prompts us to report a new tptz containing structure, [Ni(C18H12N6)(C5H6O4)(H2O)2].3H2O, obtained by self-assembly from NiII, tptz and glutaric acid in aqueous methanolic solution.

The title compound, consists of [Ni(C18H12N6)(C5H6O4)(H2O)2] complex molecules and three lattice waters, as shown in Fig. 1, in which the Ni atoms are in a distorted octahedral coordination environment defined by three N atoms of one tridentate tptz ligand and three O atoms of two aqua ligands and the glutarate group. Three nitrogen atoms (N1, N2 and N3) from the tptz ligand and one O atom (O6) of water molecule form the equatorial base, while the carboxylate O atom (O1) and the other water ligand O atom (O5) occupy the axial positions. Ni-N distances vary from 1.986 (2) to 2.173 (2) Å, and the Ni-O bond distances fall in the region 2.021 (2) to 2.056 (2) Å. The deviation from the ideal octahedral geometry is indicated by the difference in cisoid [76.38 (7)°-106.06 (7)°] and transoid angles [153.59 (6)°-177.01 (7)°]. In the tptz ligand, the C(sp2)-C(sp2) distances within the ring are normal [1.373 (4)-1.392 (2) Å], and the exterior bond distances, 1.482 (3)-1.491 (3) Å, are also normal. The tptz ligands deviate little from planarity, the three pyridyl rings are twisted with respect to the central triazine ring by angles of 3.4 (2)°, 4.1 (1)° and 8.6 (1)° with the N3 ring displaying the highest degree of twisting. The [Ni(C18H12N6)(C5H6O4)(H2O)2] complex molecules are assembled into a 3D network by hydrogen bonds between the coordinated water and lattice water molecules and the carboxylate group and pyridyl nitrogen atoms with the distances from 2.651 (4) Å to 2.938 (5) Å (Table 1). The crystal structure is also stabilized by intermolecular π-π stacking interactions between tptz ligands [centroid-centroid distance = 3.836 (3) Å].

Related literature top

For general background to 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), see: Glaser et al. (2004); Zibaseresht & Hartshorn (2005); Zheng et al. (2006); Zhou et al. (2007). For potential applications of tptz-containing complexes, see: Gupta et al. (1993); Witter & Luther (2002).

Experimental top

Dropwise addition of 2.0 ml NaOH (1.0 M) to a stirred solution of NiCl2.6H2O (0.238 g, 1.00 mmol) in 5.0 ml H2O produced a green precipitate, which was then centrifuged and washed with double-distilled water until no Cl- anions were detectable. The collected precipitate and 2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz) (0.312 g, 1.00 mmol) were added to a stirred solution of glutaric acid (0.132 g, 1.00 mmol) in CH3OH/H2O (30.0 ml; 1:1 v/v). The resulting mixture was stirred for a further 30 min. After filtration, the dark green filtrate (pH = 5.12) was evaporated slowly at room temperature and afforded dark green crystals over two weeks (yield 45.4%, based on initial NiCl2 input).

Refinement top

All H atoms bound to C were position geometrically and refined as riding, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms attached to O atoms were found in a difference Fourier map and refined freely with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-labelling scheme. Displacement ellisoids are drawn at the 45% probability level.
Aquaglutarato(2,4,6-tri-2-pyridyl-1,3,5-triazine)nickel(II) trihydrate top
Crystal data top
[Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2OZ = 2
Mr = 591.22F(000) = 616
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3437 (19) ÅCell parameters from 10176 reflections
b = 10.486 (2) Åθ = 3.0–27.5°
c = 14.320 (3) ŵ = 0.81 mm1
α = 83.09 (3)°T = 295 K
β = 87.16 (3)°Block, dark green
γ = 69.02 (3)°0.30 × 0.23 × 0.17 mm
V = 1300.5 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5901 independent reflections
Radiation source: fine-focus sealed tube4575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.796, Tmax = 0.868k = 1313
12866 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.3875P]
where P = (Fo2 + 2Fc2)/3
5901 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2Oγ = 69.02 (3)°
Mr = 591.22V = 1300.5 (5) Å3
Triclinic, P1Z = 2
a = 9.3437 (19) ÅMo Kα radiation
b = 10.486 (2) ŵ = 0.81 mm1
c = 14.320 (3) ÅT = 295 K
α = 83.09 (3)°0.30 × 0.23 × 0.17 mm
β = 87.16 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5901 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4575 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.868Rint = 0.023
12866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.40 e Å3
5901 reflectionsΔρmin = 0.38 e Å3
382 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.23523 (3)0.10184 (3)0.306650 (17)0.02922 (8)
N10.07072 (19)0.00148 (16)0.31671 (11)0.0314 (4)
N20.14608 (18)0.14756 (16)0.17850 (11)0.0279 (3)
N30.36324 (19)0.21923 (17)0.23120 (12)0.0338 (4)
N40.05102 (19)0.15524 (17)0.08066 (11)0.0317 (4)
N50.11453 (18)0.28123 (17)0.03247 (11)0.0318 (4)
N60.1961 (2)0.2413 (2)0.08469 (13)0.0474 (5)
C10.0402 (3)0.0764 (2)0.39029 (15)0.0399 (5)
H1A0.09920.09550.44410.048*
C20.0753 (3)0.1299 (2)0.38989 (16)0.0465 (6)
H2A0.09360.18330.44250.056*
C30.1624 (3)0.1029 (3)0.31043 (17)0.0495 (6)
H3A0.24090.13740.30870.059*
C40.1320 (2)0.0233 (2)0.23247 (16)0.0400 (5)
H4A0.18880.00430.17770.048*
C50.0149 (2)0.0266 (2)0.23880 (13)0.0299 (4)
C60.4845 (2)0.2426 (2)0.26107 (17)0.0409 (5)
H6A0.51580.21280.32310.049*
C70.5645 (3)0.3090 (2)0.20348 (18)0.0481 (6)
H7A0.64870.32280.22630.058*
C80.5187 (3)0.3547 (3)0.11206 (19)0.0494 (6)
H8A0.57180.39940.07230.059*
C90.3922 (3)0.3334 (2)0.07943 (16)0.0407 (5)
H9A0.35790.36430.01810.049*
C100.3190 (2)0.2646 (2)0.14127 (14)0.0309 (4)
C110.0268 (2)0.11409 (19)0.16027 (13)0.0282 (4)
C120.1862 (2)0.23092 (19)0.11369 (13)0.0287 (4)
C130.0020 (2)0.2389 (2)0.01894 (13)0.0297 (4)
C140.0849 (2)0.2889 (2)0.07149 (14)0.0305 (4)
C150.0487 (3)0.3795 (2)0.13838 (15)0.0416 (5)
H15A0.02810.41270.12750.050*
C160.1293 (3)0.4197 (3)0.22184 (16)0.0487 (6)
H16A0.10670.48020.26800.058*
C170.2416 (3)0.3701 (2)0.23610 (16)0.0464 (6)
H17A0.29650.39520.29190.056*
C180.2713 (3)0.2819 (3)0.16543 (18)0.0569 (7)
H18A0.34870.24860.17480.068*
O10.08747 (16)0.26850 (15)0.36329 (10)0.0393 (3)
O20.10065 (19)0.35714 (17)0.25867 (13)0.0557 (5)
O30.4597 (2)0.80336 (16)0.48537 (14)0.0665 (6)
O40.48137 (19)0.68559 (15)0.37304 (11)0.0473 (4)
C190.0383 (2)0.3554 (2)0.33396 (15)0.0348 (4)
C200.1175 (2)0.4682 (2)0.39654 (17)0.0432 (5)
H20A0.04320.47330.43950.052*
H20B0.15620.55560.35770.052*
C210.2492 (3)0.4441 (2)0.45288 (17)0.0451 (5)
H21A0.20930.36050.49560.054*
H21B0.31940.43140.41030.054*
C220.3360 (3)0.5631 (2)0.50912 (15)0.0426 (5)
H22A0.40340.53450.55360.051*
H22B0.26280.58310.54510.051*
C230.4307 (2)0.6938 (2)0.45040 (15)0.0353 (4)
O50.4055 (2)0.07320 (18)0.27026 (12)0.0506 (4)
H5B0.456 (4)0.079 (3)0.226 (2)0.076*
H5C0.443 (4)0.150 (3)0.306 (2)0.076*
O60.32425 (19)0.04577 (17)0.43739 (11)0.0427 (4)
H6B0.394 (3)0.034 (3)0.448 (2)0.064*
H6C0.352 (3)0.103 (3)0.458 (2)0.064*
O70.6705 (2)0.4023 (2)0.19485 (15)0.0600 (5)
H7B0.625 (4)0.384 (4)0.245 (2)0.090*
H7C0.747 (4)0.478 (4)0.205 (2)0.090*
O80.5802 (2)0.1346 (2)0.11286 (14)0.0567 (5)
H8B0.636 (4)0.095 (4)0.088 (2)0.085*
H8C0.633 (4)0.216 (4)0.133 (2)0.085*
O90.3067 (2)0.03481 (19)0.00273 (15)0.0595 (5)
H9B0.387 (4)0.074 (4)0.031 (2)0.089*
H9C0.262 (4)0.082 (4)0.002 (3)0.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02710 (14)0.02892 (13)0.02707 (14)0.00368 (10)0.00675 (10)0.00274 (9)
N10.0344 (9)0.0315 (8)0.0248 (8)0.0081 (7)0.0018 (7)0.0008 (7)
N20.0265 (8)0.0294 (8)0.0266 (8)0.0086 (7)0.0031 (6)0.0017 (6)
N30.0284 (8)0.0334 (9)0.0377 (9)0.0076 (7)0.0082 (7)0.0046 (7)
N40.0321 (9)0.0362 (9)0.0275 (8)0.0137 (8)0.0061 (7)0.0023 (7)
N50.0311 (9)0.0347 (9)0.0304 (8)0.0133 (7)0.0056 (7)0.0011 (7)
N60.0540 (12)0.0591 (12)0.0383 (10)0.0351 (11)0.0199 (9)0.0150 (9)
C10.0467 (13)0.0385 (11)0.0286 (10)0.0094 (10)0.0017 (9)0.0016 (9)
C20.0496 (14)0.0460 (13)0.0390 (12)0.0158 (11)0.0067 (10)0.0076 (10)
C30.0443 (13)0.0556 (14)0.0518 (14)0.0263 (12)0.0007 (11)0.0090 (12)
C40.0375 (11)0.0441 (12)0.0394 (12)0.0175 (10)0.0052 (9)0.0037 (10)
C50.0289 (10)0.0306 (10)0.0276 (10)0.0077 (8)0.0027 (8)0.0005 (8)
C60.0345 (11)0.0425 (12)0.0457 (13)0.0124 (10)0.0143 (10)0.0029 (10)
C70.0360 (12)0.0514 (14)0.0621 (16)0.0201 (11)0.0143 (11)0.0064 (12)
C80.0426 (13)0.0548 (14)0.0588 (15)0.0276 (12)0.0003 (11)0.0043 (12)
C90.0396 (12)0.0449 (12)0.0411 (12)0.0193 (10)0.0036 (10)0.0028 (10)
C100.0282 (10)0.0300 (10)0.0338 (10)0.0087 (8)0.0032 (8)0.0040 (8)
C110.0277 (9)0.0276 (9)0.0270 (9)0.0070 (8)0.0026 (8)0.0022 (7)
C120.0280 (10)0.0279 (9)0.0281 (9)0.0070 (8)0.0022 (8)0.0026 (8)
C130.0290 (10)0.0308 (10)0.0282 (10)0.0094 (8)0.0028 (8)0.0013 (8)
C140.0304 (10)0.0312 (10)0.0294 (10)0.0107 (8)0.0044 (8)0.0001 (8)
C150.0427 (12)0.0504 (13)0.0353 (11)0.0240 (11)0.0077 (9)0.0077 (10)
C160.0547 (14)0.0554 (14)0.0344 (12)0.0228 (12)0.0046 (10)0.0139 (11)
C170.0525 (14)0.0514 (13)0.0328 (11)0.0175 (12)0.0172 (10)0.0080 (10)
C180.0647 (16)0.0673 (17)0.0505 (14)0.0409 (15)0.0305 (13)0.0161 (13)
O10.0332 (8)0.0368 (8)0.0388 (8)0.0007 (6)0.0063 (6)0.0089 (6)
O20.0422 (9)0.0523 (10)0.0592 (11)0.0077 (8)0.0209 (8)0.0240 (8)
O30.0843 (14)0.0318 (8)0.0698 (12)0.0038 (9)0.0443 (11)0.0131 (8)
O40.0576 (10)0.0363 (8)0.0385 (9)0.0028 (7)0.0146 (7)0.0057 (7)
C190.0283 (10)0.0339 (10)0.0403 (11)0.0075 (9)0.0023 (9)0.0071 (9)
C200.0323 (11)0.0402 (12)0.0548 (14)0.0055 (10)0.0065 (10)0.0173 (11)
C210.0513 (14)0.0279 (10)0.0444 (13)0.0021 (10)0.0034 (11)0.0016 (9)
C220.0467 (13)0.0358 (11)0.0321 (11)0.0000 (10)0.0002 (9)0.0000 (9)
C230.0342 (11)0.0290 (10)0.0366 (11)0.0035 (9)0.0044 (9)0.0035 (8)
O50.0563 (11)0.0361 (8)0.0383 (9)0.0071 (8)0.0062 (8)0.0002 (7)
O60.0427 (9)0.0372 (8)0.0377 (8)0.0011 (7)0.0176 (7)0.0052 (7)
O70.0537 (12)0.0469 (10)0.0649 (12)0.0047 (9)0.0044 (9)0.0092 (10)
O80.0539 (11)0.0508 (10)0.0560 (11)0.0131 (9)0.0140 (9)0.0071 (9)
O90.0596 (12)0.0499 (11)0.0728 (13)0.0290 (10)0.0019 (10)0.0093 (9)
Geometric parameters (Å, º) top
Ni1—N21.9862 (17)C10—C121.488 (3)
Ni1—O62.0203 (16)C13—C141.482 (3)
Ni1—O12.0300 (16)C14—C151.383 (3)
Ni1—O52.0563 (19)C15—C161.383 (3)
Ni1—N12.1426 (17)C15—H15A0.9300
Ni1—N32.1723 (18)C16—C171.360 (3)
N1—C11.338 (3)C16—H16A0.9300
N1—C51.350 (2)C17—C181.374 (3)
N2—C111.328 (2)C17—H17A0.9300
N2—C121.331 (2)C18—H18A0.9300
N3—C61.341 (3)O1—C191.256 (2)
N3—C101.349 (3)O2—C191.246 (3)
N4—C111.324 (2)O3—C231.243 (3)
N4—C131.350 (2)O4—C231.250 (3)
N5—C121.325 (2)C19—C201.521 (3)
N5—C131.344 (2)C20—C211.517 (3)
N6—C181.327 (3)C20—H20A0.9700
N6—C141.333 (3)C20—H20B0.9700
C1—C21.383 (3)C21—C221.522 (3)
C1—H1A0.9300C21—H21A0.9700
C2—C31.373 (3)C21—H21B0.9700
C2—H2A0.9300C22—C231.516 (3)
C3—C41.392 (3)C22—H22A0.9700
C3—H3A0.9300C22—H22B0.9700
C4—C51.382 (3)O5—H5B0.76 (3)
C4—H4A0.9300O5—H5C0.87 (3)
C5—C111.491 (3)O6—H6B0.86 (3)
C6—C71.378 (3)O6—H6C0.83 (3)
C6—H6A0.9300O7—H7B0.82 (4)
C7—C81.373 (3)O7—H7C0.86 (4)
C7—H7A0.9300O8—H8B0.82 (3)
C8—C91.391 (3)O8—H8C0.85 (4)
C8—H8A0.9300O9—H9B0.86 (3)
C9—C101.382 (3)O9—H9C0.75 (3)
C9—H9A0.9300
N2—Ni1—O6176.98 (7)N4—C11—C5122.12 (17)
N2—Ni1—O197.21 (7)N2—C11—C5113.91 (16)
O6—Ni1—O184.47 (7)N5—C12—N2123.69 (17)
N2—Ni1—O592.47 (8)N5—C12—C10122.62 (17)
O6—Ni1—O585.93 (8)N2—C12—C10113.68 (16)
O1—Ni1—O5170.19 (7)N5—C13—N4125.81 (17)
N2—Ni1—N177.29 (7)N5—C13—C14117.32 (16)
O6—Ni1—N1100.17 (7)N4—C13—C14116.87 (16)
O1—Ni1—N192.45 (6)N6—C14—C15121.97 (19)
O5—Ni1—N191.20 (8)N6—C14—C13116.15 (17)
N2—Ni1—N376.38 (7)C15—C14—C13121.88 (18)
O6—Ni1—N3106.09 (7)C16—C15—C14118.6 (2)
O1—Ni1—N392.88 (7)C16—C15—H15A120.7
O5—Ni1—N387.86 (7)C14—C15—H15A120.7
N1—Ni1—N3153.58 (6)C17—C16—C15119.7 (2)
C1—N1—C5117.66 (17)C17—C16—H16A120.2
C1—N1—Ni1128.33 (14)C15—C16—H16A120.2
C5—N1—Ni1113.96 (12)C16—C17—C18117.9 (2)
C11—N2—C12117.66 (16)C16—C17—H17A121.1
C11—N2—Ni1120.20 (13)C18—C17—H17A121.1
C12—N2—Ni1121.24 (13)N6—C18—C17123.9 (2)
C6—N3—C10117.70 (18)N6—C18—H18A118.0
C6—N3—Ni1128.03 (15)C17—C18—H18A118.0
C10—N3—Ni1114.10 (13)C19—O1—Ni1130.93 (14)
C11—N4—C13114.29 (16)O2—C19—O1125.7 (2)
C12—N5—C13114.55 (16)O2—C19—C20118.44 (19)
C18—N6—C14117.96 (18)O1—C19—C20115.89 (19)
N1—C1—C2122.9 (2)C21—C20—C19112.55 (18)
N1—C1—H1A118.5C21—C20—H20A109.1
C2—C1—H1A118.5C19—C20—H20A109.1
C3—C2—C1118.9 (2)C21—C20—H20B109.1
C3—C2—H2A120.6C19—C20—H20B109.1
C1—C2—H2A120.6H20A—C20—H20B107.8
C2—C3—C4119.4 (2)C20—C21—C22112.16 (19)
C2—C3—H3A120.3C20—C21—H21A109.2
C4—C3—H3A120.3C22—C21—H21A109.2
C5—C4—C3118.1 (2)C20—C21—H21B109.2
C5—C4—H4A121.0C22—C21—H21B109.2
C3—C4—H4A121.0H21A—C21—H21B107.9
N1—C5—C4123.05 (18)C23—C22—C21114.68 (18)
N1—C5—C11114.11 (16)C23—C22—H22A108.6
C4—C5—C11122.83 (18)C21—C22—H22A108.6
N3—C6—C7122.6 (2)C23—C22—H22B108.6
N3—C6—H6A118.7C21—C22—H22B108.6
C7—C6—H6A118.7H22A—C22—H22B107.6
C8—C7—C6119.3 (2)O3—C23—O4123.91 (19)
C8—C7—H7A120.3O3—C23—C22116.88 (19)
C6—C7—H7A120.3O4—C23—C22119.10 (19)
C7—C8—C9119.4 (2)Ni1—O5—H5B126 (3)
C7—C8—H8A120.3Ni1—O5—H5C126 (2)
C9—C8—H8A120.3H5B—O5—H5C107 (3)
C10—C9—C8117.8 (2)Ni1—O6—H6B117 (2)
C10—C9—H9A121.1Ni1—O6—H6C115 (2)
C8—C9—H9A121.1H6B—O6—H6C109 (3)
N3—C10—C9123.23 (18)H7B—O7—H7C109 (3)
N3—C10—C12113.92 (17)H8B—O8—H8C110 (3)
C9—C10—C12122.83 (18)H9B—O9—H9C107 (3)
N4—C11—N2123.96 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O80.77 (3)1.97 (3)2.719 (3)167 (3)
O5—H5C···O4i0.87 (3)1.79 (3)2.651 (2)176 (4)
O6—H6B···O3i0.86 (2)1.80 (3)2.655 (2)173 (3)
O6—H6C···O3ii0.82 (3)1.90 (3)2.706 (3)166 (3)
O7—H7B···O4i0.82 (3)2.12 (3)2.940 (3)172 (3)
O7—H7C···O2i0.86 (4)1.91 (4)2.747 (3)166 (3)
O8—H8B···O9iii0.82 (4)1.92 (4)2.695 (3)157 (4)
O8—H8C···O70.84 (4)1.96 (4)2.753 (3)156 (4)
O9—H9B···O80.86 (4)2.06 (4)2.907 (3)170 (4)
O9—H9C···N6iv0.75 (4)2.18 (4)2.854 (3)150 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C5H6O4)(C18H12N6)(H2O)2]·3H2O
Mr591.22
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)9.3437 (19), 10.486 (2), 14.320 (3)
α, β, γ (°)83.09 (3), 87.16 (3), 69.02 (3)
V3)1300.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.30 × 0.23 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.796, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
12866, 5901, 4575
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.14
No. of reflections5901
No. of parameters382
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O80.77 (3)1.97 (3)2.719 (3)167 (3)
O5—H5C···O4i0.87 (3)1.79 (3)2.651 (2)176 (4)
O6—H6B···O3i0.86 (2)1.80 (3)2.655 (2)173 (3)
O6—H6C···O3ii0.82 (3)1.90 (3)2.706 (3)166 (3)
O7—H7B···O4i0.82 (3)2.12 (3)2.940 (3)172 (3)
O7—H7C···O2i0.86 (4)1.91 (4)2.747 (3)166 (3)
O8—H8B···O9iii0.82 (4)1.92 (4)2.695 (3)157 (4)
O8—H8C···O70.84 (4)1.96 (4)2.753 (3)156 (4)
O9—H9B···O80.86 (4)2.06 (4)2.907 (3)170 (4)
O9—H9C···N6iv0.75 (4)2.18 (4)2.854 (3)150 (4)
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z.
 

Acknowledgements

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Science and Technology Department of Zhejiang Province (2009C03017-4), the 863 National High-Tech Research and Development Plan (2007­AA­10Z409), the Natural Science Foundation of Zhejiang Province (project No. Y307542) and the Science and Technology Department of Ningbo City (2006C100036).

References

First citationGlaser, T., Lügger, T. & Fröhlich, R. (2004). Eur. J. Inorg. Chem. pp. 394–400.  CrossRef Google Scholar
First citationGupta, N., Grover, N., Neyhart, G. A., Singh, P. & Thorp, H. H. (1993). Inorg. Chem. 32, 310–316  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitter, A. E. & Luther, G. W. (2002). Mar. Chem. 77, 143–156.  CrossRef CAS Google Scholar
First citationZheng, Y. Q., Xu, W., Lin, F. & Fang, G. S. (2006). J. Coord. Chem. 59, 1825–1834.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, X. P., Zhang, X. J., Lin, S. H. & Li, D. (2007). Cryst. Growth Des. 7, 485–487.  CSD CrossRef CAS Google Scholar
First citationZibaseresht, R. & Hartshorn, R. M. (2005). Aust. J. Chem. 58, 345–353.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds