organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(4-Bromo­phen­yl)-2-(4-fluoro­benz­yl)imidazo[2,1-b][1,3,4]thia­diazole

aDepartment of Chemistry, Bangalore University, Bangalore 560 001, India, and bDepartment of Chemistry, Karnatak University, Dharwad 580 003, India
*Correspondence e-mail: noorsb@rediffmail.com

(Received 10 February 2011; accepted 26 February 2011; online 5 March 2011)

In the title compound, C17H11BrFN3S, the imidazothia­diazole and bromo­phenyl rings are individually almost planar, with maximum deviations of 0.0215 (4) and 0.0044 (4) Å, respectively, and are inclined at an angle of 27.34 (3)° with respect to each other. The dihedral angle between the mean planes of the fluoro­benzyl and imidazothia­diazole rings is 79.54 (3)°. The crystal structure is stabilized by inter­molecular C—H⋯N inter­actions resulting in chains of mol­ecules along the b axis.

Related literature

For general background to imidazothia­diazole derivatives, see: Palagiano et al. (1995[Palagiano, F., Arenare, L., Laraschi, E., de Caprariis, P., Abignente, E., Amico, M. D., Filippelli, W. & Rossi, F. (1995). Eur. J. Med. Chem. 30, 901-910.]). Accumulation of fluorine on carbon leads to increased oxidative and thermal stability, see: Strunecka et al. (2004[Strunecka, J., Patocka, P. & Connett, J. (2004). Appl. Biomed. 2, 141-150.]); Park et al. (2001[Park, B. K., Kitteringham, N. R. & O'Neill, P. M. (2001). Annu. Rev. Pharmacol. Toxicol. 41, 443-470.]). For related structures, see: Yang et al. (2006[Yang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195-198.]).

[Scheme 1]

Experimental

Crystal data
  • C17H11BrFN3S

  • Mr = 388.26

  • Monoclinic, P 21 /n

  • a = 10.505 (4) Å

  • b = 5.617 (2) Å

  • c = 25.877 (11) Å

  • β = 91.566 (7)°

  • V = 1526.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.629, Tmax = 0.659

  • 8589 measured reflections

  • 3308 independent reflections

  • 2419 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.13

  • 3308 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯N3i 0.97 2.57 3.423 (5) 147
C4—H4⋯N3ii 0.93 2.74 3.488 (5) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997)[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.] and CAMERON (Watkin et al., 1996)[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Many imidazothiadiazole derivatives have been reported to possess diverse medicinal properties such as anthelmintic, antimicrobial, anti-inflammatory, antipyretic, analgesic properties and many other activities of therapeutic significance (Palagiano et al., 1995). Moreover, the presence of fluoro substituent in a molecule enhances biological activity. Accumulation of fluorine on carbon leads to increased oxidative and thermal stability (Strunecka et al., 2004; Park et al., 2001). In this article we report the synthesis and crystal struuture of a novel imidazothiadiazole derivative, (I).

In the title compound (Fig. 1), the imidazothiadiazole and bromophenyl rings are individually planar with maximum deviations of 0.0215 (4) and 0.0044 (4) Å, for C2 and C9, respectively; the mean-planes of imidazothiadiazole and bromophenyl rings make a dihedral angle of 27.34 (3)° with respect to each other. Similar deviations from planarity of the corresponding rings have been reported earlier (Yang et al., 2006). The dihedral angle between fluorobenzyl and imidazothiadiazole rings is 79.54 (3)° which is almost orthogonal. The thiadiazole moiety displays differences in the bond lengths S1-C2 [1.758 (4) Å] and S1-C3 [1.731 (4) Å] indicating that the resonance effect caused by the imidazole ring is stronger than that caused by the thiadiazole ring. The molecular structure is stabilized by strong (C1—H1B···N3) and ratherd weak (C4—H4···N3) intermolecular interactions resulting in chains of molecules lying along the b-axis (Table 1 and Fig. 2).

Related literature top

For general background to imidazothiadiazole derivatives, see: Palagiano et al. (1995). Accumulation of fluorine on carbon leads to increased oxidative and thermal stability, see: Strunecka et al. (2004); Park et al. (2001). For related structures, see: Yang et al. (2006).

Experimental top

A mixture of equimolar quantities of 2-amino-(4-fluorobenyl)-1,3,4-thiadiazole (2.69, 0.013 mol) and phenacyl bromide (0.01 mol) was refluxed in dry ethanol for 18 hrs. The excess of solvent was distilled off and the solid hydrobromide salt that separated was collected by filtration, suspended in water and neutralized by aqueous sodium carbonate solution to get free base 6-(4-bromophenyl)-2-(4-fluorobenzyl)imidazo[2,1-b][1,3,4]thiadiazole. It was filtered, washed with water, dried and recrystallized from ethanol.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93 and 0.97 Å, for aryl and methylene type H-atoms, respectively, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A part of the unit cell of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.
6-(4-Bromophenyl)-2-(4-fluorobenzyl)imidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C17H11BrFN3SF(000) = 776
Mr = 388.26Dx = 1.690 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3308 reflections
a = 10.505 (4) Åθ = 2.1–27.0°
b = 5.617 (2) ŵ = 2.84 mm1
c = 25.877 (11) ÅT = 296 K
β = 91.566 (7)°Block, yellow
V = 1526.2 (11) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3308 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1312
Tmin = 0.629, Tmax = 0.659k = 67
8589 measured reflectionsl = 3133
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
3308 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
C17H11BrFN3SV = 1526.2 (11) Å3
Mr = 388.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.505 (4) ŵ = 2.84 mm1
b = 5.617 (2) ÅT = 296 K
c = 25.877 (11) Å0.18 × 0.16 × 0.16 mm
β = 91.566 (7)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
3308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2419 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.659Rint = 0.054
8589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.13Δρmax = 0.86 e Å3
3308 reflectionsΔρmin = 0.73 e Å3
208 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1898 (4)0.6339 (6)0.36994 (13)0.0319 (8)
H1A0.21380.48790.38770.038*
H1B0.11020.60440.35120.038*
C20.2894 (3)0.6920 (6)0.33203 (13)0.0278 (8)
C30.4220 (3)0.8748 (6)0.26794 (13)0.0264 (7)
C40.5421 (3)0.5636 (6)0.25094 (13)0.0277 (7)
H40.57810.41240.25080.033*
C50.6754 (3)0.7708 (6)0.18420 (13)0.0253 (7)
C60.5751 (3)0.7565 (6)0.22174 (13)0.0258 (8)
C70.7627 (3)0.5856 (6)0.17813 (13)0.0291 (8)
H70.75620.45090.19880.035*
C80.8573 (3)0.5950 (7)0.14292 (14)0.0335 (8)
H80.91440.46940.14000.040*
C90.8671 (3)0.7945 (7)0.11170 (14)0.0342 (9)
C100.7837 (3)0.9808 (7)0.11643 (14)0.0358 (9)
H100.79121.11510.09570.043*
C110.6881 (3)0.9679 (6)0.15221 (14)0.0323 (8)
H110.63121.09390.15490.039*
C120.1684 (3)0.8245 (6)0.40960 (14)0.0281 (8)
C130.0714 (3)0.9915 (7)0.40327 (14)0.0336 (9)
H130.01870.98350.37390.040*
C140.0508 (3)1.1678 (6)0.43889 (14)0.0321 (8)
H140.01451.27810.43410.038*
C150.1308 (3)1.1748 (6)0.48200 (14)0.0321 (8)
C160.2275 (3)1.0156 (7)0.49006 (14)0.0367 (9)
H160.28031.02560.51940.044*
C170.2456 (3)0.8396 (6)0.45377 (14)0.0346 (9)
H170.31070.72920.45900.042*
N10.3702 (3)0.5374 (5)0.31627 (11)0.0317 (7)
N20.4447 (3)0.6431 (5)0.28024 (10)0.0248 (6)
N30.4997 (3)0.9534 (5)0.23239 (11)0.0274 (6)
S10.29995 (9)0.97928 (16)0.30528 (4)0.0325 (2)
F10.1127 (2)1.3452 (4)0.51794 (9)0.0436 (6)
Br10.99661 (4)0.80778 (9)0.062488 (15)0.04750 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.033 (2)0.0235 (18)0.0102 (16)0.0011 (15)0.0006 (15)
C20.0358 (19)0.0223 (18)0.0250 (18)0.0053 (15)0.0072 (15)0.0042 (15)
C30.0315 (18)0.0192 (17)0.0279 (18)0.0006 (13)0.0079 (14)0.0015 (14)
C40.0299 (18)0.0196 (17)0.0334 (19)0.0015 (14)0.0052 (14)0.0006 (15)
C50.0254 (17)0.0286 (18)0.0213 (17)0.0046 (14)0.0089 (13)0.0002 (14)
C60.0290 (18)0.0197 (17)0.0280 (19)0.0023 (13)0.0098 (14)0.0011 (14)
C70.0346 (19)0.0265 (18)0.0257 (18)0.0016 (15)0.0071 (15)0.0010 (15)
C80.0309 (19)0.036 (2)0.033 (2)0.0015 (16)0.0093 (15)0.0029 (17)
C90.0318 (19)0.043 (2)0.0275 (19)0.0122 (17)0.0065 (15)0.0046 (17)
C100.041 (2)0.034 (2)0.032 (2)0.0139 (17)0.0044 (16)0.0087 (16)
C110.0339 (19)0.0259 (19)0.037 (2)0.0026 (15)0.0061 (16)0.0064 (16)
C120.0257 (17)0.0280 (19)0.0303 (19)0.0032 (14)0.0011 (14)0.0045 (15)
C130.0281 (18)0.038 (2)0.034 (2)0.0018 (16)0.0095 (15)0.0107 (17)
C140.0289 (18)0.035 (2)0.032 (2)0.0088 (16)0.0037 (14)0.0109 (16)
C150.0358 (19)0.033 (2)0.0276 (19)0.0004 (16)0.0081 (15)0.0028 (16)
C160.037 (2)0.042 (2)0.030 (2)0.0086 (17)0.0110 (16)0.0009 (17)
C170.0317 (19)0.037 (2)0.034 (2)0.0110 (16)0.0053 (15)0.0007 (16)
N10.0389 (17)0.0267 (16)0.0293 (17)0.0049 (13)0.0045 (13)0.0036 (13)
N20.0315 (15)0.0229 (15)0.0198 (14)0.0028 (11)0.0027 (11)0.0037 (11)
N30.0318 (15)0.0231 (15)0.0271 (15)0.0007 (12)0.0040 (12)0.0045 (12)
S10.0370 (5)0.0238 (5)0.0368 (5)0.0019 (4)0.0014 (4)0.0039 (4)
F10.0542 (14)0.0404 (13)0.0364 (13)0.0138 (11)0.0056 (10)0.0061 (10)
Br10.0394 (3)0.0716 (4)0.0315 (2)0.0207 (2)0.00146 (17)0.0057 (2)
Geometric parameters (Å, º) top
C1—C21.490 (5)C8—H80.9300
C1—C121.504 (5)C9—C101.373 (5)
C1—H1A0.9700C9—Br11.890 (4)
C1—H1B0.9700C10—C111.386 (5)
C2—N11.288 (4)C10—H100.9300
C2—S11.761 (3)C11—H110.9300
C3—N31.322 (4)C12—C171.386 (5)
C3—N21.360 (4)C12—C131.391 (5)
C3—S11.729 (4)C13—C141.374 (5)
C4—N21.365 (4)C13—H130.9300
C4—C61.371 (5)C14—C151.379 (5)
C4—H40.9300C14—H140.9300
C5—C111.391 (5)C15—F11.351 (4)
C5—C71.399 (5)C15—C161.366 (5)
C5—C61.455 (5)C16—C171.380 (5)
C6—N31.392 (4)C16—H160.9300
C7—C81.368 (5)C17—H170.9300
C7—H70.9300N1—N21.369 (4)
C8—C91.387 (5)
C2—C1—C12114.5 (3)C9—C10—C11119.7 (3)
C2—C1—H1A108.6C9—C10—H10120.1
C12—C1—H1A108.6C11—C10—H10120.1
C2—C1—H1B108.6C10—C11—C5121.5 (3)
C12—C1—H1B108.6C10—C11—H11119.3
H1A—C1—H1B107.6C5—C11—H11119.3
N1—C2—C1122.8 (3)C17—C12—C13117.8 (3)
N1—C2—S1116.4 (3)C17—C12—C1120.7 (3)
C1—C2—S1120.8 (3)C13—C12—C1121.5 (3)
N3—C3—N2112.0 (3)C14—C13—C12122.4 (3)
N3—C3—S1139.2 (3)C14—C13—H13118.8
N2—C3—S1108.8 (2)C12—C13—H13118.8
N2—C4—C6104.6 (3)C13—C14—C15117.4 (3)
N2—C4—H4127.7C13—C14—H14121.3
C6—C4—H4127.7C15—C14—H14121.3
C11—C5—C7116.8 (3)F1—C15—C16118.5 (3)
C11—C5—C6121.6 (3)F1—C15—C14118.9 (3)
C7—C5—C6121.5 (3)C16—C15—C14122.7 (3)
C4—C6—N3111.4 (3)C15—C16—C17118.7 (3)
C4—C6—C5127.6 (3)C15—C16—H16120.6
N3—C6—C5121.0 (3)C17—C16—H16120.6
C8—C7—C5122.5 (3)C16—C17—C12121.1 (3)
C8—C7—H7118.8C16—C17—H17119.4
C5—C7—H7118.8C12—C17—H17119.4
C7—C8—C9119.1 (4)C2—N1—N2108.5 (3)
C7—C8—H8120.5C3—N2—C4108.2 (3)
C9—C8—H8120.5C3—N2—N1118.3 (3)
C10—C9—C8120.4 (4)C4—N2—N1133.5 (3)
C10—C9—Br1120.2 (3)C3—N3—C6103.8 (3)
C8—C9—Br1119.4 (3)C3—S1—C287.94 (17)
C12—C1—C2—N1139.7 (3)C13—C14—C15—C160.1 (6)
C12—C1—C2—S141.6 (4)F1—C15—C16—C17179.3 (3)
N2—C4—C6—N30.1 (4)C14—C15—C16—C170.4 (6)
N2—C4—C6—C5179.0 (3)C15—C16—C17—C120.7 (6)
C11—C5—C6—C4171.4 (3)C13—C12—C17—C160.5 (6)
C7—C5—C6—C47.8 (5)C1—C12—C17—C16179.2 (3)
C11—C5—C6—N39.6 (5)C1—C2—N1—N2177.4 (3)
C7—C5—C6—N3171.3 (3)S1—C2—N1—N21.3 (4)
C11—C5—C7—C80.5 (5)N3—C3—N2—C40.5 (4)
C6—C5—C7—C8179.7 (3)S1—C3—N2—C4179.3 (2)
C5—C7—C8—C90.5 (5)N3—C3—N2—N1179.4 (3)
C7—C8—C9—C100.6 (5)S1—C3—N2—N11.8 (3)
C7—C8—C9—Br1179.4 (2)C6—C4—N2—C30.3 (3)
C8—C9—C10—C110.8 (5)C6—C4—N2—N1179.0 (3)
Br1—C9—C10—C11179.2 (3)C2—N1—N2—C30.4 (4)
C9—C10—C11—C50.9 (5)C2—N1—N2—C4178.9 (3)
C7—C5—C11—C100.7 (5)N2—C3—N3—C60.4 (4)
C6—C5—C11—C10179.9 (3)S1—C3—N3—C6178.7 (3)
C2—C1—C12—C1783.6 (4)C4—C6—N3—C30.2 (4)
C2—C1—C12—C1396.2 (4)C5—C6—N3—C3179.4 (3)
C17—C12—C13—C140.2 (5)N3—C3—S1—C2179.7 (4)
C1—C12—C13—C14179.6 (3)N2—C3—S1—C21.9 (2)
C12—C13—C14—C150.1 (5)N1—C2—S1—C32.0 (3)
C13—C14—C15—F1179.7 (3)C1—C2—S1—C3176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N3i0.972.573.423 (5)147
C4—H4···N3ii0.932.743.488 (5)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H11BrFN3S
Mr388.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.505 (4), 5.617 (2), 25.877 (11)
β (°) 91.566 (7)
V3)1526.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.629, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
8589, 3308, 2419
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.13
No. of reflections3308
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.73

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···N3i0.972.573.423 (5)147
C4—H4···N3ii0.932.743.488 (5)137
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance and the Department of Science and Technology, (DST), India, for the data-collection facility under the IRHPA–DST program.

References

First citationBruker. (1998). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPalagiano, F., Arenare, L., Laraschi, E., de Caprariis, P., Abignente, E., Amico, M. D., Filippelli, W. & Rossi, F. (1995). Eur. J. Med. Chem. 30, 901–910.  CrossRef CAS Google Scholar
First citationPark, B. K., Kitteringham, N. R. & O'Neill, P. M. (2001). Annu. Rev. Pharmacol. Toxicol. 41, 443–470.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrunecka, J., Patocka, P. & Connett, J. (2004). Appl. Biomed. 2, 141–150.  CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYang, W., Wang, L. & Zhang, D. (2006). J. Chem. Crystallogr. 36, 195–198.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds