metal-organic compounds
Tris(piperazine-1,4-diium) bis[hexachloridoindate(III)] tetrahydrate
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Facult des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 4H12N2)3[InCl6]2·4H2O, consists of one and half independent piperazinium cations, an hexachloridoindate anion and two molecules of water. The InIII ion is six-coordinated and forms a quasi-regular octahedral arrangement. In the crystal, alternating layers of cations and anions are arranged parallel to (10) and are linked with the water molecules via intra- and intermolecular N—H⋯O, O—H⋯Cl, C—H⋯O and N—H⋯Cl hydrogen bonds, forming a complex three-dimensional network. Additional stabilization within the layers is provided by weak intermolecular C—H⋯Cl interactions.
of the title compound, (CRelated literature
For related structures and protonated et al. (2005, 2007); Bouacida (2008); Murugavel et al. (2009); Polishchuk et al. (2009).
see: BouacidaExperimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811007355/pv2386sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007355/pv2386Isup2.hkl
A solution of 1 mmol InCl3 and 3 mmol piperazine in hydrochloric acid was slowly evaporated to dryness over a period of one week yielding colorless crystals suitable for X-ray diffraction.
All H atoms were visible in differnce Fourier maps but were introduced in calculated positions and treated as riding on C and N atoms with C—H = 0.97 and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C/N/). The positions of water H atoms were refined with Uiso(H) = 1.5 Ueq(O).
Data collection: COLLECT (Hooft, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i) 1 - x, 1 - y, -z | |
Fig. 2. A diagram of the layered crystal packing in (I), viewed down the b axis. | |
Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines. |
(C4H12N2)3[InCl6]2·4H2O | Z = 1 |
Mr = 991.57 | F(000) = 492 |
Triclinic, P1 | Dx = 1.819 Mg m−3 |
a = 7.9267 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0940 (3) Å | Cell parameters from 3980 reflections |
c = 11.8265 (5) Å | θ = 2.9–27.5° |
α = 89.780 (1)° | µ = 2.19 mm−1 |
β = 89.634 (1)° | T = 295 K |
γ = 73.087 (2)° | Needle, colorless |
V = 905.31 (6) Å3 | 0.15 × 0.06 × 0.05 mm |
Nonius KappaCCD diffractometer | 4131 independent reflections |
Radiation source: Enraf Nonius FR590 | 3293 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
CCD rotation images, thick slices scans | h = −8→10 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | k = −13→13 |
Tmin = 0.773, Tmax = 0.938 | l = −15→15 |
7414 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + 0.1261P] where P = (Fo2 + 2Fc2)/3 |
4131 reflections | (Δ/σ)max = 0.002 |
163 parameters | Δρmax = 0.61 e Å−3 |
1 restraint | Δρmin = −0.75 e Å−3 |
(C4H12N2)3[InCl6]2·4H2O | γ = 73.087 (2)° |
Mr = 991.57 | V = 905.31 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.9267 (3) Å | Mo Kα radiation |
b = 10.0940 (3) Å | µ = 2.19 mm−1 |
c = 11.8265 (5) Å | T = 295 K |
α = 89.780 (1)° | 0.15 × 0.06 × 0.05 mm |
β = 89.634 (1)° |
Nonius KappaCCD diffractometer | 4131 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | 3293 reflections with I > 2σ(I) |
Tmin = 0.773, Tmax = 0.938 | Rint = 0.024 |
7414 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 1 restraint |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.61 e Å−3 |
4131 reflections | Δρmin = −0.75 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.7212 (4) | 0.9420 (3) | 0.1784 (3) | 0.0419 (7) | |
H11A | 0.7106 | 0.9799 | 0.1024 | 0.05* | |
H12A | 0.6401 | 0.8867 | 0.186 | 0.05* | |
C1B | 0.5638 (4) | 0.5134 (3) | 0.1119 (3) | 0.04 | |
H11B | 0.61 | 0.5657 | 0.166 | 0.048* | |
H12B | 0.5554 | 0.4295 | 0.1488 | 0.048* | |
C2A | 0.9056 (4) | 0.8527 (3) | 0.1970 (3) | 0.0403 (7) | |
H21A | 0.932 | 0.7756 | 0.1446 | 0.048* | |
H22A | 0.9873 | 0.906 | 0.182 | 0.048* | |
C2B | 0.3830 (4) | 0.5984 (3) | 0.0742 (3) | 0.0400 (7) | |
H21B | 0.3032 | 0.6173 | 0.1386 | 0.048* | |
H22B | 0.3895 | 0.6862 | 0.0438 | 0.048* | |
C4A | 0.8812 (4) | 0.9141 (3) | 0.3988 (3) | 0.0415 (7) | |
H41A | 0.9621 | 0.9697 | 0.3916 | 0.05* | |
H42A | 0.8914 | 0.876 | 0.4747 | 0.05* | |
C5A | 0.6963 (4) | 1.0037 (3) | 0.3801 (3) | 0.0394 (7) | |
H51A | 0.6144 | 0.9505 | 0.3946 | 0.047* | |
H52A | 0.6696 | 1.0809 | 0.4324 | 0.047* | |
N3A | 0.9296 (4) | 0.7988 (3) | 0.3150 (2) | 0.0437 (6) | |
H31A | 1.0429 | 0.7492 | 0.325 | 0.052* | |
H32A | 0.862 | 0.7422 | 0.3266 | 0.052* | |
N3B | 0.3148 (3) | 0.5233 (3) | −0.0131 (2) | 0.0367 (6) | |
H31B | 0.2088 | 0.5765 | −0.0365 | 0.044* | |
H32B | 0.3001 | 0.4455 | 0.0172 | 0.044* | |
N6A | 0.6748 (3) | 1.0568 (3) | 0.2620 (2) | 0.0386 (6) | |
H61A | 0.5623 | 1.1079 | 0.2514 | 0.046* | |
H62A | 0.7444 | 1.1121 | 0.2506 | 0.046* | |
Cl1 | 0.01218 (9) | 0.49590 (7) | 0.16760 (6) | 0.03375 (16) | |
Cl2 | 0.34370 (11) | 0.31722 (8) | 0.36015 (7) | 0.0466 (2) | |
Cl3 | 0.36503 (9) | 0.21152 (7) | 0.07659 (6) | 0.03619 (17) | |
Cl4 | 0.26386 (10) | 0.00367 (7) | 0.29365 (7) | 0.04150 (18) | |
Cl5 | −0.06834 (10) | 0.17934 (7) | 0.09051 (6) | 0.03826 (17) | |
Cl6 | −0.11484 (11) | 0.28867 (8) | 0.37179 (7) | 0.0466 (2) | |
In1 | 0.13014 (2) | 0.247144 (19) | 0.228928 (17) | 0.03017 (7) | |
O2W | 0.7076 (5) | 0.6333 (3) | 0.3757 (2) | 0.0694 (9) | |
H21W | 0.756 (7) | 0.554 (5) | 0.360 (4) | 0.104* | |
H22W | 0.698 (7) | 0.639 (6) | 0.443 (5) | 0.104* | |
O1W | 0.2846 (4) | 0.6490 (3) | 0.3457 (3) | 0.073 | |
H11W | 0.286 (6) | 0.567 (5) | 0.357 (4) | 0.109* | |
H12W | 0.361 (5) | 0.666 (5) | 0.385 (4) | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.0472 (19) | 0.0439 (17) | 0.0357 (17) | −0.0150 (15) | −0.0066 (14) | −0.0006 (14) |
C1B | 0.036 | 0.053 | 0.035 | −0.019 | −0.005 | 0.006 |
C2A | 0.0504 (19) | 0.0300 (15) | 0.0373 (17) | −0.0067 (14) | 0.0061 (14) | −0.0019 (13) |
C2B | 0.0317 (16) | 0.0445 (17) | 0.0440 (18) | −0.0113 (14) | 0.0025 (13) | 0.0001 (14) |
C4A | 0.0402 (18) | 0.0475 (18) | 0.0319 (16) | −0.0050 (14) | −0.0029 (13) | 0.0027 (14) |
C5A | 0.0399 (17) | 0.0427 (17) | 0.0330 (16) | −0.0081 (14) | 0.0011 (13) | −0.0022 (13) |
N3A | 0.0460 (16) | 0.0325 (13) | 0.0448 (16) | 0.0007 (12) | 0.0051 (12) | 0.0063 (11) |
N3B | 0.0246 (12) | 0.0435 (14) | 0.0424 (15) | −0.0104 (11) | −0.0045 (10) | 0.0130 (12) |
N6A | 0.0306 (13) | 0.0370 (13) | 0.0434 (15) | −0.0025 (11) | −0.0039 (11) | 0.0032 (11) |
Cl1 | 0.0330 (4) | 0.0259 (3) | 0.0408 (4) | −0.0062 (3) | −0.0018 (3) | 0.0043 (3) |
Cl2 | 0.0442 (4) | 0.0442 (4) | 0.0461 (5) | −0.0041 (4) | −0.0133 (4) | −0.0085 (4) |
Cl3 | 0.0354 (4) | 0.0350 (4) | 0.0368 (4) | −0.0081 (3) | 0.0054 (3) | 0.0028 (3) |
Cl4 | 0.0341 (4) | 0.0337 (4) | 0.0540 (5) | −0.0057 (3) | −0.0029 (3) | 0.0137 (3) |
Cl5 | 0.0391 (4) | 0.0343 (4) | 0.0426 (4) | −0.0125 (3) | −0.0104 (3) | 0.0059 (3) |
Cl6 | 0.0439 (4) | 0.0448 (4) | 0.0445 (5) | −0.0026 (4) | 0.0131 (3) | 0.0093 (3) |
In1 | 0.02748 (12) | 0.02921 (12) | 0.03188 (12) | −0.00524 (8) | −0.00114 (8) | 0.00527 (8) |
O2W | 0.107 (2) | 0.0454 (14) | 0.0504 (16) | −0.0145 (16) | 0.0142 (17) | −0.0025 (14) |
O1W | 0.076 | 0.057 | 0.078 | −0.007 | −0.017 | 0.002 |
C1A—N6A | 1.487 (4) | C5A—H51A | 0.97 |
C1A—C2A | 1.494 (4) | C5A—H52A | 0.97 |
C1A—H11A | 0.97 | N3A—H31A | 0.9 |
C1A—H12A | 0.97 | N3A—H32A | 0.9 |
C1B—N3Bi | 1.487 (4) | N3B—C1Bi | 1.487 (4) |
C1B—C2B | 1.509 (4) | N3B—H31B | 0.9 |
C1B—H11B | 0.97 | N3B—H32B | 0.9 |
C1B—H12B | 0.97 | N6A—H61A | 0.9 |
C2A—N3A | 1.489 (4) | N6A—H62A | 0.9 |
C2A—H21A | 0.97 | Cl1—In1 | 2.5167 (7) |
C2A—H22A | 0.97 | Cl2—In1 | 2.5521 (8) |
C2B—N3B | 1.478 (4) | Cl3—In1 | 2.5327 (7) |
C2B—H21B | 0.97 | Cl4—In1 | 2.4959 (7) |
C2B—H22B | 0.97 | Cl5—In1 | 2.5083 (7) |
C4A—N3A | 1.492 (4) | Cl6—In1 | 2.5082 (8) |
C4A—C5A | 1.498 (4) | O2W—H21W | 0.80 (5) |
C4A—H41A | 0.97 | O2W—H22W | 0.80 (5) |
C4A—H42A | 0.97 | O1W—H11W | 0.84 (5) |
C5A—N6A | 1.487 (4) | O1W—H12W | 0.824 (19) |
N6A—C1A—C2A | 110.3 (2) | C2A—N3A—C4A | 111.2 (2) |
N6A—C1A—H11A | 109.6 | C2A—N3A—H31A | 109.4 |
C2A—C1A—H11A | 109.6 | C4A—N3A—H31A | 109.4 |
N6A—C1A—H12A | 109.6 | C2A—N3A—H32A | 109.4 |
C2A—C1A—H12A | 109.6 | C4A—N3A—H32A | 109.4 |
H11A—C1A—H12A | 108.1 | H31A—N3A—H32A | 108 |
N3Bi—C1B—C2B | 110.3 (2) | C2B—N3B—C1Bi | 111.8 (2) |
N3Bi—C1B—H11B | 109.6 | C2B—N3B—H31B | 109.3 |
C2B—C1B—H11B | 109.6 | C1Bi—N3B—H31B | 109.3 |
N3Bi—C1B—H12B | 109.6 | C2B—N3B—H32B | 109.3 |
C2B—C1B—H12B | 109.6 | C1Bi—N3B—H32B | 109.3 |
H11B—C1B—H12B | 108.1 | H31B—N3B—H32B | 107.9 |
N3A—C2A—C1A | 111.2 (2) | C1A—N6A—C5A | 111.6 (2) |
N3A—C2A—H21A | 109.4 | C1A—N6A—H61A | 109.3 |
C1A—C2A—H21A | 109.4 | C5A—N6A—H61A | 109.3 |
N3A—C2A—H22A | 109.4 | C1A—N6A—H62A | 109.3 |
C1A—C2A—H22A | 109.4 | C5A—N6A—H62A | 109.3 |
H21A—C2A—H22A | 108 | H61A—N6A—H62A | 108 |
N3B—C2B—C1B | 110.3 (2) | Cl4—In1—Cl6 | 92.66 (3) |
N3B—C2B—H21B | 109.6 | Cl4—In1—Cl5 | 93.02 (3) |
C1B—C2B—H21B | 109.6 | Cl6—In1—Cl5 | 88.24 (3) |
N3B—C2B—H22B | 109.6 | Cl4—In1—Cl1 | 176.49 (2) |
C1B—C2B—H22B | 109.6 | Cl6—In1—Cl1 | 88.87 (2) |
H21B—C2B—H22B | 108.1 | Cl5—In1—Cl1 | 90.18 (2) |
N3A—C4A—C5A | 110.8 (3) | Cl4—In1—Cl3 | 89.56 (3) |
N3A—C4A—H41A | 109.5 | Cl6—In1—Cl3 | 176.85 (3) |
C5A—C4A—H41A | 109.5 | Cl5—In1—Cl3 | 89.41 (3) |
N3A—C4A—H42A | 109.5 | Cl1—In1—Cl3 | 89.04 (2) |
C5A—C4A—H42A | 109.5 | Cl4—In1—Cl2 | 87.68 (3) |
H41A—C4A—H42A | 108.1 | Cl6—In1—Cl2 | 94.98 (3) |
N6A—C5A—C4A | 110.5 (2) | Cl5—In1—Cl2 | 176.67 (3) |
N6A—C5A—H51A | 109.6 | Cl1—In1—Cl2 | 89.04 (2) |
C4A—C5A—H51A | 109.6 | Cl3—In1—Cl2 | 87.34 (3) |
N6A—C5A—H52A | 109.6 | H21W—O2W—H22W | 108 (5) |
C4A—C5A—H52A | 109.6 | H11W—O1W—H12W | 109 (5) |
H51A—C5A—H52A | 108.1 |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···Cl2 | 0.84 (5) | 2.43 (5) | 3.248 (3) | 167 (4) |
O2W—H21W···Cl6ii | 0.80 (5) | 2.58 (5) | 3.353 (3) | 163 (5) |
O2W—H22W···Cl2iii | 0.80 (6) | 2.37 (6) | 3.170 (3) | 174 (6) |
N3A—H31A···O1Wii | 0.90 | 1.91 | 2.805 (5) | 178 |
N3A—H32A···O2W | 0.90 | 1.95 | 2.843 (5) | 171 |
N3B—H31B···Cl1iv | 0.90 | 2.61 | 3.233 (3) | 127 |
N3B—H31B···Cl5iv | 0.90 | 2.47 | 3.202 (3) | 138 |
N3B—H32B···Cl1 | 0.90 | 2.81 | 3.273 (3) | 113 |
N3B—H32B···Cl3 | 0.90 | 2.37 | 3.231 (3) | 160 |
N6A—H61A···Cl2v | 0.90 | 2.64 | 3.334 (3) | 134 |
N6A—H61A···Cl3v | 0.90 | 2.62 | 3.330 (3) | 136 |
N6A—H62A···Cl5vi | 0.90 | 2.61 | 3.344 (3) | 140 |
N6A—H62A···Cl6vi | 0.90 | 2.77 | 3.502 (3) | 139 |
C2B—H21B···O1W | 0.97 | 2.47 | 3.306 (5) | 144 |
C2A—H21A···Cl1ii | 0.97 | 2.72 | 3.470 (3) | 135 |
C2B—H22B···Cl3i | 0.97 | 2.83 | 3.607 (3) | 138 |
C4A—H41A···Cl4vi | 0.97 | 2.76 | 3.620 (3) | 148 |
C4A—H42A···Cl6iii | 0.97 | 2.74 | 3.577 (3) | 145 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) x, y+1, z; (vi) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C4H12N2)3[InCl6]2·4H2O |
Mr | 991.57 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 7.9267 (3), 10.0940 (3), 11.8265 (5) |
α, β, γ (°) | 89.780 (1), 89.634 (1), 73.087 (2) |
V (Å3) | 905.31 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.19 |
Crystal size (mm) | 0.15 × 0.06 × 0.05 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2002) |
Tmin, Tmax | 0.773, 0.938 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7414, 4131, 3293 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.069, 1.09 |
No. of reflections | 4131 |
No. of parameters | 163 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.75 |
Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11W···Cl2 | 0.84 (5) | 2.43 (5) | 3.248 (3) | 167 (4) |
O2W—H21W···Cl6i | 0.80 (5) | 2.58 (5) | 3.353 (3) | 163 (5) |
O2W—H22W···Cl2ii | 0.80 (6) | 2.37 (6) | 3.170 (3) | 174 (6) |
N3A—H31A···O1Wi | 0.90 | 1.91 | 2.805 (5) | 178 |
N3A—H32A···O2W | 0.90 | 1.95 | 2.843 (5) | 171 |
N3B—H31B···Cl1iii | 0.90 | 2.61 | 3.233 (3) | 127 |
N3B—H31B···Cl5iii | 0.90 | 2.47 | 3.202 (3) | 138 |
N3B—H32B···Cl1 | 0.90 | 2.81 | 3.273 (3) | 113 |
N3B—H32B···Cl3 | 0.90 | 2.37 | 3.231 (3) | 160 |
N6A—H61A···Cl2iv | 0.90 | 2.64 | 3.334 (3) | 134 |
N6A—H61A···Cl3iv | 0.90 | 2.62 | 3.330 (3) | 136 |
N6A—H62A···Cl5v | 0.90 | 2.61 | 3.344 (3) | 140 |
N6A—H62A···Cl6v | 0.90 | 2.77 | 3.502 (3) | 139 |
C2B—H21B···O1W | 0.97 | 2.47 | 3.306 (5) | 144 |
C2A—H21A···Cl1i | 0.97 | 2.72 | 3.470 (3) | 135 |
C2B—H22B···Cl3vi | 0.97 | 2.83 | 3.607 (3) | 138 |
C4A—H41A···Cl4v | 0.97 | 2.76 | 3.620 (3) | 148 |
C4A—H42A···Cl6ii | 0.97 | 2.74 | 3.577 (3) | 145 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) −x+1, −y+1, −z. |
Acknowledgements
This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.
References
Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria. Google Scholar
Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m2072–m2074. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands. Google Scholar
Murugavel, S., Selvakumar, R., Govindarajan, S., Kannan, P. S. & SubbiahPandi, A. (2009). Acta Cryst. E65, o1004. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Polishchuk, A. V., Karaseva, E. T. & Pushilin, M. A. (2009). Acta Cryst. E65, m1377. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines and imines (Bouacida, 2008; Bouacida et al., 2005; 2007). We report here the synthesis and crystal structure of a new hybrid compound, (I).
The asymmetric unit of the title compound consists of one and half independent piperazinium cations, an hexachloridoindate anion and two molecules of water. The molecular structure of (I) is shown in Fig. 1. In the title compound, both imine N atoms of piperazine are protonated as in other related structures (Murugavel et al., 2009; Polishchuk et al., 2009). These cations adopt typical chair conformation and alternate with hexachloridoindate complex forming layers parallel to the (10–1) plane (Fig 2).
The InIII ion is six-coordinated and forms a quasi-regular octahedral arrangement (Fig 2). The crystal packing in (I) is governed by classical hydrogen bond, viz cation-anion, cation-cation, water-anion and cation-water (Table 1). In the crystal, the components of the structure are linked via intra and intermolecular N—H···O, O—H···Cl, C—H···O and N—H···Cl hydrogen bonds to form a complex three-dimensional network. Additional stabilization within these layers is provided by weak intermolecular C—H···Cl interactions (Fig. 3, Table 1).