metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­tris­­(μ3-hexane-1,6-di­carboxyl­ato)diterbium(III)] 0.25-hydrate]

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: lifeifei@hpu.edu.cn

(Received 16 February 2011; accepted 1 March 2011; online 9 March 2011)

In the title terbium coordination polymer, {[Tb2(C6H8O4)3(H2O)4]·0.25H2O}n, the TbIII atom is nine-coordinated, forming a TbO9 polyhedra. Furthermore, two symmetric TbO9 polyhedra share their edges, forming Tb2O16 dimers, which are linked by adipate bridges into a layered structure. Inter­molecular O—H⋯O hydrogen bonds link these layers into a three-dimensional network. One of the C atoms of the adipate ligand is disordered over two positions with site-occupancy factors of 0.622 (9) and 0.378 (9). The structure also contains a disordered mol­ecule of water of hydration, lying close to a special position, with partial occupancy.

Related literature

For background to coordination polymers, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Wood & Thompson (2007[Wood, T. E. & Thompson, A. (2007). Chem. Rev. 107, 1831-1861.]). For the structures of rare earth--adipate compounds, see: Dimos et al. (2002[Dimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. (2002). Chem. Mater. 14, 2616-2622.]); Duan et al. (2004[Duan, L. M., Xu, J. Q., Xie, F. T., Liu, Y. B. & Ding, H. (2004). Inorg. Chem. Commun. 7, 216-219.]); Kim et al. (2004[Kim, Y., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245-250.]); Kiritsis et al. (1998[Kiritsis, V., Michaelides, A., Skoulika, S., Golhen, S. & Ouahab, L. (1998). Inorg. Chem. 37, 3407-3410.]). For isotypic La(III) and Dy(III) structures, see: Kim et al. (2004[Kim, Y., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245-250.]); Lill et al. (2005[Lill, D. T., Brennessel, W. W., Borkowski, L. A., Gunning, N. S. & Cahill, C. L. (2005). Acta Cryst. E61, m1343-m1345.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C6H8O4)3(H2O)4]·0.25H2O

  • Mr = 826.78

  • Monoclinic, P 21 /c

  • a = 11.603 (6) Å

  • b = 13.886 (7) Å

  • c = 8.969 (4) Å

  • β = 111.017 (7)°

  • V = 1348.9 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.27 mm−1

  • T = 298 K

  • 0.25 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996)[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.] Tmin = 0.352, Tmax = 0.779

  • 7908 measured reflections

  • 2335 independent reflections

  • 2008 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.06

  • 2335 reflections

  • 176 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −1.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H3⋯O4i 0.97 1.83 2.764 (4) 160
O8—H4⋯O5ii 0.92 1.78 2.691 (4) 170
O7—H1⋯O2i 0.91 1.75 2.657 (4) 170
O7—H2⋯O3iii 0.98 1.81 2.682 (4) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, a great interest has been focused on the crystal engineering of novel coordination polymers, not only due to their intriguing topological structures but also potential application as functional materials in areas such as ion exchange, catalysis, optics, gas separation/storage and sensing (Moulton & Zaworotko, 2001; Wood & Thompson, 2007). The RE-adipate (RE = rare earth metal) system has been examined extensively owing to the rich structural diversity of this family of materials. A great many of compounds have been reported which exhibit structure types ranging from 1-D chain to 2-D layer and 3-D framework topologies (Dimos et al., 2002; Duan et al., 2004; Kim et al., 2004; Kiritsis et al., 1998). Arguably much of this diversity is related to the flexibility of the aliphatic dicarboxylic backbone. In this paper, we report the hydrothermal synthesis and single-crystal X-ray diffraction analysis of a novel Tb-adipate compound, which is isotypic with La(III) (Kim et al., 2004) and Dy(III) (Lill et al., 2005) analogous complexes.

The crystal structure of the title complex consists of nine oxygen atoms coordinated to Tb(III) (Fig. 1) of which seven oxygen atoms are from four adipate ligands and two from two independent coordinated water molecules. Two symmetric TbO9 polyhedra share their edges to form a Tb2O16 dimeric unit about an inversion centet. These dimers are further linked through adipate anions to form a two-dimensional layer perpendicular to (010) (Fig. 2).

C9-atom of the adipate ligand was disordered over two sites with site occupancy factors 0.622 (9) and 0.378 (9). The structure also contains a disordered molecule of water of hydration lying close to a special position with partial occupancy.

Related literature top

For background to coordination polymers, see: Moulton & Zaworotko (2001); Wood & Thompson (2007). For the structures of rare earth--adipate compounds, see: Dimos et al. (2002); Duan et al. (2004); Kim et al. (2004); Kiritsis et al. (1998). For the structures of isotypic La(III) and Dy(III) compounds, see: Kim et al. (2004); Lill et al. (2005).

Experimental top

Colorless prismatic single crystals of the title complex were obtained using hydrothermal methods in a sealed 20 ml Teflon-lined Parr bomb. TbCl3 . 6H2O (0.2 g), adipic acid (0.1 g) and H2O (10 ml) were placed in the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 433 K and finally cooled to room temperature. Upon opening the bomb, a few single crystals was obtained for X-ray single-crystal diffraction analysis.

Refinement top

The H-atoms bonded to C-atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and Uiso = 1.2Ueq. The H-atom of water molecules were located from the difference maps and fixed at those locations with Uiso = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of part of the title structure. Ellipsoids are drwan at the 50% probability level. Symmetry code: (i) 2 - x, -y, 2 - z (ii) 1 - x, -y, 1 - z; (iii) -1 + x, y, z.]
[Figure 2] Fig. 2. A view of the unit cell along the b-aixs of the title compound. showing TbO9 polyhedra and the adipate ligands (represented by lines).
Poly[[tetraaquatris(µ3-hexane-1,6-dicarboxylato)diterbium(III)] 0.25-hydrate] top
Crystal data top
[Tb2(C6H8O4)3(H2O)4]·0.25H2OF(000) = 801
Mr = 826.78Dx = 2.036 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5053 reflections
a = 11.603 (6) Åθ = 2.4–28.4°
b = 13.886 (7) ŵ = 5.27 mm1
c = 8.969 (4) ÅT = 298 K
β = 111.017 (7)°Prism, colourless
V = 1348.9 (11) Å30.25 × 0.05 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2335 independent reflections
Radiation source: fine-focus sealed tube2008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.352, Tmax = 0.779k = 1616
7908 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0379P)2]
where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.89 e Å3
6 restraintsΔρmin = 1.85 e Å3
Crystal data top
[Tb2(C6H8O4)3(H2O)4]·0.25H2OV = 1348.9 (11) Å3
Mr = 826.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.603 (6) ŵ = 5.27 mm1
b = 13.886 (7) ÅT = 298 K
c = 8.969 (4) Å0.25 × 0.05 × 0.05 mm
β = 111.017 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2335 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2008 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.779Rint = 0.037
7908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0256 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.89 e Å3
2335 reflectionsΔρmin = 1.85 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.629324 (17)0.108556 (13)0.55754 (2)0.01822 (10)
O10.4353 (3)0.0374 (2)0.5851 (3)0.0239 (7)
O20.4828 (3)0.1849 (2)0.6661 (4)0.0350 (8)
O30.7081 (3)0.0211 (2)0.7500 (4)0.0320 (8)
O40.7368 (4)0.1232 (2)0.8498 (4)0.0352 (8)
O50.7300 (3)0.1371 (2)0.3584 (4)0.0277 (7)
O60.8450 (3)0.0963 (3)0.5998 (5)0.0453 (10)
O70.4652 (3)0.1591 (2)0.3279 (4)0.0354 (8)
H10.47730.21530.28300.053*
H20.40460.11370.25940.053*
O80.6789 (3)0.2728 (2)0.5763 (4)0.0375 (8)
H30.68840.32090.50310.056*
H40.70330.30770.66960.056*
C10.0666 (4)0.1439 (5)0.5747 (7)0.0464 (14)
H1A0.06430.08080.61990.056*
H1B0.06900.19130.65520.056*
C20.1850 (4)0.1522 (4)0.5390 (7)0.0398 (13)
H2A0.17900.11170.44840.048*
H2B0.19570.21830.51130.048*
C30.2943 (5)0.1221 (4)0.6808 (7)0.0349 (12)
H3A0.27740.06000.71810.042*
H3B0.30670.16830.76630.042*
C40.4110 (4)0.1151 (3)0.6439 (6)0.0242 (10)
C50.9490 (4)0.1579 (4)0.4326 (6)0.0351 (12)
H5A0.94170.22520.40130.042*
H5B0.95340.12030.34370.042*
C60.8359 (5)0.1287 (3)0.4661 (6)0.0286 (11)
C70.7559 (4)0.0338 (3)0.8668 (5)0.0242 (10)
C80.8394 (4)0.0062 (4)1.0230 (6)0.0373 (12)
H8A0.83300.07591.02010.045*0.622 (9)
H8B0.81270.01681.10740.045*0.622 (9)
H8A'0.80000.06081.05220.045*0.378 (9)
H8B'0.85480.04241.10490.045*0.378 (9)
C90.9742 (8)0.0224 (7)1.0609 (10)0.0380 (18)0.622 (9)
H9A1.02340.00091.16770.046*0.622 (9)
H9B0.98040.09201.05820.046*0.622 (9)
C9'0.9608 (13)0.0416 (11)1.0113 (17)0.0380 (18)0.378 (9)
H9'11.00720.07651.10780.046*0.378 (9)
H9'20.94290.08570.92190.046*0.378 (9)
H1O90.49200.07300.03800.046*0.125
H2O90.54000.04760.12030.046*0.125
O90.508 (4)0.024 (2)0.026 (5)0.063 (10)0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01601 (14)0.02031 (14)0.01799 (15)0.00133 (8)0.00566 (10)0.00041 (8)
O10.0267 (16)0.0223 (15)0.0254 (18)0.0007 (14)0.0126 (14)0.0019 (13)
O20.0334 (18)0.0273 (17)0.051 (2)0.0085 (15)0.0226 (18)0.0127 (16)
O30.0277 (17)0.0314 (17)0.029 (2)0.0065 (15)0.0006 (16)0.0036 (15)
O40.049 (2)0.0325 (18)0.0229 (19)0.0097 (17)0.0118 (18)0.0019 (14)
O50.0216 (17)0.0349 (16)0.0253 (19)0.0041 (14)0.0069 (15)0.0031 (14)
O60.0211 (18)0.078 (3)0.040 (2)0.0062 (17)0.0150 (17)0.0262 (19)
O70.0312 (18)0.0276 (17)0.035 (2)0.0052 (15)0.0035 (16)0.0118 (15)
O80.063 (2)0.0265 (16)0.028 (2)0.0183 (17)0.0217 (18)0.0066 (14)
C10.021 (3)0.074 (4)0.046 (4)0.005 (3)0.015 (3)0.002 (3)
C20.020 (2)0.054 (3)0.051 (4)0.002 (2)0.019 (3)0.001 (3)
C30.030 (3)0.042 (3)0.039 (3)0.003 (2)0.020 (3)0.006 (2)
C40.023 (2)0.031 (3)0.018 (3)0.003 (2)0.005 (2)0.0017 (18)
C50.023 (2)0.048 (3)0.036 (3)0.003 (2)0.012 (2)0.009 (2)
C60.025 (3)0.035 (3)0.029 (3)0.001 (2)0.014 (2)0.000 (2)
C70.015 (2)0.035 (3)0.022 (3)0.000 (2)0.006 (2)0.003 (2)
C80.034 (3)0.050 (3)0.027 (3)0.003 (2)0.009 (2)0.010 (2)
C90.035 (4)0.044 (5)0.026 (5)0.015 (4)0.001 (3)0.005 (4)
C9'0.035 (4)0.044 (5)0.026 (5)0.015 (4)0.001 (3)0.005 (4)
O90.062 (12)0.065 (14)0.057 (13)0.001 (10)0.014 (9)0.000 (9)
Geometric parameters (Å, º) top
Tb1—O82.344 (3)C2—C31.498 (7)
Tb1—O72.355 (3)C2—H2A0.9700
Tb1—O1i2.371 (3)C2—H2B0.9700
Tb1—O62.398 (4)C3—C41.508 (7)
Tb1—O32.435 (3)C3—H3A0.9700
Tb1—O42.474 (4)C3—H3B0.9700
Tb1—O22.479 (3)C5—C61.503 (6)
Tb1—O52.492 (3)C5—C1iii1.509 (7)
Tb1—O12.550 (3)C5—H5A0.9700
Tb1—C62.812 (5)C5—H5B0.9700
Tb1—C72.830 (4)C7—C81.495 (6)
Tb1—C42.904 (5)C8—C9'1.530 (15)
O1—C41.275 (5)C8—C91.530 (10)
O1—Tb1i2.371 (3)C8—H8A0.9700
O2—C41.247 (5)C8—H8B0.9700
O3—C71.252 (5)C8—H8A'0.9684
O4—C71.261 (5)C8—H8B'0.9664
O5—C61.267 (6)C9—C9iv1.551 (17)
O6—C61.249 (6)C9—H9A0.9700
O7—H10.9127C9—H9B0.9700
O7—H20.9795C9'—C9'iv1.53 (3)
O8—H30.9699C9'—H9'10.9700
O8—H40.9193C9'—H9'20.9700
C1—C5ii1.509 (7)O9—O9v0.80 (6)
C1—C21.523 (7)O9—H1O90.8634
C1—H1A0.9700O9—H2O90.8563
C1—H1B0.9700
O8—Tb1—O782.75 (12)H3—O8—H4100.4
O8—Tb1—O1i153.26 (10)C5ii—C1—C2115.0 (5)
O7—Tb1—O1i77.45 (11)C5ii—C1—H1A108.5
O8—Tb1—O680.95 (13)C2—C1—H1A108.5
O7—Tb1—O6129.04 (12)C5ii—C1—H1B108.5
O1i—Tb1—O697.73 (12)C2—C1—H1B108.5
O8—Tb1—O3130.46 (11)H1A—C1—H1B107.5
O7—Tb1—O3145.14 (10)C3—C2—C1110.7 (5)
O1i—Tb1—O373.49 (11)C3—C2—H2A109.5
O6—Tb1—O374.36 (11)C1—C2—H2A109.5
O8—Tb1—O480.00 (11)C3—C2—H2B109.5
O7—Tb1—O4147.57 (12)C1—C2—H2B109.5
O1i—Tb1—O4125.71 (10)H2A—C2—H2B108.1
O6—Tb1—O474.80 (13)C2—C3—C4112.7 (4)
O3—Tb1—O452.50 (11)C2—C3—H3A109.1
O8—Tb1—O274.98 (11)C4—C3—H3A109.1
O7—Tb1—O276.28 (12)C2—C3—H3B109.1
O1i—Tb1—O2116.67 (10)C4—C3—H3B109.1
O6—Tb1—O2142.34 (13)H3A—C3—H3B107.8
O3—Tb1—O2100.00 (12)O2—C4—O1119.3 (4)
O4—Tb1—O272.83 (12)O2—C4—C3121.1 (4)
O8—Tb1—O574.37 (10)O1—C4—C3119.6 (4)
O7—Tb1—O576.46 (11)O2—C4—Tb158.0 (2)
O1i—Tb1—O583.58 (10)O1—C4—Tb161.3 (2)
O6—Tb1—O552.68 (11)C3—C4—Tb1176.8 (3)
O3—Tb1—O5118.21 (11)C6—C5—C1iii112.7 (4)
O4—Tb1—O5123.96 (12)C6—C5—H5A109.1
O2—Tb1—O5141.00 (11)C1iii—C5—H5A109.1
O8—Tb1—O1124.91 (11)C6—C5—H5B109.1
O7—Tb1—O174.63 (11)C1iii—C5—H5B109.1
O1i—Tb1—O166.54 (11)H5A—C5—H5B107.8
O6—Tb1—O1149.81 (10)O6—C6—O5119.3 (4)
O3—Tb1—O176.40 (10)O6—C6—C5120.7 (5)
O4—Tb1—O193.22 (11)O5—C6—C5120.0 (4)
O2—Tb1—O151.26 (10)O6—C6—Tb158.1 (2)
O5—Tb1—O1142.02 (10)O5—C6—Tb162.4 (2)
O8—Tb1—C673.22 (13)C5—C6—Tb1169.0 (4)
O7—Tb1—C6102.82 (13)O3—C7—O4119.5 (4)
O1i—Tb1—C693.75 (12)O3—C7—C8120.1 (4)
O6—Tb1—C626.24 (13)O4—C7—C8120.4 (4)
O3—Tb1—C697.93 (13)O3—C7—Tb159.0 (2)
O4—Tb1—C698.19 (14)O4—C7—Tb160.9 (2)
O2—Tb1—C6148.01 (12)C8—C7—Tb1171.4 (3)
O5—Tb1—C626.77 (12)C7—C8—C9'111.0 (6)
O1—Tb1—C6160.27 (12)C7—C8—C9112.3 (5)
O8—Tb1—C7105.01 (12)C9'—C8—C937.4 (6)
O7—Tb1—C7159.89 (12)C7—C8—H8A109.1
O1i—Tb1—C799.65 (12)C9'—C8—H8A75.1
O6—Tb1—C770.97 (12)C9—C8—H8A109.1
O3—Tb1—C726.17 (11)C7—C8—H8B109.1
O4—Tb1—C726.44 (11)C9'—C8—H8B136.0
O2—Tb1—C787.70 (12)C9—C8—H8B109.1
O5—Tb1—C7123.31 (11)H8A—C8—H8B107.9
O1—Tb1—C785.91 (11)C7—C8—H8A'109.5
C6—Tb1—C797.21 (13)C9'—C8—H8A'107.6
O8—Tb1—C499.53 (12)C9—C8—H8A'133.4
O7—Tb1—C473.43 (13)H8A—C8—H8A'35.6
O1i—Tb1—C491.91 (11)H8B—C8—H8A'74.5
O6—Tb1—C4157.00 (13)C7—C8—H8B'109.5
O3—Tb1—C488.60 (12)C9'—C8—H8B'110.6
O4—Tb1—C482.60 (13)C9—C8—H8B'75.7
O2—Tb1—C425.24 (10)H8A—C8—H8B'135.1
O5—Tb1—C4149.81 (12)H8B—C8—H8B'36.8
O1—Tb1—C426.02 (10)H8A'—C8—H8B'108.5
C6—Tb1—C4172.36 (13)C8—C9—C9iv111.2 (9)
C7—Tb1—C486.88 (13)C8—C9—H9A109.4
C4—O1—Tb1i150.7 (3)C9iv—C9—H9A109.4
C4—O1—Tb192.7 (3)C8—C9—H9B109.4
Tb1i—O1—Tb1113.46 (11)C9iv—C9—H9B109.4
C4—O2—Tb196.8 (3)H9A—C9—H9B108.0
C7—O3—Tb194.8 (3)C9'iv—C9'—C8112.0 (14)
C7—O4—Tb192.7 (3)C9'iv—C9'—H9'1109.2
C6—O5—Tb190.8 (3)C8—C9'—H9'1109.2
C6—O6—Tb195.7 (3)C9'iv—C9'—H9'2109.2
Tb1—O7—H1115.9C8—C9'—H9'2109.2
Tb1—O7—H2122.0H9'1—C9'—H9'2107.9
H1—O7—H2117.6O9v—O9—H1O9108.8
Tb1—O8—H3134.9O9v—O9—H2O9145.0
Tb1—O8—H4124.4H1O9—O9—H2O9105.9
O8—Tb1—O1—C414.2 (3)O1i—Tb1—C4—O2169.2 (3)
O7—Tb1—O1—C483.6 (3)O6—Tb1—C4—O275.8 (4)
O1i—Tb1—O1—C4166.4 (3)O3—Tb1—C4—O2117.4 (3)
O6—Tb1—O1—C4130.7 (3)O4—Tb1—C4—O265.0 (3)
O3—Tb1—O1—C4116.0 (3)O5—Tb1—C4—O288.7 (4)
O4—Tb1—O1—C465.8 (3)O1—Tb1—C4—O2178.3 (5)
O2—Tb1—O1—C40.9 (2)C7—Tb1—C4—O291.2 (3)
O5—Tb1—O1—C4125.3 (3)O8—Tb1—C4—O1168.2 (2)
C6—Tb1—O1—C4168.7 (3)O7—Tb1—C4—O188.8 (3)
C7—Tb1—O1—C491.3 (3)O1i—Tb1—C4—O112.5 (3)
O8—Tb1—O1—Tb1i152.16 (12)O6—Tb1—C4—O1102.5 (4)
O7—Tb1—O1—Tb1i82.74 (14)O3—Tb1—C4—O160.9 (2)
O1i—Tb1—O1—Tb1i0.0O4—Tb1—C4—O1113.3 (3)
O6—Tb1—O1—Tb1i63.0 (3)O2—Tb1—C4—O1178.3 (5)
O3—Tb1—O1—Tb1i77.66 (14)O5—Tb1—C4—O193.0 (3)
O4—Tb1—O1—Tb1i127.80 (12)C7—Tb1—C4—O187.1 (3)
O2—Tb1—O1—Tb1i167.3 (2)Tb1—O6—C6—O512.6 (5)
O5—Tb1—O1—Tb1i41.1 (2)Tb1—O6—C6—C5167.2 (4)
C6—Tb1—O1—Tb1i2.4 (4)Tb1—O5—C6—O612.0 (5)
C7—Tb1—O1—Tb1i102.37 (14)Tb1—O5—C6—C5167.8 (4)
C4—Tb1—O1—Tb1i166.4 (3)C1iii—C5—C6—O60.4 (7)
O8—Tb1—O2—C4166.2 (3)C1iii—C5—C6—O5179.4 (5)
O7—Tb1—O2—C480.2 (3)C1iii—C5—C6—Tb179.9 (19)
O1i—Tb1—O2—C412.1 (3)O8—Tb1—C6—O6103.9 (3)
O6—Tb1—O2—C4141.7 (3)O7—Tb1—C6—O6177.9 (3)
O3—Tb1—O2—C464.4 (3)O1i—Tb1—C6—O699.9 (3)
O4—Tb1—O2—C4109.8 (3)O3—Tb1—C6—O626.1 (3)
O5—Tb1—O2—C4127.0 (3)O4—Tb1—C6—O627.0 (3)
O1—Tb1—O2—C41.0 (3)O2—Tb1—C6—O697.6 (4)
C6—Tb1—O2—C4172.5 (3)O5—Tb1—C6—O6167.6 (5)
C7—Tb1—O2—C487.6 (3)O1—Tb1—C6—O697.7 (4)
O8—Tb1—O3—C715.6 (3)C7—Tb1—C6—O60.3 (3)
O7—Tb1—O3—C7143.5 (3)O8—Tb1—C6—O588.5 (3)
O1i—Tb1—O3—C7178.2 (3)O7—Tb1—C6—O510.2 (3)
O6—Tb1—O3—C778.6 (3)O1i—Tb1—C6—O567.7 (3)
O4—Tb1—O3—C74.0 (2)O6—Tb1—C6—O5167.6 (5)
O2—Tb1—O3—C763.2 (3)O3—Tb1—C6—O5141.6 (3)
O5—Tb1—O3—C7108.7 (3)O4—Tb1—C6—O5165.4 (3)
O1—Tb1—O3—C7109.0 (3)O2—Tb1—C6—O594.8 (3)
C6—Tb1—O3—C790.2 (3)O1—Tb1—C6—O569.9 (5)
C4—Tb1—O3—C785.8 (3)C7—Tb1—C6—O5168.0 (3)
O8—Tb1—O4—C7161.0 (3)O8—Tb1—C6—C517.0 (18)
O7—Tb1—O4—C7140.1 (3)O7—Tb1—C6—C595.2 (19)
O1i—Tb1—O4—C710.9 (3)O1i—Tb1—C6—C5173.2 (19)
O6—Tb1—O4—C777.7 (3)O6—Tb1—C6—C586.9 (19)
O3—Tb1—O4—C74.0 (2)O3—Tb1—C6—C5113.0 (19)
O2—Tb1—O4—C7121.8 (3)O4—Tb1—C6—C559.9 (19)
O5—Tb1—O4—C797.6 (3)O2—Tb1—C6—C511 (2)
O1—Tb1—O4—C774.1 (3)O5—Tb1—C6—C5105.5 (19)
C6—Tb1—O4—C789.7 (3)O1—Tb1—C6—C5175.4 (17)
C4—Tb1—O4—C797.9 (3)C7—Tb1—C6—C586.6 (19)
O8—Tb1—O5—C683.6 (3)Tb1—O3—C7—O47.2 (4)
O7—Tb1—O5—C6169.7 (3)Tb1—O3—C7—C8170.0 (3)
O1i—Tb1—O5—C6111.7 (3)Tb1—O4—C7—O37.1 (4)
O6—Tb1—O5—C66.8 (3)Tb1—O4—C7—C8170.2 (4)
O3—Tb1—O5—C644.3 (3)O8—Tb1—C7—O3167.8 (2)
O4—Tb1—O5—C617.6 (3)O7—Tb1—C7—O381.6 (4)
O2—Tb1—O5—C6123.0 (3)O1i—Tb1—C7—O31.8 (3)
O1—Tb1—O5—C6149.0 (3)O6—Tb1—C7—O393.2 (3)
C7—Tb1—O5—C614.3 (3)O4—Tb1—C7—O3172.8 (4)
C4—Tb1—O5—C6165.6 (3)O2—Tb1—C7—O3118.4 (3)
O8—Tb1—O6—C670.2 (3)O5—Tb1—C7—O386.9 (3)
O7—Tb1—O6—C62.7 (4)O1—Tb1—C7—O367.1 (2)
O1i—Tb1—O6—C682.8 (3)C6—Tb1—C7—O393.3 (3)
O3—Tb1—O6—C6153.1 (3)C4—Tb1—C7—O393.2 (3)
O4—Tb1—O6—C6152.3 (3)O8—Tb1—C7—O419.4 (3)
O2—Tb1—O6—C6120.7 (3)O7—Tb1—C7—O491.2 (4)
O5—Tb1—O6—C67.0 (3)O1i—Tb1—C7—O4171.0 (3)
O1—Tb1—O6—C6138.3 (3)O6—Tb1—C7—O494.1 (3)
C7—Tb1—O6—C6179.7 (3)O3—Tb1—C7—O4172.8 (4)
C4—Tb1—O6—C6163.3 (3)O2—Tb1—C7—O454.4 (3)
C5ii—C1—C2—C3171.1 (5)O5—Tb1—C7—O4100.3 (3)
C1—C2—C3—C4171.6 (4)O1—Tb1—C7—O4105.7 (3)
Tb1—O2—C4—O11.7 (5)C6—Tb1—C7—O493.9 (3)
Tb1—O2—C4—C3176.4 (4)C4—Tb1—C7—O479.6 (3)
Tb1i—O1—C4—O2155.4 (4)O3—C7—C8—C9'69.0 (8)
Tb1—O1—C4—O21.7 (4)O4—C7—C8—C9'108.2 (8)
Tb1i—O1—C4—C322.7 (8)O3—C7—C8—C9109.3 (6)
Tb1—O1—C4—C3176.5 (4)O4—C7—C8—C967.9 (6)
Tb1i—O1—C4—Tb1153.8 (6)C7—C8—C9—C9iv65.1 (10)
C2—C3—C4—O292.4 (6)C9'—C8—C9—C9iv30.7 (10)
C2—C3—C4—O185.7 (5)C7—C8—C9'—C9'iv68.2 (15)
O8—Tb1—C4—O213.5 (3)C9—C8—C9'—C9'iv31.4 (10)
O7—Tb1—C4—O292.9 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x+1, y, z; (iv) x+2, y, z+2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H3···O4vi0.971.832.764 (4)160
O8—H4···O5vii0.921.782.691 (4)170
O7—H1···O2vi0.911.752.657 (4)170
O7—H2···O3i0.981.812.682 (4)146
Symmetry codes: (i) x+1, y, z+1; (vi) x, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Tb2(C6H8O4)3(H2O)4]·0.25H2O
Mr826.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.603 (6), 13.886 (7), 8.969 (4)
β (°) 111.017 (7)
V3)1348.9 (11)
Z2
Radiation typeMo Kα
µ (mm1)5.27
Crystal size (mm)0.25 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.352, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
7908, 2335, 2008
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections2335
No. of parameters176
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 1.85

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H3···O4i0.971.832.764 (4)160
O8—H4···O5ii0.921.782.691 (4)170
O7—H1···O2i0.911.752.657 (4)170
O7—H2···O3iii0.981.812.682 (4)146
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B648174).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimos, A., Tsaousis, D., Michaelides, A., Skoulika, S., Golhen, S., Ouahab, L., Didierjean, C. & Aubry, A. (2002). Chem. Mater. 14, 2616–2622.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuan, L. M., Xu, J. Q., Xie, F. T., Liu, Y. B. & Ding, H. (2004). Inorg. Chem. Commun. 7, 216–219.  CrossRef CAS Google Scholar
First citationKim, Y., Suh, M. & Jung, D. Y. (2004). Inorg. Chem. 43, 245–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKiritsis, V., Michaelides, A., Skoulika, S., Golhen, S. & Ouahab, L. (1998). Inorg. Chem. 37, 3407–3410.  Web of Science CSD CrossRef CAS Google Scholar
First citationLill, D. T., Brennessel, W. W., Borkowski, L. A., Gunning, N. S. & Cahill, C. L. (2005). Acta Cryst. E61, m1343–m1345.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, T. E. & Thompson, A. (2007). Chem. Rev. 107, 1831–1861.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds