organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[5-Hy­droxy-3-phenyl-1-(pyridin-2-yl)pyrazol-5-olato]di­phenylboron

aGreen Chemistry Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and bCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: chkim@krict.re.kr

(Received 26 February 2011; accepted 22 March 2011; online 26 March 2011)

In the title compound, C26H20BN3O, the B atom has tetra­hedral geometry and is linked to two phenyl rings, the O atom of the hy­droxy­pyrazole ring and the N atom of the pyridinyl ring. A six-membered BOCNCN ring forms by coordination of the B atom and the pyridinyl N atom. The BOCNCN ring has an envelope conformation [dihedral angle = 36.7 (1)° between the planar ring atoms and the flap] with the B atom out of the plane. In the 1-(2-pyridin­yl)-3-phenyl-5-hy­droxy­pyrazole group, the pyridinyl ring, the phenyl ring and the pyrazole ring are almost coplanar: the pyrazole ring makes a dihedral angle of 9.56 (8)° with the pyridinyl ring and 17.68 (7)° with the phenyl ring. The crystal structure is stabilized by ππ stacking inter­actions involving the pyridinyl and pyrazole rings of centrosymmetrically related mol­ecules, with ring centroid separations of 3.54 (5) Å.

Related literature

For general synthesis of diaryl­borinates, see: Hagan et al. (2000[Hagan, H., Reinoso, S., Albrecht, M., Boersma, J., Spek, A. L. & van Koten, G. (2000). J. Organomet. Chem. 608, 27-33.]). For their synthesis and biological applications, see: Scorei & Popa (2010[Scorei, R. I. & Popa, R. Jr (2010). Anticancer Agents Med. Chem. 10, 346-351.]); Baker, Akama et al. (2006[Baker, S. J., Akama, T., Zhang, Y.-K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V. & Maples, K. R. (2006). Bioorg. Med. Chem. Lett. 16, 5963-5967.]); Baker, Zhang et al. (2006[Baker, S. J., Zhang, Y.-K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). J. Med. Chem. 49, 4447-4450.]). For luminescent organoboron compounds, see: Cui et al. (2005[Cui, Y., Liu, Q.-D., Bai, D.-R., Jia, W.-L., Tao, Y. & Wang, S. (2005). Inorg. Chem. 44, 601-609.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20BN3O

  • Mr = 401.26

  • Triclinic, [P \overline 1]

  • a = 9.7309 (1) Å

  • b = 9.8830 (1) Å

  • c = 11.2162 (1) Å

  • α = 78.966 (1)°

  • β = 81.795 (1)°

  • γ = 79.993 (1)°

  • V = 1035.91 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.44 × 0.31 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 19866 measured reflections

  • 5044 independent reflections

  • 3923 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.03

  • 5044 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, boron-containing compounds have become increasingly frequent in preventive and chemotherapeutic agents for high-malignancy cancer (Scorei & Popa, 2010), their antibacterial and antifungal agents effect on cell growth (Baker, Akama et al., 2006; Baker, Zhang et al., 2006), and also in luminescent compounds for potential applications in organic light emitting devices (Cui et al., 2005). Diarylborinates have been prepared by the reaction of diarylborinic acids with dimethylaminoethanol-type ligands (Hagan et al., 2000). Interestingly, we identify an unusual diphenylborinate from 1-(2-pyridinyl)pyrazole trifluoromethanesulfonate with phenylboronic acid in Suzuki-Miyaura coupling conditions. Here we report the crystal structure of the title compound (Figs. 1 and 2). In the title compound, C26H20BN3O, B atom has a tetrahedral geometry linked with the two C atoms of the two phenyl rings, the O atom of the hydroxypyrazole ring and the N atom of the pyridinyl ring. The six membered ring of –B(19)—O(18)—C(5)—N(1)—C(6)—N(7)- motif forms by the coordination between B atom and N atom of the pyridinyl ring. The –B—O—C—N—C—N– ring has an envelope conformation with B out of plane. The B atom deviate from the the mean plane and forms a dihedral angle of 36.7 (1) ° with B(19)—O(18) 1.508 (2) Å and B(19)—N(7) 1.641 (2) Å. In the 1-(2-pyridinyl)-3-phenyl-5-hydroxypyrazole group the pyridinyl ring, the phenyl ring and the pyrazole ring are almost coplanar. The pyrazole ring makes a dihedral angle of 9.56 (8)° with the pyridinyl ring, and 17.68 (7)° with the phenyl ring. The crystal structure is stabilized by π-π stacking interactions involving the pyridinyl and pyrazole rings of centrosymmetrically related molecules, with a ring centroid separations of 3.54 (5) Å.

Related literature top

For general synthesis of diarylborinates, see: Hagan et al. (2000). For their synthesis and biological applications, see: Scorei & Popa (2010); Baker, Akama et al. (2006); Baker, Zhang et al. (2006). For luminescent organoboron compounds, see: Cui et al. (2005).

Experimental top

The title compound was synthesized from the reaction of 1-(2-pyridinyl)pyrazole trifluoromethanesulfonate (185 mg, 0.5 mmol) and phenylboronic acid (183 mg, 1.5 mmol) with K3PO4 (318 mg, 1.5 mmol) in the presence of PdCl2{1,1'-bis(diphenylphosphino)ferrocene} (33 mg, 0.04 mmol) and 1,1'-bis(diphenylphosphino)ferrocene (11 mg, 0.02 mmol) in anhydrous 1,4-dioxane (5 ml) for 20 hr at 100 °C. The reaction mixture was rinsed with toluene (5 ml) and the resulting solution was filtered by aid of a Celite pad. The organic layer was dried over Na2SO4 and the solvents were removed. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate = 7/1) to give the title compound (30 mg, 8% yield). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution in ethyl acetate at room temperature.

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitary radius.
[Figure 2] Fig. 2. The molecular packing structure of the title compound along the a axis. [Symmetry codes: (i) x, y, z; (ii) -x, -y, -z.]
[5-Hydroxy-3-phenyl-1-(pyridin-2-yl)pyrazol-5-olato]diphenylboron top
Crystal data top
C26H20BN3OZ = 2
Mr = 401.26F(000) = 420
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7309 (1) ÅCell parameters from 8036 reflections
b = 9.8830 (1) Åθ = 2.6–27.8°
c = 11.2162 (1) ŵ = 0.08 mm1
α = 78.966 (1)°T = 296 K
β = 81.795 (1)°Block, pale-yellow
γ = 79.993 (1)°0.44 × 0.31 × 0.23 mm
V = 1035.91 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3923 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 28.2°, θmin = 1.9°
ϕ and ω scansh = 1212
19866 measured reflectionsk = 1313
5044 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.1687P]
where P = (Fo2 + 2Fc2)/3
5044 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C26H20BN3Oγ = 79.993 (1)°
Mr = 401.26V = 1035.91 (2) Å3
Triclinic, P1Z = 2
a = 9.7309 (1) ÅMo Kα radiation
b = 9.8830 (1) ŵ = 0.08 mm1
c = 11.2162 (1) ÅT = 296 K
α = 78.966 (1)°0.44 × 0.31 × 0.23 mm
β = 81.795 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3923 reflections with I > 2σ(I)
19866 measured reflectionsRint = 0.019
5044 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
5044 reflectionsΔρmin = 0.19 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34223 (10)0.62671 (9)0.41391 (8)0.0395 (2)
N20.33209 (10)0.73403 (10)0.47857 (9)0.0425 (2)
C30.20130 (12)0.74313 (12)0.53352 (10)0.0409 (2)
C40.12724 (12)0.64242 (12)0.50700 (10)0.0430 (3)
H4A0.03510.62930.53540.052*
C50.22001 (11)0.56935 (11)0.43117 (9)0.0386 (2)
C60.46530 (11)0.58301 (11)0.34599 (9)0.0367 (2)
N70.45672 (9)0.49060 (9)0.27425 (8)0.0384 (2)
C80.57501 (13)0.44224 (13)0.20644 (11)0.0468 (3)
H8A0.57060.37660.15830.056*
C90.70060 (13)0.48605 (13)0.20602 (12)0.0510 (3)
H9A0.78000.45160.15780.061*
C100.70778 (13)0.58275 (13)0.27872 (12)0.0495 (3)
H10A0.79220.61450.27900.059*
C110.59005 (12)0.63144 (12)0.35022 (11)0.0443 (3)
H11A0.59360.69530.40030.053*
C120.15138 (13)0.85394 (12)0.60693 (10)0.0443 (3)
C130.24704 (15)0.92376 (14)0.64202 (13)0.0583 (3)
H13A0.34280.89490.62460.070*
C140.20174 (19)1.03558 (16)0.70253 (14)0.0709 (4)
H14A0.26681.08160.72550.085*
C150.05972 (19)1.07890 (16)0.72888 (14)0.0706 (4)
H15A0.02881.15550.76780.085*
C160.03519 (17)1.00873 (17)0.69750 (13)0.0681 (4)
H16A0.13081.03680.71680.082*
C170.00942 (14)0.89644 (15)0.63743 (12)0.0568 (3)
H17A0.05630.84900.61730.068*
O180.21775 (8)0.45786 (8)0.38208 (7)0.0434 (2)
B190.30310 (14)0.45262 (13)0.25937 (12)0.0403 (3)
C200.23337 (12)0.57188 (12)0.15691 (10)0.0415 (2)
C210.29568 (15)0.68316 (13)0.08918 (11)0.0519 (3)
H21A0.38630.69100.10150.062*
C220.22721 (18)0.78278 (15)0.00390 (13)0.0644 (4)
H22A0.27170.85620.03950.077*
C230.09335 (17)0.77314 (15)0.01651 (13)0.0641 (4)
H23A0.04700.83980.07360.077*
C240.02870 (15)0.66393 (16)0.04825 (13)0.0595 (3)
H24A0.06140.65630.03450.071*
C250.09721 (13)0.56573 (14)0.13358 (12)0.0512 (3)
H25A0.05150.49310.17700.061*
C260.32831 (12)0.29614 (12)0.23273 (11)0.0443 (3)
C270.33295 (15)0.26571 (15)0.11599 (13)0.0581 (3)
H27A0.31250.33810.05170.070*
C280.36740 (19)0.12997 (17)0.09288 (17)0.0760 (5)
H28A0.36980.11240.01400.091*
C290.39796 (18)0.02182 (16)0.18673 (19)0.0793 (5)
H29A0.42200.06900.17130.095*
C300.39304 (18)0.04790 (15)0.30304 (17)0.0729 (4)
H30A0.41320.02530.36680.087*
C310.35801 (15)0.18321 (13)0.32561 (14)0.0574 (3)
H31A0.35420.19930.40510.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0393 (5)0.0417 (5)0.0400 (5)0.0107 (4)0.0002 (4)0.0123 (4)
N20.0449 (5)0.0423 (5)0.0429 (5)0.0092 (4)0.0006 (4)0.0145 (4)
C30.0414 (6)0.0433 (6)0.0367 (5)0.0053 (5)0.0029 (4)0.0059 (5)
C40.0390 (6)0.0503 (6)0.0400 (6)0.0101 (5)0.0007 (4)0.0082 (5)
C50.0409 (6)0.0411 (6)0.0348 (5)0.0114 (4)0.0039 (4)0.0046 (4)
C60.0394 (6)0.0363 (5)0.0334 (5)0.0067 (4)0.0031 (4)0.0037 (4)
N70.0410 (5)0.0390 (5)0.0358 (5)0.0082 (4)0.0018 (4)0.0078 (4)
C80.0480 (7)0.0477 (6)0.0452 (6)0.0070 (5)0.0017 (5)0.0148 (5)
C90.0429 (6)0.0553 (7)0.0527 (7)0.0059 (5)0.0055 (5)0.0132 (6)
C100.0397 (6)0.0542 (7)0.0548 (7)0.0129 (5)0.0015 (5)0.0075 (6)
C110.0433 (6)0.0468 (6)0.0452 (6)0.0119 (5)0.0033 (5)0.0102 (5)
C120.0490 (6)0.0443 (6)0.0377 (6)0.0037 (5)0.0008 (5)0.0083 (5)
C130.0558 (8)0.0589 (8)0.0641 (8)0.0105 (6)0.0038 (6)0.0259 (7)
C140.0851 (11)0.0630 (9)0.0709 (10)0.0198 (8)0.0069 (8)0.0306 (8)
C150.0924 (12)0.0559 (8)0.0577 (8)0.0035 (8)0.0082 (8)0.0211 (7)
C160.0624 (9)0.0760 (10)0.0573 (8)0.0126 (8)0.0042 (7)0.0194 (7)
C170.0503 (7)0.0692 (9)0.0492 (7)0.0017 (6)0.0006 (6)0.0165 (6)
O180.0475 (5)0.0454 (4)0.0407 (4)0.0170 (3)0.0010 (3)0.0111 (3)
B190.0418 (7)0.0426 (7)0.0391 (6)0.0122 (5)0.0031 (5)0.0094 (5)
C200.0468 (6)0.0417 (6)0.0384 (6)0.0071 (5)0.0029 (5)0.0137 (5)
C210.0604 (8)0.0500 (7)0.0481 (7)0.0154 (6)0.0102 (6)0.0058 (5)
C220.0899 (11)0.0516 (8)0.0517 (8)0.0157 (7)0.0138 (7)0.0003 (6)
C230.0821 (10)0.0590 (8)0.0488 (7)0.0073 (7)0.0205 (7)0.0096 (6)
C240.0532 (8)0.0710 (9)0.0558 (8)0.0020 (7)0.0143 (6)0.0191 (7)
C250.0484 (7)0.0551 (7)0.0515 (7)0.0087 (6)0.0056 (5)0.0118 (6)
C260.0432 (6)0.0429 (6)0.0500 (6)0.0119 (5)0.0035 (5)0.0120 (5)
C270.0684 (9)0.0546 (8)0.0551 (8)0.0127 (6)0.0027 (6)0.0192 (6)
C280.0874 (11)0.0704 (10)0.0808 (11)0.0198 (8)0.0051 (9)0.0426 (9)
C290.0809 (11)0.0464 (8)0.1152 (15)0.0155 (7)0.0041 (10)0.0313 (9)
C300.0781 (11)0.0430 (7)0.0974 (12)0.0147 (7)0.0125 (9)0.0047 (8)
C310.0664 (9)0.0458 (7)0.0626 (8)0.0147 (6)0.0107 (6)0.0073 (6)
Geometric parameters (Å, º) top
N1—C61.3736 (14)C16—C171.382 (2)
N1—N21.3778 (12)C16—H16A0.9300
N1—C51.3784 (14)C17—H17A0.9300
N2—C31.3286 (14)O18—B191.5077 (15)
C3—C41.4221 (16)B19—C261.6016 (17)
C3—C121.4695 (16)B19—C201.6113 (17)
C4—C51.3599 (16)C20—C211.3910 (17)
C4—H4A0.9300C20—C251.4003 (17)
C5—O181.3273 (13)C21—C221.3862 (19)
C6—N71.3474 (13)C21—H21A0.9300
C6—C111.3900 (15)C22—C231.377 (2)
N7—C81.3528 (14)C22—H22A0.9300
N7—B191.6412 (15)C23—C241.376 (2)
C8—C91.3647 (17)C23—H23A0.9300
C8—H8A0.9300C24—C251.3799 (19)
C9—C101.3860 (17)C24—H24A0.9300
C9—H9A0.9300C25—H25A0.9300
C10—C111.3715 (16)C26—C271.3915 (17)
C10—H10A0.9300C26—C311.3940 (18)
C11—H11A0.9300C27—C281.3897 (19)
C12—C171.3857 (18)C27—H27A0.9300
C12—C131.3890 (18)C28—C291.374 (3)
C13—C141.3815 (19)C28—H28A0.9300
C13—H13A0.9300C29—C301.370 (2)
C14—C151.381 (2)C29—H29A0.9300
C14—H14A0.9300C30—C311.3838 (19)
C15—C161.366 (2)C30—H30A0.9300
C15—H15A0.9300C31—H31A0.9300
C6—N1—N2121.20 (9)C16—C17—C12120.47 (14)
C6—N1—C5126.52 (9)C16—C17—H17A119.8
N2—N1—C5112.22 (9)C12—C17—H17A119.8
C3—N2—N1103.56 (9)C5—O18—B19115.85 (8)
N2—C3—C4112.44 (10)O18—B19—C26109.26 (9)
N2—C3—C12118.30 (10)O18—B19—C20110.01 (9)
C4—C3—C12129.22 (11)C26—B19—C20116.51 (9)
C5—C4—C3105.22 (10)O18—B19—N7105.44 (8)
C5—C4—H4A127.4C26—B19—N7107.22 (9)
C3—C4—H4A127.4C20—B19—N7107.79 (9)
O18—C5—C4134.33 (10)C21—C20—C25116.08 (11)
O18—C5—N1118.96 (9)C21—C20—B19125.87 (11)
C4—C5—N1106.55 (9)C25—C20—B19118.05 (10)
N7—C6—N1115.43 (9)C22—C21—C20122.18 (13)
N7—C6—C11122.21 (10)C22—C21—H21A118.9
N1—C6—C11122.36 (10)C20—C21—H21A118.9
C6—N7—C8118.15 (10)C23—C22—C21120.03 (14)
C6—N7—B19119.99 (9)C23—C22—H22A120.0
C8—N7—B19121.51 (9)C21—C22—H22A120.0
N7—C8—C9122.52 (11)C24—C23—C22119.41 (13)
N7—C8—H8A118.7C24—C23—H23A120.3
C9—C8—H8A118.7C22—C23—H23A120.3
C8—C9—C10118.84 (11)C23—C24—C25120.19 (13)
C8—C9—H9A120.6C23—C24—H24A119.9
C10—C9—H9A120.6C25—C24—H24A119.9
C11—C10—C9119.84 (11)C24—C25—C20122.10 (13)
C11—C10—H10A120.1C24—C25—H25A118.9
C9—C10—H10A120.1C20—C25—H25A118.9
C10—C11—C6118.42 (11)C27—C26—C31116.55 (12)
C10—C11—H11A120.8C27—C26—B19122.56 (11)
C6—C11—H11A120.8C31—C26—B19120.71 (11)
C17—C12—C13118.37 (12)C28—C27—C26121.72 (14)
C17—C12—C3121.57 (11)C28—C27—H27A119.1
C13—C12—C3119.98 (11)C26—C27—H27A119.1
C14—C13—C12120.83 (14)C29—C28—C27119.89 (15)
C14—C13—H13A119.6C29—C28—H28A120.1
C12—C13—H13A119.6C27—C28—H28A120.1
C15—C14—C13119.88 (15)C30—C29—C28119.93 (14)
C15—C14—H14A120.1C30—C29—H29A120.0
C13—C14—H14A120.1C28—C29—H29A120.0
C16—C15—C14119.73 (14)C29—C30—C31119.93 (15)
C16—C15—H15A120.1C29—C30—H30A120.0
C14—C15—H15A120.1C31—C30—H30A120.0
C15—C16—C17120.67 (14)C30—C31—C26121.98 (14)
C15—C16—H16A119.7C30—C31—H31A119.0
C17—C16—H16A119.7C26—C31—H31A119.0
C6—N1—N2—C3178.54 (9)C4—C5—O18—B19149.85 (13)
C5—N1—N2—C31.17 (12)N1—C5—O18—B1935.58 (14)
N1—N2—C3—C40.83 (12)C5—O18—B19—C26162.66 (9)
N1—N2—C3—C12176.99 (9)C5—O18—B19—C2068.27 (12)
N2—C3—C4—C50.21 (13)C5—O18—B19—N747.71 (12)
C12—C3—C4—C5177.31 (11)C6—N7—B19—O1834.70 (13)
C3—C4—C5—O18174.52 (12)C8—N7—B19—O18152.14 (10)
C3—C4—C5—N10.52 (12)C6—N7—B19—C26151.05 (9)
C6—N1—C5—O182.33 (16)C8—N7—B19—C2635.80 (13)
N2—N1—C5—O18174.86 (9)C6—N7—B19—C2082.77 (11)
C6—N1—C5—C4178.28 (10)C8—N7—B19—C2090.38 (12)
N2—N1—C5—C41.08 (12)O18—B19—C20—C21117.35 (12)
N2—N1—C6—N7171.46 (9)C26—B19—C20—C21117.62 (13)
C5—N1—C6—N711.57 (16)N7—B19—C20—C212.88 (15)
N2—N1—C6—C118.11 (16)O18—B19—C20—C2561.86 (13)
C5—N1—C6—C11168.85 (11)C26—B19—C20—C2563.16 (14)
N1—C6—N7—C8179.10 (9)N7—B19—C20—C25176.34 (9)
C11—C6—N7—C81.32 (16)C25—C20—C21—C220.30 (18)
N1—C6—N7—B197.52 (14)B19—C20—C21—C22178.92 (12)
C11—C6—N7—B19172.06 (10)C20—C21—C22—C230.3 (2)
C6—N7—C8—C91.63 (17)C21—C22—C23—C240.1 (2)
B19—N7—C8—C9171.64 (11)C22—C23—C24—C250.5 (2)
N7—C8—C9—C100.66 (19)C23—C24—C25—C200.6 (2)
C8—C9—C10—C110.64 (19)C21—C20—C25—C240.15 (18)
C9—C10—C11—C60.92 (18)B19—C20—C25—C24179.44 (11)
N7—C6—C11—C100.07 (17)O18—B19—C26—C27145.00 (12)
N1—C6—C11—C10179.62 (10)C20—B19—C26—C2719.60 (17)
N2—C3—C12—C17161.16 (11)N7—B19—C26—C27101.21 (13)
C4—C3—C12—C1716.24 (19)O18—B19—C26—C3140.18 (15)
N2—C3—C12—C1315.47 (17)C20—B19—C26—C31165.58 (11)
C4—C3—C12—C13167.14 (12)N7—B19—C26—C3173.61 (13)
C17—C12—C13—C142.0 (2)C31—C26—C27—C280.9 (2)
C3—C12—C13—C14174.76 (13)B19—C26—C27—C28174.12 (13)
C12—C13—C14—C150.1 (2)C26—C27—C28—C290.0 (2)
C13—C14—C15—C161.6 (2)C27—C28—C29—C300.6 (3)
C14—C15—C16—C171.3 (2)C28—C29—C30—C310.3 (3)
C15—C16—C17—C120.6 (2)C29—C30—C31—C260.6 (2)
C13—C12—C17—C162.2 (2)C27—C26—C31—C301.2 (2)
C3—C12—C17—C16174.44 (12)B19—C26—C31—C30173.89 (13)

Experimental details

Crystal data
Chemical formulaC26H20BN3O
Mr401.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7309 (1), 9.8830 (1), 11.2162 (1)
α, β, γ (°)78.966 (1), 81.795 (1), 79.993 (1)
V3)1035.91 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.44 × 0.31 × 0.23
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19866, 5044, 3923
Rint0.019
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.03
No. of reflections5044
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

References

First citationBaker, S. J., Akama, T., Zhang, Y.-K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V. & Maples, K. R. (2006). Bioorg. Med. Chem. Lett. 16, 5963–5967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaker, S. J., Zhang, Y.-K., Akama, T., Lau, A., Zhou, H., Hernandez, V., Mao, W., Alley, M. R. K., Sanders, V. & Plattner, J. J. (2006). J. Med. Chem. 49, 4447–4450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, Y., Liu, Q.-D., Bai, D.-R., Jia, W.-L., Tao, Y. & Wang, S. (2005). Inorg. Chem. 44, 601–609.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHagan, H., Reinoso, S., Albrecht, M., Boersma, J., Spek, A. L. & van Koten, G. (2000). J. Organomet. Chem. 608, 27–33.  Google Scholar
First citationScorei, R. I. & Popa, R. Jr (2010). Anticancer Agents Med. Chem. 10, 346–351.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds