organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 9-di­ethyl­amino-2,2-bis­­(4-meth­­oxy­phen­yl)-2H-benzo[h]chromene-5-carboxyl­ate

aBiomaterial Research Center, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, bEnvironment and Resources Research Center, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea, and cCenter for Chemical Analysis, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Republic of Korea
*Correspondence e-mail: chkim@krict.re.kr

(Received 1 March 2011; accepted 21 March 2011; online 26 March 2011)

In the title compound, C31H29NO5, the methyl carboxyl­ate and dimethyl­amino groups on the naphtho­pyran group are almost coplanar with the naphtho­pyran ring system [r.m.s. deviations = 0.08 (2) and 0.161 (2) Å, respectively]. The dihedral angle between the methyl carboxyl­ate and dimethyl­amino groups is 4.9 (1)°. The pyran ring has an envelope conformation with the quaternary C atom out of plane by 0.4739 (13) Å. The meth­oxy­phenyl substituent forms a dihedral angle of 16.6 (1)° with the plane of the benzene ring, while the other meth­oxy­phenyl group is almost coplanar, making a dihedral angle of 1.4 (1)°.

Related literature

For the synthesis and properties of organic photochromic and thermochromic dyes, see: Clarke et al. (2002[Clarke, D. A., Heron, B. M., Gabbutt, C. D., Hepworth, J. D., Partington, S. M. & Corns, S. N. (2002). US Patent 6387512 B1.]); Gabbutt et al. (2003[Gabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220-1230.], 2004[Gabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567-582.]); Kim et al. (2010[Kim, M.-H., Seo, J.-S., Kim, C.-H., Ryu, J.-W. & Lee, K.-H. (2010). Acta Cryst. E66, o66.]); Do et al. (2011[Do, J. H., Hwang, K.-J., Kim, M.-H. & Kim, C.-H. (2011). Acta Cryst. E67, o230.]). For their applications, see: Kumar et al. (1995[Kumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.]); Gemert & Selvig (2000[Gemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.]); Nelson et al. (2002[Nelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.]); Crano & Guglielmetti (1999[Crano, J. C. & Guglielmetti, R. J. (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C31H29NO5

  • Mr = 495.55

  • Triclinic, [P \overline 1]

  • a = 9.8923 (1) Å

  • b = 10.9535 (1) Å

  • c = 12.1720 (2) Å

  • α = 93.860 (1)°

  • β = 112.334 (1)°

  • γ = 93.484 (1)°

  • V = 1211.85 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.31 × 0.20 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 22031 measured reflections

  • 6075 independent reflections

  • 5207 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.05

  • 6075 reflections

  • 336 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis and application of the organic photochromic and thermochromic dyes has become of great interest recently (Kumar et al., 1995; Gemert & Selvig, 2000; Nelson et al., 2002; Clarke et al. (2002); Gabbutt et al., 2003, 2004) because of potential uses as optical transmission materials, and as ophthalmic glasses and lenses. They also have potential uses in storage technologies as optical disks or memories (Crano & Guglielmetti, 1999). In particular, benzo and naphthopyrans have been commercialized as photochromic plastic sunglasses since the early 1990s. In our group, research has been focused on the development of novel photochromic benzo and naphthopyrans (Kim et al., 2010; Do et al., 2011). Herein, we report the crystal structure of methyl 9-(di methylamino)-2,2-bis(4-methoxyphenyl)-2H-benzo[h]chromene-5-carboxylate (Fig. 1 and 2) as a new photochromic material. In the title compound, C31H29NO5, the methyl carboxylate and the dimethylamino groups of the naphthopyran substituent are almost coplanar with the plane through the naphthopyran rings. The dihedral angle between the methyl carboxylate and the dimethylamino groups is 4.9 (1)°. The pyran ring of –C(2)—O(1)—C(12)—C(11)—C(4)—C(3)- has an envelope conformation with C(2) out of plane, C(2)—O(1) 1.448 (1) Å and C(2)—C(3) 1.512 (2) Å. The –O(21)—C(22) methoxy group of the phenyl substituent forms a dihedral angle of 16.6 (1) ° with the phenyl ring, while the –O(29)—C(30) methoxy group is almost coplanar with the plane through the phenyl ring, making a dihedral angle of 1.4 (1) °.

Related literature top

For the synthesis and properties of organic photochromic and thermochromic dyes, see: Clarke et al. (2002); Gabbutt et al. (2003, 2004); Kim et al. (2010); Do et al. (2011). For their synthesis and applications, see: Kumar et al. (1995); Gemert & Selvig (2000); Nelson et al. (2002). For a related review, see; Crano & Guglielmetti (1999).

Experimental top

A solution of methyl 6-dimethylamino-4-hydroxy-2-naphthoate (5 mmol) and 1,1-di(4-methoxyphenyl)-prop-2-yn-1-ol (5 mmol) in toluene (60 ml) containing acidic alumina (5 g) was refluxed for 2 hrs. The cooled solution was filtered and the alumina residue washed well with ethyl acetate (3 x 50 ml). Removal of the dried solvent gave a yellow solid which was flash chromatographed using 20% ethyl acetate in hexane as the eluent to give an off-white solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate solution.

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids plotted at the 30% probability level. H atoms are presented as a small spheres of arbitary radius.
[Figure 2] Fig. 2. The crystal packing structure of the title compound, viewed down the b axis. [Symmetry codes: (i) x, y, z; (ii) -x, -y, -z.]
Methyl 9-diethylamino-2,2-bis(4-methoxyphenyl)-2H-benzo[h]chromene- 5-carboxylate top
Crystal data top
C31H29NO5Z = 2
Mr = 495.55F(000) = 524
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8923 (1) ÅCell parameters from 9961 reflections
b = 10.9535 (1) Åθ = 2.2–28.4°
c = 12.1720 (2) ŵ = 0.09 mm1
α = 93.860 (1)°T = 100 K
β = 112.334 (1)°Block, pale yellow
γ = 93.484 (1)°0.31 × 0.20 × 0.13 mm
V = 1211.85 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ϕ and ω scansh = 1313
22031 measured reflectionsk = 1214
6075 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.4305P]
where P = (Fo2 + 2Fc2)/3
6075 reflections(Δ/σ)max < 0.001
336 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C31H29NO5γ = 93.484 (1)°
Mr = 495.55V = 1211.85 (3) Å3
Triclinic, P1Z = 2
a = 9.8923 (1) ÅMo Kα radiation
b = 10.9535 (1) ŵ = 0.09 mm1
c = 12.1720 (2) ÅT = 100 K
α = 93.860 (1)°0.31 × 0.20 × 0.13 mm
β = 112.334 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5207 reflections with I > 2σ(I)
22031 measured reflectionsRint = 0.021
6075 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
6075 reflectionsΔρmin = 0.25 e Å3
336 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76711 (8)0.30077 (7)0.13618 (7)0.01516 (16)
C20.85589 (11)0.20946 (10)0.20221 (9)0.0146 (2)
C30.87855 (11)0.11475 (10)0.11607 (10)0.0160 (2)
H3A0.89170.03460.13590.019*
C40.87987 (12)0.14469 (10)0.01194 (10)0.0166 (2)
H4A0.89550.08580.03960.020*
C50.88292 (11)0.31985 (10)0.11883 (9)0.0150 (2)
C60.85247 (11)0.43872 (10)0.14310 (10)0.0157 (2)
H6A0.87120.47090.20520.019*
C70.76333 (12)0.63497 (10)0.10014 (10)0.0168 (2)
H7A0.78440.66830.16070.020*
C80.70393 (12)0.70498 (10)0.03624 (10)0.0178 (2)
H8A0.68670.78540.05330.021*
C90.66750 (12)0.65696 (10)0.05674 (10)0.0176 (2)
C100.70099 (12)0.53750 (10)0.08386 (10)0.0161 (2)
H10A0.68100.50510.14540.019*
C110.85677 (11)0.27014 (10)0.02134 (9)0.0146 (2)
C120.80112 (11)0.34390 (10)0.04496 (9)0.0144 (2)
C130.79380 (11)0.51228 (10)0.07627 (9)0.0150 (2)
C140.76453 (11)0.46558 (10)0.01930 (9)0.0143 (2)
C150.76705 (11)0.14752 (10)0.26565 (9)0.0146 (2)
C160.82776 (12)0.05611 (10)0.33973 (10)0.0171 (2)
H16A0.92530.04190.35770.020*
C170.74499 (12)0.01354 (10)0.38671 (10)0.0169 (2)
H17A0.78720.07350.43630.020*
C180.59832 (12)0.00633 (10)0.35958 (9)0.0152 (2)
C190.53879 (12)0.10179 (10)0.29232 (10)0.0167 (2)
H19A0.44310.11910.27830.020*
C200.62394 (12)0.17146 (10)0.24595 (9)0.0158 (2)
H20A0.58390.23520.20090.019*
O210.52207 (8)0.07485 (7)0.40074 (7)0.01794 (17)
C220.36555 (12)0.07890 (11)0.34952 (11)0.0211 (2)
H22A0.32450.13870.38510.032*
H22B0.33110.10110.26510.032*
H22C0.33600.00050.36400.032*
C231.00119 (11)0.27358 (10)0.29325 (9)0.0149 (2)
C241.12940 (12)0.21328 (10)0.33087 (10)0.0170 (2)
H24A1.12780.13410.29730.020*
C251.25908 (12)0.26982 (10)0.41753 (10)0.0181 (2)
H25A1.34310.22810.44240.022*
C261.26337 (12)0.38915 (10)0.46725 (10)0.0171 (2)
C271.13676 (12)0.45073 (10)0.43051 (10)0.0182 (2)
H27A1.13870.53030.46330.022*
C281.00713 (12)0.39214 (10)0.34431 (10)0.0174 (2)
H28A0.92270.43340.32040.021*
O291.39640 (9)0.43746 (8)0.55056 (7)0.02068 (18)
C301.40552 (14)0.56030 (12)0.60149 (12)0.0259 (3)
H30A1.50360.58380.65830.039*
H30B1.33810.56500.64090.039*
H30C1.38100.61480.53960.039*
C310.94328 (11)0.24645 (10)0.19365 (10)0.0161 (2)
O320.97530 (10)0.14182 (8)0.18347 (8)0.0256 (2)
O330.95645 (10)0.30908 (8)0.28129 (7)0.02223 (19)
C341.01776 (14)0.24406 (12)0.35540 (11)0.0252 (3)
H34A1.02320.29480.41520.038*
H34B0.95650.16960.39330.038*
H34C1.11450.22440.30710.038*
N350.60408 (13)0.72739 (10)0.11748 (10)0.0270 (2)
C360.55830 (14)0.84722 (11)0.08327 (11)0.0223 (2)
H36A0.64290.90230.09500.033*
H36B0.50840.87890.13150.033*
H36C0.49330.83980.00070.033*
C370.56895 (14)0.67773 (11)0.21202 (11)0.0241 (3)
H37A0.50180.60520.18010.036*
H37B0.52460.73790.24500.036*
H37C0.65720.65730.27340.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0152 (4)0.0146 (4)0.0045 (3)0.0076 (3)0.0057 (3)
C20.0161 (5)0.0134 (5)0.0146 (5)0.0033 (4)0.0056 (4)0.0048 (4)
C30.0178 (5)0.0129 (5)0.0180 (5)0.0029 (4)0.0072 (4)0.0029 (4)
C40.0177 (5)0.0147 (5)0.0175 (5)0.0017 (4)0.0070 (4)0.0010 (4)
C50.0150 (5)0.0154 (5)0.0142 (5)0.0003 (4)0.0055 (4)0.0013 (4)
C60.0149 (5)0.0174 (5)0.0148 (5)0.0003 (4)0.0056 (4)0.0033 (4)
C70.0170 (5)0.0176 (5)0.0156 (5)0.0007 (4)0.0055 (4)0.0045 (4)
C80.0196 (5)0.0148 (5)0.0178 (5)0.0023 (4)0.0055 (4)0.0040 (4)
C90.0193 (5)0.0170 (5)0.0157 (5)0.0025 (4)0.0058 (4)0.0006 (4)
C100.0181 (5)0.0164 (5)0.0140 (5)0.0019 (4)0.0061 (4)0.0029 (4)
C110.0146 (4)0.0144 (5)0.0135 (5)0.0006 (4)0.0042 (4)0.0016 (4)
C120.0140 (4)0.0159 (5)0.0126 (5)0.0002 (4)0.0044 (4)0.0032 (4)
C130.0141 (4)0.0153 (5)0.0140 (5)0.0001 (4)0.0039 (4)0.0025 (4)
C140.0135 (4)0.0141 (5)0.0134 (5)0.0003 (4)0.0032 (4)0.0020 (4)
C150.0169 (5)0.0137 (5)0.0129 (5)0.0005 (4)0.0057 (4)0.0008 (4)
C160.0152 (5)0.0188 (5)0.0176 (5)0.0025 (4)0.0062 (4)0.0040 (4)
C170.0187 (5)0.0170 (5)0.0155 (5)0.0033 (4)0.0063 (4)0.0050 (4)
C180.0183 (5)0.0148 (5)0.0131 (5)0.0006 (4)0.0073 (4)0.0002 (4)
C190.0163 (5)0.0175 (5)0.0170 (5)0.0033 (4)0.0072 (4)0.0011 (4)
C200.0186 (5)0.0140 (5)0.0143 (5)0.0030 (4)0.0055 (4)0.0017 (4)
O210.0169 (4)0.0192 (4)0.0202 (4)0.0012 (3)0.0094 (3)0.0051 (3)
C220.0169 (5)0.0254 (6)0.0205 (5)0.0022 (4)0.0075 (4)0.0019 (5)
C230.0165 (5)0.0161 (5)0.0138 (5)0.0011 (4)0.0075 (4)0.0038 (4)
C240.0190 (5)0.0149 (5)0.0187 (5)0.0024 (4)0.0086 (4)0.0036 (4)
C250.0168 (5)0.0192 (5)0.0196 (5)0.0035 (4)0.0075 (4)0.0059 (4)
C260.0177 (5)0.0200 (5)0.0144 (5)0.0014 (4)0.0071 (4)0.0043 (4)
C270.0223 (5)0.0159 (5)0.0175 (5)0.0014 (4)0.0090 (4)0.0013 (4)
C280.0183 (5)0.0177 (5)0.0180 (5)0.0038 (4)0.0086 (4)0.0039 (4)
O290.0180 (4)0.0219 (4)0.0193 (4)0.0022 (3)0.0050 (3)0.0003 (3)
C300.0250 (6)0.0247 (6)0.0251 (6)0.0044 (5)0.0085 (5)0.0036 (5)
C310.0145 (5)0.0175 (5)0.0153 (5)0.0001 (4)0.0049 (4)0.0019 (4)
O320.0370 (5)0.0195 (4)0.0298 (5)0.0100 (4)0.0215 (4)0.0072 (4)
O330.0324 (4)0.0210 (4)0.0216 (4)0.0084 (3)0.0182 (4)0.0059 (3)
C340.0340 (6)0.0259 (6)0.0248 (6)0.0081 (5)0.0203 (5)0.0042 (5)
N350.0446 (6)0.0205 (5)0.0262 (5)0.0144 (5)0.0224 (5)0.0080 (4)
C360.0291 (6)0.0173 (5)0.0191 (6)0.0073 (4)0.0074 (5)0.0001 (4)
C370.0332 (6)0.0211 (6)0.0237 (6)0.0063 (5)0.0167 (5)0.0022 (5)
Geometric parameters (Å, º) top
O1—C121.3800 (12)C19—H19A0.9300
O1—C21.4478 (12)C20—H20A0.9300
C2—C31.5120 (15)O21—C221.4291 (13)
C2—C151.5306 (14)C22—H22A0.9600
C2—C231.5327 (14)C22—H22B0.9600
C3—C41.3350 (15)C22—H22C0.9600
C3—H3A0.9300C23—C281.3894 (15)
C4—C111.4654 (15)C23—C241.3984 (15)
C4—H4A0.9300C24—C251.3889 (15)
C5—C61.3802 (15)C24—H24A0.9300
C5—C111.4404 (14)C25—C261.3942 (16)
C5—C311.4851 (15)C25—H25A0.9300
C6—C131.4054 (15)C26—O291.3671 (13)
C6—H6A0.9300C26—C271.3933 (15)
C7—C81.3638 (16)C27—C281.3943 (16)
C7—C131.4200 (15)C27—H27A0.9300
C7—H7A0.9300C28—H28A0.9300
C8—C91.4333 (15)O29—C301.4260 (15)
C8—H8A0.9300C30—H30A0.9600
C9—N351.3675 (15)C30—H30B0.9600
C9—C101.3995 (15)C30—H30C0.9600
C10—C141.4090 (15)C31—O321.2094 (14)
C10—H10A0.9300C31—O331.3486 (13)
C11—C121.3824 (15)O33—C341.4390 (14)
C12—C141.4261 (14)C34—H34A0.9600
C13—C141.4202 (14)C34—H34B0.9600
C15—C201.3879 (15)C34—H34C0.9600
C15—C161.3998 (15)N35—C361.4504 (15)
C16—C171.3849 (15)N35—C371.4513 (15)
C16—H16A0.9300C36—H36A0.9600
C17—C181.3948 (15)C36—H36B0.9600
C17—H17A0.9300C36—H36C0.9600
C18—O211.3698 (13)C37—H37A0.9600
C18—C191.3908 (15)C37—H37B0.9600
C19—C201.3970 (15)C37—H37C0.9600
C12—O1—C2116.99 (8)C15—C20—H20A119.3
O1—C2—C3109.42 (8)C19—C20—H20A119.3
O1—C2—C15105.97 (8)C18—O21—C22117.02 (8)
C3—C2—C15109.14 (8)O21—C22—H22A109.5
O1—C2—C23109.16 (8)O21—C22—H22B109.5
C3—C2—C23112.37 (9)H22A—C22—H22B109.5
C15—C2—C23110.58 (8)O21—C22—H22C109.5
C4—C3—C2120.87 (10)H22A—C22—H22C109.5
C4—C3—H3A119.6H22B—C22—H22C109.5
C2—C3—H3A119.6C28—C23—C24118.21 (10)
C3—C4—C11120.16 (10)C28—C23—C2120.43 (9)
C3—C4—H4A119.9C24—C23—C2121.30 (10)
C11—C4—H4A119.9C25—C24—C23121.02 (10)
C6—C5—C11119.51 (10)C25—C24—H24A119.5
C6—C5—C31118.98 (10)C23—C24—H24A119.5
C11—C5—C31121.51 (9)C24—C25—C26120.02 (10)
C5—C6—C13121.62 (10)C24—C25—H25A120.0
C5—C6—H6A119.2C26—C25—H25A120.0
C13—C6—H6A119.2O29—C26—C27124.62 (10)
C8—C7—C13121.52 (10)O29—C26—C25115.66 (10)
C8—C7—H7A119.2C27—C26—C25119.71 (10)
C13—C7—H7A119.2C26—C27—C28119.52 (10)
C7—C8—C9121.28 (10)C26—C27—H27A120.2
C7—C8—H8A119.4C28—C27—H27A120.2
C9—C8—H8A119.4C23—C28—C27121.51 (10)
N35—C9—C10121.68 (10)C23—C28—H28A119.2
N35—C9—C8120.42 (10)C27—C28—H28A119.2
C10—C9—C8117.90 (10)C26—O29—C30117.17 (9)
C9—C10—C14120.94 (10)O29—C30—H30A109.5
C9—C10—H10A119.5O29—C30—H30B109.5
C14—C10—H10A119.5H30A—C30—H30B109.5
C12—C11—C5118.40 (10)O29—C30—H30C109.5
C12—C11—C4116.34 (9)H30A—C30—H30C109.5
C5—C11—C4125.22 (10)H30B—C30—H30C109.5
O1—C12—C11121.65 (9)O32—C31—O33121.29 (10)
O1—C12—C14115.09 (9)O32—C31—C5126.67 (10)
C11—C12—C14123.10 (10)O33—C31—C5112.01 (9)
C6—C13—C7121.91 (10)C31—O33—C34114.80 (9)
C6—C13—C14120.37 (10)O33—C34—H34A109.5
C7—C13—C14117.72 (10)O33—C34—H34B109.5
C10—C14—C13120.55 (10)H34A—C34—H34B109.5
C10—C14—C12122.51 (10)O33—C34—H34C109.5
C13—C14—C12116.94 (10)H34A—C34—H34C109.5
C20—C15—C16118.16 (10)H34B—C34—H34C109.5
C20—C15—C2122.70 (9)C9—N35—C36121.78 (10)
C16—C15—C2118.96 (9)C9—N35—C37119.72 (10)
C17—C16—C15121.08 (10)C36—N35—C37118.27 (10)
C17—C16—H16A119.5N35—C36—H36A109.5
C15—C16—H16A119.5N35—C36—H36B109.5
C16—C17—C18119.93 (10)H36A—C36—H36B109.5
C16—C17—H17A120.0N35—C36—H36C109.5
C18—C17—H17A120.0H36A—C36—H36C109.5
O21—C18—C19124.78 (10)H36B—C36—H36C109.5
O21—C18—C17115.47 (9)N35—C37—H37A109.5
C19—C18—C17119.74 (10)N35—C37—H37B109.5
C18—C19—C20119.46 (10)H37A—C37—H37B109.5
C18—C19—H19A120.3N35—C37—H37C109.5
C20—C19—H19A120.3H37A—C37—H37C109.5
C15—C20—C19121.37 (10)H37B—C37—H37C109.5
C12—O1—C2—C343.91 (11)O1—C2—C15—C16178.39 (9)
C12—O1—C2—C15161.45 (8)C3—C2—C15—C1663.88 (12)
C12—O1—C2—C2379.44 (11)C23—C2—C15—C1660.22 (13)
O1—C2—C3—C429.20 (13)C20—C15—C16—C173.65 (16)
C15—C2—C3—C4144.74 (10)C2—C15—C16—C17171.58 (10)
C23—C2—C3—C492.22 (12)C15—C16—C17—C180.51 (17)
C2—C3—C4—C111.02 (16)C16—C17—C18—O21173.93 (10)
C11—C5—C6—C131.19 (16)C16—C17—C18—C194.52 (16)
C31—C5—C6—C13179.32 (9)O21—C18—C19—C20174.01 (10)
C13—C7—C8—C90.99 (17)C17—C18—C19—C204.28 (16)
C7—C8—C9—N35178.09 (11)C16—C15—C20—C193.87 (16)
C7—C8—C9—C102.88 (16)C2—C15—C20—C19171.16 (10)
N35—C9—C10—C14179.14 (10)C18—C19—C20—C150.05 (16)
C8—C9—C10—C141.84 (16)C19—C18—O21—C2214.49 (15)
C6—C5—C11—C120.19 (15)C17—C18—O21—C22163.87 (10)
C31—C5—C11—C12179.67 (9)O1—C2—C23—C2831.18 (13)
C6—C5—C11—C4178.05 (10)C3—C2—C23—C28152.75 (10)
C31—C5—C11—C42.48 (16)C15—C2—C23—C2885.02 (12)
C3—C4—C11—C1214.54 (15)O1—C2—C23—C24151.49 (9)
C3—C4—C11—C5167.56 (10)C3—C2—C23—C2429.92 (13)
C2—O1—C12—C1132.06 (13)C15—C2—C23—C2492.30 (12)
C2—O1—C12—C14152.36 (9)C28—C23—C24—C250.44 (16)
C5—C11—C12—O1177.05 (9)C2—C23—C24—C25176.94 (10)
C4—C11—C12—O11.00 (15)C23—C24—C25—C260.89 (16)
C5—C11—C12—C141.82 (15)C24—C25—C26—O29179.12 (9)
C4—C11—C12—C14176.23 (9)C24—C25—C26—C270.66 (16)
C5—C6—C13—C7179.48 (10)O29—C26—C27—C28179.75 (10)
C5—C6—C13—C140.22 (16)C25—C26—C27—C280.01 (16)
C8—C7—C13—C6178.80 (10)C24—C23—C28—C270.23 (16)
C8—C7—C13—C141.91 (16)C2—C23—C28—C27177.64 (10)
C9—C10—C14—C131.04 (16)C26—C27—C28—C230.45 (17)
C9—C10—C14—C12179.53 (10)C27—C26—O29—C301.02 (16)
C6—C13—C14—C10177.79 (9)C25—C26—O29—C30178.75 (10)
C7—C13—C14—C102.91 (15)C6—C5—C31—O32179.97 (11)
C6—C13—C14—C121.67 (15)C11—C5—C31—O320.49 (17)
C7—C13—C14—C12177.63 (9)C6—C5—C31—O331.79 (14)
O1—C12—C14—C101.21 (15)C11—C5—C31—O33178.72 (9)
C11—C12—C14—C10176.72 (10)O32—C31—O33—C343.09 (16)
O1—C12—C14—C13178.24 (8)C5—C31—O33—C34178.57 (9)
C11—C12—C14—C132.73 (15)C10—C9—N35—C36174.87 (11)
O1—C2—C15—C206.61 (14)C8—C9—N35—C366.14 (18)
C3—C2—C15—C20111.12 (11)C10—C9—N35—C370.52 (18)
C23—C2—C15—C20124.78 (11)C8—C9—N35—C37179.51 (11)

Experimental details

Crystal data
Chemical formulaC31H29NO5
Mr495.55
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8923 (1), 10.9535 (1), 12.1720 (2)
α, β, γ (°)93.860 (1), 112.334 (1), 93.484 (1)
V3)1211.85 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.31 × 0.20 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22031, 6075, 5207
Rint0.021
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.05
No. of reflections6075
No. of parameters336
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

 

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, D. A., Heron, B. M., Gabbutt, C. D., Hepworth, J. D., Partington, S. M. & Corns, S. N. (2002). US Patent 6387512 B1.  Google Scholar
First citationCrano, J. C. & Guglielmetti, R. J. (1999). Editors. Organic Photochromic and Thermochromic Compounds, Vol 1. New York: Plenum Press.  Google Scholar
First citationDo, J. H., Hwang, K.-J., Kim, M.-H. & Kim, C.-H. (2011). Acta Cryst. E67, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGabbutt, C. D., Hepworth, J. D., Heron, B. M., Thomas, D. A., Kilner, C. & Partington, S. M. (2004). Heterocycles, 63, 567–582.  CAS Google Scholar
First citationGabbutt, C. D., Heron, B. M., Instone, A. C., Thomas, D. A., Partington, S. M., Hursthouse, M. B. & Gelbrich, T. (2003). Eur. J. Org. Chem. pp. 1220–1230.  Web of Science CSD CrossRef Google Scholar
First citationGemert, B. V. & Selvig, C. D. (2000). US Patent 6106744.  Google Scholar
First citationKim, M.-H., Seo, J.-S., Kim, C.-H., Ryu, J.-W. & Lee, K.-H. (2010). Acta Cryst. E66, o66.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, A., Gemert, B. V. & Knowles, D. B. (1995). US Patent 5458814.  Google Scholar
First citationNelson, C. M., Chopra, A., Knowles, D. B., Gemert, B. V. & Kumar, A. (2002). US Patent 6348604 B1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds