metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m460-m461

Chlorido{5,10,15,20-tetra­kis­[2-(2,2-di­methyl­propanamido)­phen­yl]porphyrinato-κ4N,N′,N′′,N′′′}iron(III) chloro­benzene hemisolvate monohydrate

aDépartement de Chimie, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia, and bLaboratoire de Chimie de Coordination, CNRS UPR 8241, 205 route de Norbonne, 31077 Toulouse, Cedex 04, France
*Correspondence e-mail: hnasri1@gmail.com

(Received 15 February 2011; accepted 10 March 2011; online 15 March 2011)

In the title complex, [Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O, the equatorial iron–pyrrole N atom distance (Fe—Np) is 2.065 (2) Å and the axial Fe—Cl distance is 2.207 (2) Å. The iron cation is displaced by 0.420 (4) Å from the 24-atom mean plane of the porphyrin core. The asymmetric unit contains a quarter of an [FeIII(C64H64N8O4)Cl] complex mol­ecule, with a fourfold rotation axis passing through the central metal cation and the Cl ligand, along with disordered mol­ecules of chloro­benzene and water of solvation; the solvent mol­ecules were excluded from the refinement.

Related literature

For a review of porphyrin complexes, see: Scheidt (2000[Scheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49-112. San Diego: Academic Press.]). For synthetic procedures, see: Gismelseed et al. (1990[Gismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A., Winkler, H., Nasri, H., Doppelt, D. M., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741-2749.]). For structural features of porphyrins, see: Schappacher et al. (1983[Schappacher, M., Ricard, L., Weiss, R., Montiel-Montoya, R., Gonser, U., Bill, E. & Trautwein, A. (1983). Inorg. Chim. Acta, 78, L9-L12.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O

  • Mr = 1206.84

  • Tetragonal, P 4/n c c

  • a = 18.069 (3) Å

  • c = 18.919 (4) Å

  • V = 6177 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 180 K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.842, Tmax = 0.937

  • 43373 measured reflections

  • 3021 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.180

  • S = 1.07

  • 3021 reflections

  • 178 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.34 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002) there are more than sixty structures of iron(III) chloride with many types of porphyrins. This large number of structures reflects the importance of this type of complex which is used as starting material in the synthesis of iron(III) and iron(II) porphyrin species.

A formula unit of the title complex contains a amolecule of [FeIII(C64H64N8O4)Cl] (Fig. 1), a half molecule of chlorobenzene and a molecule of water of solvation; the solvent molecules were disordered and were therefore, excluded from the refinement. The most important feature of the structure is the fact that the chloride ion is coordinated to the Fe(III) from the open side face of the picket fence porphyrin for which anionic axial ligands are known to be bound to the metal ion from the protected side of this porphyrin (Schappacher et al., 1983). The square-pyramidal coordination of the central atom, with an equatorial iron-pyrrole nitrogen atom distance (Fe–Np) of 2.065 (2) Å and 2.207 (2) Å for the axial Fe–Cl distance, is typical for penta-coodined iron(III) high-spin (S = 5/2) chloride porphyrin species (Scheidt, 2000). The iron atom is displaced by 0.420 (4) Å from the 24 atom mean plane.

Related literature top

For a review of porphyrin complexes, see: Scheidt (2000). For synthetic procedures, see: Gismelseed et al. (1990). For structural features of porphyrins, see: Schappacher et al. (1983). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The reaction of the [FeIII(TpivPP)(SO3CF3)(H2O)] complex (Gismelseed et al., 1990) (100 mg, 0.081 mmol) with an excess of potassium chlorite, KClO3 (198 mg, 1.62 mmol) and 18-crown-6 (214 mg, 0.81 mmol) in chlorobenzene (5 ml) yields a reddish-brown solution. Crystals of the title complex were obtained as impurities by diffusion of hexanes through the chlorobenzene solution.

Refinement top

Hydrogen atoms were placed in calculated positions with N–H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and methyl type H-atoms, respectively, and refined in riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(methyl-C) and Uiso(H) = 1.2Ueq(aryl-C/N).

The program PLATON (Spek, 2009) indicated solvent accessible void space of 757 Å3, corresponding to 161 electrons in a unit cell, equivalent to 2 molecules of chlorobenzene and 4 water molecules. Since the solvent molecules were grossly disordered and could not be modeled, their contribution was excluded using the subroutine SQUEEZE.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of ion complex [FeIII(C64H64N8O4)Cl] showing the atom numbering schem. Displacement ellipsoids are drawn at 50%. The H atoms have been omitted for clarity. Symmetry codes: (i) -y + 1/2, x, z; (ii) y, -x + 1/2, z; (iii) -x + 1/2, -y + 1/2, z.
[Figure 2] Fig. 2. A unit cell packing of the title complex viewed down the c-axis, solvents have been excluded.
Chlorido{5,10,15,20-tetrakis[2-(2,2-dimethylpropanamido)phenyl]porphyrinato- κ4N,N',N'',N'''}iron(III) chlorobenzene hemisolvate monohydrate top
Crystal data top
[Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2ODx = 1.298 Mg m3
Mr = 1206.84Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/nccCell parameters from 43373 reflections
Hall symbol: -P 4a 2acθ = 2.7–26.0°
a = 18.069 (3) ŵ = 0.34 mm1
c = 18.919 (4) ÅT = 180 K
V = 6177 (2) Å3Prism, dark purple
Z = 40.22 × 0.18 × 0.16 mm
F(000) = 2536
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3021 independent reflections
Radiation source: fine-focus sealed tube2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2222
Tmin = 0.842, Tmax = 0.937k = 2022
43373 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.115P)2 + 0.6251P]
where P = (Fo2 + 2Fc2)/3
3021 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 1.34 e Å3
Crystal data top
[Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2OZ = 4
Mr = 1206.84Mo Kα radiation
Tetragonal, P4/nccµ = 0.34 mm1
a = 18.069 (3) ÅT = 180 K
c = 18.919 (4) Å0.22 × 0.18 × 0.16 mm
V = 6177 (2) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2089 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 0.937Rint = 0.064
43373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.07Δρmax = 0.81 e Å3
3021 reflectionsΔρmin = 1.34 e Å3
178 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.25000.25000.12373 (4)0.0222 (3)
Cl0.25000.25000.24040 (7)0.0335 (4)
O10.56932 (17)0.3807 (2)0.12040 (12)0.0677 (10)
N10.35198 (11)0.20458 (11)0.10034 (11)0.0163 (5)
N20.49310 (14)0.35229 (16)0.03138 (13)0.0371 (7)
HN20.44880.33730.02310.045*
C10.36920 (14)0.13070 (14)0.09954 (14)0.0187 (6)
C20.44818 (15)0.12135 (16)0.09858 (15)0.0250 (6)
H20.47350.07660.09810.030*
C30.47859 (15)0.18914 (15)0.09854 (15)0.0249 (6)
H30.52890.20010.09800.030*
C40.41823 (14)0.24197 (14)0.09945 (14)0.0190 (6)
C50.42756 (14)0.31872 (14)0.09900 (13)0.0183 (6)
C60.50541 (14)0.34772 (14)0.09465 (14)0.0200 (6)
C70.54726 (15)0.35788 (16)0.15514 (15)0.0262 (7)
H70.52640.34820.19910.031*
C80.61929 (17)0.38216 (18)0.15117 (16)0.0333 (7)
H80.64660.38900.19230.040*
C90.65061 (18)0.3961 (2)0.08699 (18)0.0433 (9)
H90.69950.41200.08450.052*
C100.61015 (18)0.3869 (2)0.02555 (17)0.0412 (9)
H100.63160.39690.01810.049*
C110.53757 (16)0.36263 (17)0.02937 (15)0.0286 (7)
C120.50947 (19)0.36235 (17)0.10004 (16)0.0327 (7)
C130.44577 (19)0.34785 (17)0.15323 (16)0.0342 (8)
C140.4681 (2)0.2800 (2)0.19598 (18)0.0431 (8)
H14A0.51520.28860.21790.065*
H14B0.43160.27070.23170.065*
H14C0.47150.23790.16520.065*
C150.3714 (2)0.3359 (3)0.11812 (18)0.0494 (10)
H15A0.35820.37910.09150.074*
H15B0.37420.29400.08700.074*
H15C0.33450.32680.15360.074*
C160.4413 (3)0.4155 (2)0.2017 (2)0.0747 (15)
H16A0.42710.45810.17450.112*
H16B0.40520.40680.23800.112*
H16C0.48870.42420.22290.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.0228 (3)0.0228 (3)0.0211 (4)0.0000.0000.000
Cl0.0409 (6)0.0409 (6)0.0188 (7)0.0000.0000.000
O10.0669 (19)0.111 (3)0.0255 (13)0.0554 (19)0.0096 (12)0.0067 (13)
N10.0157 (11)0.0160 (11)0.0171 (10)0.0016 (9)0.0025 (9)0.0008 (9)
N20.0264 (14)0.0630 (19)0.0220 (13)0.0182 (13)0.0021 (11)0.0079 (12)
C10.0199 (14)0.0203 (14)0.0158 (12)0.0021 (10)0.0008 (10)0.0001 (10)
C20.0189 (14)0.0226 (15)0.0336 (15)0.0052 (11)0.0024 (12)0.0002 (12)
C30.0167 (14)0.0257 (15)0.0323 (15)0.0024 (11)0.0038 (12)0.0042 (12)
C40.0172 (13)0.0239 (15)0.0158 (12)0.0012 (10)0.0018 (10)0.0014 (10)
C50.0184 (13)0.0210 (14)0.0155 (12)0.0026 (10)0.0028 (10)0.0009 (11)
C60.0166 (14)0.0202 (14)0.0232 (14)0.0010 (10)0.0007 (11)0.0002 (11)
C70.0244 (16)0.0324 (17)0.0219 (14)0.0009 (12)0.0017 (12)0.0027 (12)
C80.0258 (16)0.047 (2)0.0271 (15)0.0057 (14)0.0049 (13)0.0102 (14)
C90.0231 (17)0.063 (2)0.0435 (19)0.0194 (16)0.0014 (14)0.0035 (18)
C100.0304 (18)0.067 (2)0.0265 (16)0.0233 (16)0.0047 (13)0.0042 (15)
C110.0267 (16)0.0364 (17)0.0226 (15)0.0084 (12)0.0010 (12)0.0025 (12)
C120.047 (2)0.0288 (16)0.0224 (15)0.0122 (14)0.0016 (14)0.0017 (13)
C130.052 (2)0.0302 (17)0.0209 (15)0.0009 (14)0.0103 (14)0.0017 (12)
C140.047 (2)0.048 (2)0.0350 (18)0.0001 (16)0.0096 (16)0.0104 (16)
C150.039 (2)0.071 (3)0.0376 (19)0.0059 (18)0.0167 (16)0.0144 (18)
C160.132 (4)0.046 (2)0.046 (2)0.013 (3)0.022 (3)0.015 (2)
Geometric parameters (Å, º) top
Fe—N1i2.065 (2)C7—C81.376 (4)
Fe—N1ii2.065 (2)C7—H70.9300
Fe—N12.065 (2)C8—C91.363 (5)
Fe—N1iii2.065 (2)C8—H80.9300
Fe—Cl2.2073 (16)C9—C101.383 (4)
O1—C121.195 (4)C9—H90.9300
N1—C11.371 (3)C10—C111.385 (4)
N1—C41.375 (3)C10—H100.9300
N2—C121.345 (4)C12—C131.551 (4)
N2—C111.415 (4)C13—C151.515 (5)
N2—HN20.8600C13—C141.523 (5)
C1—C5ii1.393 (4)C13—C161.530 (5)
C1—C21.437 (4)C14—H14A0.9600
C2—C31.343 (4)C14—H14B0.9600
C2—H20.9300C14—H14C0.9600
C3—C41.449 (4)C15—H15A0.9600
C3—H30.9300C15—H15B0.9600
C4—C51.397 (4)C15—H15C0.9600
C5—C1i1.393 (4)C16—H16A0.9600
C5—C61.503 (4)C16—H16B0.9600
C6—C71.384 (4)C16—H16C0.9600
C6—C111.391 (4)
N1i—Fe—N1ii155.25 (12)C9—C8—H8120.0
N1i—Fe—N187.37 (3)C7—C8—H8120.0
N1ii—Fe—N187.37 (3)C8—C9—C10120.4 (3)
N1i—Fe—N1iii87.37 (3)C8—C9—H9119.8
N1ii—Fe—N1iii87.37 (3)C10—C9—H9119.8
N1—Fe—N1iii155.25 (12)C9—C10—C11119.7 (3)
N1i—Fe—Cl102.38 (6)C9—C10—H10120.2
N1ii—Fe—Cl102.38 (6)C11—C10—H10120.2
N1—Fe—Cl102.38 (6)C10—C11—C6120.2 (3)
N1iii—Fe—Cl102.38 (6)C10—C11—N2122.5 (3)
C1—N1—C4106.3 (2)C6—C11—N2117.3 (2)
C1—N1—Fe126.29 (17)O1—C12—N2123.2 (3)
C4—N1—Fe125.75 (17)O1—C12—C13120.6 (3)
C12—N2—C11130.0 (3)N2—C12—C13116.2 (3)
C12—N2—HN2115.0C15—C13—C14110.6 (3)
C11—N2—HN2115.0C15—C13—C16109.3 (3)
N1—C1—C5ii126.0 (2)C14—C13—C16109.8 (3)
N1—C1—C2109.9 (2)C15—C13—C12113.5 (3)
C5ii—C1—C2124.1 (2)C14—C13—C12106.5 (3)
C3—C2—C1107.4 (2)C16—C13—C12107.0 (3)
C3—C2—H2126.3C13—C14—H14A109.5
C1—C2—H2126.3C13—C14—H14B109.5
C2—C3—C4107.0 (2)H14A—C14—H14B109.5
C2—C3—H3126.5C13—C14—H14C109.5
C4—C3—H3126.5H14A—C14—H14C109.5
N1—C4—C5126.4 (2)H14B—C14—H14C109.5
N1—C4—C3109.4 (2)C13—C15—H15A109.5
C5—C4—C3124.2 (2)C13—C15—H15B109.5
C1i—C5—C4124.0 (2)H15A—C15—H15B109.5
C1i—C5—C6118.6 (2)C13—C15—H15C109.5
C4—C5—C6117.3 (2)H15A—C15—H15C109.5
C7—C6—C11118.7 (2)H15B—C15—H15C109.5
C7—C6—C5120.8 (2)C13—C16—H16A109.5
C11—C6—C5120.5 (2)C13—C16—H16B109.5
C8—C7—C6120.9 (3)H16A—C16—H16B109.5
C8—C7—H7119.5C13—C16—H16C109.5
C6—C7—H7119.5H16A—C16—H16C109.5
C9—C8—C7120.0 (3)H16B—C16—H16C109.5
Symmetry codes: (i) y+1/2, x, z; (ii) y, x+1/2, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Fe(C64H64N8O4)Cl]·0.5C6H5Cl·H2O
Mr1206.84
Crystal system, space groupTetragonal, P4/ncc
Temperature (K)180
a, c (Å)18.069 (3), 18.919 (4)
V3)6177 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.842, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
43373, 3021, 2089
Rint0.064
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.180, 1.07
No. of reflections3021
No. of parameters178
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 1.34

Computer programs: APEX2 (Bruker, 2007), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), PLATON (Spek, 2009).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGismelseed, A., Bominaar, E. L., Bill, E., Trautwein, A., Winkler, H., Nasri, H., Doppelt, D. M., Fischer, J. & Weiss, R. (1990). Inorg. Chem. 29, 2741–2749.  CrossRef CAS Google Scholar
First citationSchappacher, M., Ricard, L., Weiss, R., Montiel-Montoya, R., Gonser, U., Bill, E. & Trautwein, A. (1983). Inorg. Chim. Acta, 78, L9–L12.  CrossRef CAS Google Scholar
First citationScheidt, W. R. (2000). The Porphyrin Handbook, Vol. 3, edited by K. M. Kadish, R. M. Smith & R. Guilard, pp. 49–112. San Diego: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages m460-m461
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds