metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m400-m401

Tris(piperazine-1,4-diium) bis­­[hexa­chloridoindate(III)] tetra­hydrate

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, bDépartement Sciences de la Matière, Facult des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, Oum El Bouaghi 04000, Algeria, and cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 5 February 2011; accepted 26 February 2011; online 9 March 2011)

The asymmetric unit of the title compound, (C4H12N2)3[InCl6]2·4H2O, consists of one and half independent piperazinium cations, an hexa­chloridoindate anion and two mol­ecules of water. The InIII ion is six-coordinated and forms a quasi-regular octa­hedral arrangement. In the crystal, alternating layers of cations and anions are arranged parallel to (10[\overline{1}]) and are linked with the water mol­ecules via intra- and inter­molecular N—H⋯O, O—H⋯Cl, C—H⋯O and N—H⋯Cl hydrogen bonds, forming a complex three-dimensional network. Additional stabilization within the layers is provided by weak inter­molecular C—H⋯Cl inter­actions.

Related literature

For related structures and protonated imines, see: Bouacida et al. (2005[Bouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m2072-m2074.], 2007[Bouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379-m381.]); Bouacida (2008[Bouacida, S. (2008). PhD thesis, Montouri-Constantine University, Algeria.]); Murugavel et al. (2009[Murugavel, S., Selvakumar, R., Govindarajan, S., Kannan, P. S. & SubbiahPandi, A. (2009). Acta Cryst. E65, o1004.]); Polishchuk et al. (2009[Polishchuk, A. V., Karaseva, E. T. & Pushilin, M. A. (2009). Acta Cryst. E65, m1377.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H12N2)3[InCl6]2·4H2O

  • Mr = 991.57

  • Triclinic, [P \overline 1]

  • a = 7.9267 (3) Å

  • b = 10.0940 (3) Å

  • c = 11.8265 (5) Å

  • α = 89.780 (1)°

  • β = 89.634 (1)°

  • γ = 73.087 (2)°

  • V = 905.31 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.19 mm−1

  • T = 295 K

  • 0.15 × 0.06 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.773, Tmax = 0.938

  • 7414 measured reflections

  • 4131 independent reflections

  • 3293 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.069

  • S = 1.09

  • 4131 reflections

  • 163 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11W⋯Cl2 0.84 (5) 2.43 (5) 3.248 (3) 167 (4)
O2W—H21W⋯Cl6i 0.80 (5) 2.58 (5) 3.353 (3) 163 (5)
O2W—H22W⋯Cl2ii 0.80 (6) 2.37 (6) 3.170 (3) 174 (6)
N3A—H31A⋯O1Wi 0.90 1.91 2.805 (5) 178
N3A—H32A⋯O2W 0.90 1.95 2.843 (5) 171
N3B—H31B⋯Cl1iii 0.90 2.61 3.233 (3) 127
N3B—H31B⋯Cl5iii 0.90 2.47 3.202 (3) 138
N3B—H32B⋯Cl1 0.90 2.81 3.273 (3) 113
N3B—H32B⋯Cl3 0.90 2.37 3.231 (3) 160
N6A—H61A⋯Cl2iv 0.90 2.64 3.334 (3) 134
N6A—H61A⋯Cl3iv 0.90 2.62 3.330 (3) 136
N6A—H62A⋯Cl5v 0.90 2.61 3.344 (3) 140
N6A—H62A⋯Cl6v 0.90 2.77 3.502 (3) 139
C2B—H21B⋯O1W 0.97 2.47 3.306 (5) 144
C2A—H21A⋯Cl1i 0.97 2.72 3.470 (3) 135
C2B—H22B⋯Cl3vi 0.97 2.83 3.607 (3) 138
C4A—H41A⋯Cl4v 0.97 2.76 3.620 (3) 148
C4A—H42A⋯Cl6ii 0.97 2.74 3.577 (3) 145
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg et al., 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, was prepared as part of our ongoing studies of hydrogen-bonding interactions in the crystal structures of protonated amines and imines (Bouacida, 2008; Bouacida et al., 2005; 2007). We report here the synthesis and crystal structure of a new hybrid compound, (I).

The asymmetric unit of the title compound consists of one and half independent piperazinium cations, an hexachloridoindate anion and two molecules of water. The molecular structure of (I) is shown in Fig. 1. In the title compound, both imine N atoms of piperazine are protonated as in other related structures (Murugavel et al., 2009; Polishchuk et al., 2009). These cations adopt typical chair conformation and alternate with hexachloridoindate complex forming layers parallel to the (10–1) plane (Fig 2).

The InIII ion is six-coordinated and forms a quasi-regular octahedral arrangement (Fig 2). The crystal packing in (I) is governed by classical hydrogen bond, viz cation-anion, cation-cation, water-anion and cation-water (Table 1). In the crystal, the components of the structure are linked via intra and intermolecular N—H···O, O—H···Cl, C—H···O and N—H···Cl hydrogen bonds to form a complex three-dimensional network. Additional stabilization within these layers is provided by weak intermolecular C—H···Cl interactions (Fig. 3, Table 1).

Related literature top

For related structures and protonated imines, see: Bouacida et al. (2005, 2007); Bouacida (2008); Murugavel et al. (2009); Polishchuk et al. (2009).

Experimental top

A solution of 1 mmol InCl3 and 3 mmol piperazine in hydrochloric acid was slowly evaporated to dryness over a period of one week yielding colorless crystals suitable for X-ray diffraction.

Refinement top

All H atoms were visible in differnce Fourier maps but were introduced in calculated positions and treated as riding on C and N atoms with C—H = 0.97 and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C/N/). The positions of water H atoms were refined with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i) 1 - x, 1 - y, -z
[Figure 2] Fig. 2. A diagram of the layered crystal packing in (I), viewed down the b axis.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines.
Tris(piperazine-1,4-diium) bis[hexachloridoindate(III)] tetrahydrate top
Crystal data top
(C4H12N2)3[InCl6]2·4H2OZ = 1
Mr = 991.57F(000) = 492
Triclinic, P1Dx = 1.819 Mg m3
a = 7.9267 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0940 (3) ÅCell parameters from 3980 reflections
c = 11.8265 (5) Åθ = 2.9–27.5°
α = 89.780 (1)°µ = 2.19 mm1
β = 89.634 (1)°T = 295 K
γ = 73.087 (2)°Needle, colorless
V = 905.31 (6) Å30.15 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
4131 independent reflections
Radiation source: Enraf Nonius FR5903293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD rotation images, thick slices scansh = 810
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1313
Tmin = 0.773, Tmax = 0.938l = 1515
7414 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + 0.1261P]
where P = (Fo2 + 2Fc2)/3
4131 reflections(Δ/σ)max = 0.002
163 parametersΔρmax = 0.61 e Å3
1 restraintΔρmin = 0.75 e Å3
Crystal data top
(C4H12N2)3[InCl6]2·4H2Oγ = 73.087 (2)°
Mr = 991.57V = 905.31 (6) Å3
Triclinic, P1Z = 1
a = 7.9267 (3) ÅMo Kα radiation
b = 10.0940 (3) ŵ = 2.19 mm1
c = 11.8265 (5) ÅT = 295 K
α = 89.780 (1)°0.15 × 0.06 × 0.05 mm
β = 89.634 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4131 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3293 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.938Rint = 0.024
7414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.61 e Å3
4131 reflectionsΔρmin = 0.75 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.7212 (4)0.9420 (3)0.1784 (3)0.0419 (7)
H11A0.71060.97990.10240.05*
H12A0.64010.88670.1860.05*
C1B0.5638 (4)0.5134 (3)0.1119 (3)0.04
H11B0.610.56570.1660.048*
H12B0.55540.42950.14880.048*
C2A0.9056 (4)0.8527 (3)0.1970 (3)0.0403 (7)
H21A0.9320.77560.14460.048*
H22A0.98730.9060.1820.048*
C2B0.3830 (4)0.5984 (3)0.0742 (3)0.0400 (7)
H21B0.30320.61730.13860.048*
H22B0.38950.68620.04380.048*
C4A0.8812 (4)0.9141 (3)0.3988 (3)0.0415 (7)
H41A0.96210.96970.39160.05*
H42A0.89140.8760.47470.05*
C5A0.6963 (4)1.0037 (3)0.3801 (3)0.0394 (7)
H51A0.61440.95050.39460.047*
H52A0.66961.08090.43240.047*
N3A0.9296 (4)0.7988 (3)0.3150 (2)0.0437 (6)
H31A1.04290.74920.3250.052*
H32A0.8620.74220.32660.052*
N3B0.3148 (3)0.5233 (3)0.0131 (2)0.0367 (6)
H31B0.20880.57650.03650.044*
H32B0.30010.44550.01720.044*
N6A0.6748 (3)1.0568 (3)0.2620 (2)0.0386 (6)
H61A0.56231.10790.25140.046*
H62A0.74441.11210.25060.046*
Cl10.01218 (9)0.49590 (7)0.16760 (6)0.03375 (16)
Cl20.34370 (11)0.31722 (8)0.36015 (7)0.0466 (2)
Cl30.36503 (9)0.21152 (7)0.07659 (6)0.03619 (17)
Cl40.26386 (10)0.00367 (7)0.29365 (7)0.04150 (18)
Cl50.06834 (10)0.17934 (7)0.09051 (6)0.03826 (17)
Cl60.11484 (11)0.28867 (8)0.37179 (7)0.0466 (2)
In10.13014 (2)0.247144 (19)0.228928 (17)0.03017 (7)
O2W0.7076 (5)0.6333 (3)0.3757 (2)0.0694 (9)
H21W0.756 (7)0.554 (5)0.360 (4)0.104*
H22W0.698 (7)0.639 (6)0.443 (5)0.104*
O1W0.2846 (4)0.6490 (3)0.3457 (3)0.073
H11W0.286 (6)0.567 (5)0.357 (4)0.109*
H12W0.361 (5)0.666 (5)0.385 (4)0.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0472 (19)0.0439 (17)0.0357 (17)0.0150 (15)0.0066 (14)0.0006 (14)
C1B0.0360.0530.0350.0190.0050.006
C2A0.0504 (19)0.0300 (15)0.0373 (17)0.0067 (14)0.0061 (14)0.0019 (13)
C2B0.0317 (16)0.0445 (17)0.0440 (18)0.0113 (14)0.0025 (13)0.0001 (14)
C4A0.0402 (18)0.0475 (18)0.0319 (16)0.0050 (14)0.0029 (13)0.0027 (14)
C5A0.0399 (17)0.0427 (17)0.0330 (16)0.0081 (14)0.0011 (13)0.0022 (13)
N3A0.0460 (16)0.0325 (13)0.0448 (16)0.0007 (12)0.0051 (12)0.0063 (11)
N3B0.0246 (12)0.0435 (14)0.0424 (15)0.0104 (11)0.0045 (10)0.0130 (12)
N6A0.0306 (13)0.0370 (13)0.0434 (15)0.0025 (11)0.0039 (11)0.0032 (11)
Cl10.0330 (4)0.0259 (3)0.0408 (4)0.0062 (3)0.0018 (3)0.0043 (3)
Cl20.0442 (4)0.0442 (4)0.0461 (5)0.0041 (4)0.0133 (4)0.0085 (4)
Cl30.0354 (4)0.0350 (4)0.0368 (4)0.0081 (3)0.0054 (3)0.0028 (3)
Cl40.0341 (4)0.0337 (4)0.0540 (5)0.0057 (3)0.0029 (3)0.0137 (3)
Cl50.0391 (4)0.0343 (4)0.0426 (4)0.0125 (3)0.0104 (3)0.0059 (3)
Cl60.0439 (4)0.0448 (4)0.0445 (5)0.0026 (4)0.0131 (3)0.0093 (3)
In10.02748 (12)0.02921 (12)0.03188 (12)0.00524 (8)0.00114 (8)0.00527 (8)
O2W0.107 (2)0.0454 (14)0.0504 (16)0.0145 (16)0.0142 (17)0.0025 (14)
O1W0.0760.0570.0780.0070.0170.002
Geometric parameters (Å, º) top
C1A—N6A1.487 (4)C5A—H51A0.97
C1A—C2A1.494 (4)C5A—H52A0.97
C1A—H11A0.97N3A—H31A0.9
C1A—H12A0.97N3A—H32A0.9
C1B—N3Bi1.487 (4)N3B—C1Bi1.487 (4)
C1B—C2B1.509 (4)N3B—H31B0.9
C1B—H11B0.97N3B—H32B0.9
C1B—H12B0.97N6A—H61A0.9
C2A—N3A1.489 (4)N6A—H62A0.9
C2A—H21A0.97Cl1—In12.5167 (7)
C2A—H22A0.97Cl2—In12.5521 (8)
C2B—N3B1.478 (4)Cl3—In12.5327 (7)
C2B—H21B0.97Cl4—In12.4959 (7)
C2B—H22B0.97Cl5—In12.5083 (7)
C4A—N3A1.492 (4)Cl6—In12.5082 (8)
C4A—C5A1.498 (4)O2W—H21W0.80 (5)
C4A—H41A0.97O2W—H22W0.80 (5)
C4A—H42A0.97O1W—H11W0.84 (5)
C5A—N6A1.487 (4)O1W—H12W0.824 (19)
N6A—C1A—C2A110.3 (2)C2A—N3A—C4A111.2 (2)
N6A—C1A—H11A109.6C2A—N3A—H31A109.4
C2A—C1A—H11A109.6C4A—N3A—H31A109.4
N6A—C1A—H12A109.6C2A—N3A—H32A109.4
C2A—C1A—H12A109.6C4A—N3A—H32A109.4
H11A—C1A—H12A108.1H31A—N3A—H32A108
N3Bi—C1B—C2B110.3 (2)C2B—N3B—C1Bi111.8 (2)
N3Bi—C1B—H11B109.6C2B—N3B—H31B109.3
C2B—C1B—H11B109.6C1Bi—N3B—H31B109.3
N3Bi—C1B—H12B109.6C2B—N3B—H32B109.3
C2B—C1B—H12B109.6C1Bi—N3B—H32B109.3
H11B—C1B—H12B108.1H31B—N3B—H32B107.9
N3A—C2A—C1A111.2 (2)C1A—N6A—C5A111.6 (2)
N3A—C2A—H21A109.4C1A—N6A—H61A109.3
C1A—C2A—H21A109.4C5A—N6A—H61A109.3
N3A—C2A—H22A109.4C1A—N6A—H62A109.3
C1A—C2A—H22A109.4C5A—N6A—H62A109.3
H21A—C2A—H22A108H61A—N6A—H62A108
N3B—C2B—C1B110.3 (2)Cl4—In1—Cl692.66 (3)
N3B—C2B—H21B109.6Cl4—In1—Cl593.02 (3)
C1B—C2B—H21B109.6Cl6—In1—Cl588.24 (3)
N3B—C2B—H22B109.6Cl4—In1—Cl1176.49 (2)
C1B—C2B—H22B109.6Cl6—In1—Cl188.87 (2)
H21B—C2B—H22B108.1Cl5—In1—Cl190.18 (2)
N3A—C4A—C5A110.8 (3)Cl4—In1—Cl389.56 (3)
N3A—C4A—H41A109.5Cl6—In1—Cl3176.85 (3)
C5A—C4A—H41A109.5Cl5—In1—Cl389.41 (3)
N3A—C4A—H42A109.5Cl1—In1—Cl389.04 (2)
C5A—C4A—H42A109.5Cl4—In1—Cl287.68 (3)
H41A—C4A—H42A108.1Cl6—In1—Cl294.98 (3)
N6A—C5A—C4A110.5 (2)Cl5—In1—Cl2176.67 (3)
N6A—C5A—H51A109.6Cl1—In1—Cl289.04 (2)
C4A—C5A—H51A109.6Cl3—In1—Cl287.34 (3)
N6A—C5A—H52A109.6H21W—O2W—H22W108 (5)
C4A—C5A—H52A109.6H11W—O1W—H12W109 (5)
H51A—C5A—H52A108.1
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···Cl20.84 (5)2.43 (5)3.248 (3)167 (4)
O2W—H21W···Cl6ii0.80 (5)2.58 (5)3.353 (3)163 (5)
O2W—H22W···Cl2iii0.80 (6)2.37 (6)3.170 (3)174 (6)
N3A—H31A···O1Wii0.901.912.805 (5)178
N3A—H32A···O2W0.901.952.843 (5)171
N3B—H31B···Cl1iv0.902.613.233 (3)127
N3B—H31B···Cl5iv0.902.473.202 (3)138
N3B—H32B···Cl10.902.813.273 (3)113
N3B—H32B···Cl30.902.373.231 (3)160
N6A—H61A···Cl2v0.902.643.334 (3)134
N6A—H61A···Cl3v0.902.623.330 (3)136
N6A—H62A···Cl5vi0.902.613.344 (3)140
N6A—H62A···Cl6vi0.902.773.502 (3)139
C2B—H21B···O1W0.972.473.306 (5)144
C2A—H21A···Cl1ii0.972.723.470 (3)135
C2B—H22B···Cl3i0.972.833.607 (3)138
C4A—H41A···Cl4vi0.972.763.620 (3)148
C4A—H42A···Cl6iii0.972.743.577 (3)145
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)3[InCl6]2·4H2O
Mr991.57
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.9267 (3), 10.0940 (3), 11.8265 (5)
α, β, γ (°)89.780 (1), 89.634 (1), 73.087 (2)
V3)905.31 (6)
Z1
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.15 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.773, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
7414, 4131, 3293
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.069, 1.09
No. of reflections4131
No. of parameters163
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.75

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg et al., 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···Cl20.84 (5)2.43 (5)3.248 (3)167 (4)
O2W—H21W···Cl6i0.80 (5)2.58 (5)3.353 (3)163 (5)
O2W—H22W···Cl2ii0.80 (6)2.37 (6)3.170 (3)174 (6)
N3A—H31A···O1Wi0.901.912.805 (5)178
N3A—H32A···O2W0.901.952.843 (5)171
N3B—H31B···Cl1iii0.902.613.233 (3)127
N3B—H31B···Cl5iii0.902.473.202 (3)138
N3B—H32B···Cl10.902.813.273 (3)113
N3B—H32B···Cl30.902.373.231 (3)160
N6A—H61A···Cl2iv0.902.643.334 (3)134
N6A—H61A···Cl3iv0.902.623.330 (3)136
N6A—H62A···Cl5v0.902.613.344 (3)140
N6A—H62A···Cl6v0.902.773.502 (3)139
C2B—H21B···O1W0.972.473.306 (5)144
C2A—H21A···Cl1i0.972.723.470 (3)135
C2B—H22B···Cl3vi0.972.833.607 (3)138
C4A—H41A···Cl4v0.972.763.620 (3)148
C4A—H42A···Cl6ii0.972.743.577 (3)145
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y+1, z; (vi) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, Algeria. Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria.  Google Scholar
First citationBouacida, S., Merazig, H., Beghidja, A. & Beghidja, C. (2005). Acta Cryst. E61, m2072–m2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBouacida, S., Merazig, H., Benard-Rocherulle, P. & Rizzoli, C. (2007). Acta Cryst. E63, m379–m381.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft. The Netherlands.  Google Scholar
First citationMurugavel, S., Selvakumar, R., Govindarajan, S., Kannan, P. S. & SubbiahPandi, A. (2009). Acta Cryst. E65, o1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPolishchuk, A. V., Karaseva, E. T. & Pushilin, M. A. (2009). Acta Cryst. E65, m1377.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m400-m401
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds