metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­(μ3-4-oxido­pyridine-2,6-di­carboxyl­ato)thulium(III)] monohydrate]

aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 21 February 2011; accepted 28 February 2011; online 9 March 2011)

In the title coordination polymer, {[Tm(C7H2NO5)(H2O)3]·H2O}n, the TmIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxyl­ate trianion, two monodentate anions and three water mol­ecules, forming a distorted bicapped trigonal–prismatic TmNO7 coordination geometry. The anions bridge adjacent TmIII ions into double chains. Adjacent chains are further connected into sheets. O—H⋯O hydrogen bonds involving both coordinated and uncoordinated water mol­ecules generate a three-dimensional supra­molecular framework.

Related literature

For the structures and properties of lanthanide coordination compounds including the isotypic Dy and Eu analogues, see: Qin et al. (2011[Qin, J. S., Du, D. Y., Chen, L., Sun, X. Y., Lan, Y. Q. & Su, Z. M. (2011). J. Solid State Chem. 184, 373-378.]); Lv et al. (2010[Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694-m1695.]); Gao et al. (2006[Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980-5988.]). For structures of complexes containing eight-coordinate TmIII, see: Qin et al. (2011[Qin, J. S., Du, D. Y., Chen, L., Sun, X. Y., Lan, Y. Q. & Su, Z. M. (2011). J. Solid State Chem. 184, 373-378.]); Tian et al. (2009[Tian, Y. P., Li, L., Zhou, Y. H., Wang, P., Zhou, H. P., Wu, J. Y., Hu, Z. J., Yang, Y. X., Kong, L., Xu, G. B., Tao, X. T. & Jiang, M. H. (2009). Cryst. Growth Des. 9, 1499-1504.]).

[Scheme 1]

Experimental

Crystal data
  • [Tm(C7H2NO5)(H2O)3]·H2O

  • Mr = 421.09

  • Monoclinic, P 21 /n

  • a = 9.829 (3) Å

  • b = 7.559 (2) Å

  • c = 15.350 (5) Å

  • β = 105.589 (3)°

  • V = 1098.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.12 mm−1

  • T = 296 K

  • 0.28 × 0.26 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.118, Tmax = 0.168

  • 5810 measured reflections

  • 2028 independent reflections

  • 1721 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.08

  • 2028 reflections

  • 176 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.45 e Å−3

  • Δρmin = −1.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H8W⋯O2i 0.88 2.54 3.111 (6) 123
O9—H7W⋯O5ii 0.83 2.03 2.694 (6) 137
O8—H6W⋯O9iii 0.95 1.73 2.679 (5) 179
O8—H5W⋯O9iv 0.90 2.27 3.068 (6) 148
O7—H4W⋯O5v 0.95 1.79 2.697 (5) 158
O7—H3W⋯O1i 0.90 (3) 1.85 (3) 2.672 (5) 151 (5)
O6—H2W⋯O4vi 0.83 (4) 2.11 (5) 2.791 (5) 139 (5)
O6—H1W⋯O3vii 0.91 (4) 1.84 (4) 2.706 (5) 156 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y+1, -z; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The lanthanide coordination polymers have shown not only versatile architectures but also desirable properties, e.g., luminescent, magnetic, catalytic, and gas absorption and separation properties (Qin et al., 2011; Lv et al., 2010). In order to extend our investigations in this field, we have designed and synthesized a novel lanthanide coordination polymer, {[Tm(C7H2NO5)(H2O)3].H2O}n, by choosing 4-oxidopyridine-2,6-dicarboxylicacid as a functional ligand, and report its crystal structure in this paper.

The title compound is isotypic with its Dy (Gao et al., 2006) and Eu (Lv et al., 2010) analogues. The asymmetrical unit of the the title complex contains a Tm(III) ion, a 4-oxidopyridine-2,6-dicarboxylate anion, three coordinated water molecules, and a molecule of water of crystallization (Fig. 1). The Tm atom is eight-coordinated by seven oxygen atoms from three anions and three coordinated water molecules and by a nitrogen atom from a tridentate anion (the other two anions are monodentate), forming a distorted bicapped trigonal-prismatic coordination environment. The Tm–O bond lengths [2.263 (3) - 2.385 (3) Å] are shorter than the Tm–N bond length [2.430 (4) Å], which is in agreement with the bond lengths observed in other Tm(III) complexes (Qin et al., 2011; Tian et al., 2009). The anion adopts a µ3-pentadentate coordination mode. The anions bridge the adjacent TmIII ions to form infinite double chains (Fig. 2). Adjacent chains are further connected by the coordination of the anions and Tm(III) ions into two-dimensional sheets (Fig. 3), which are further extended into a three-dimensional supramolecular framework through O–H···O hydrogen-bonding interactions including both coordinated and uncoordinated water molecules (Table 1).

Related literature top

For the structures and properties of lanthanide coordination compounds including the isotypic Dy and Eu analogues, see: Qin et al. (2011); Lv et al. (2010); Gao et al. (2006). For structures of complexes containing eight-coordinate TmIII, see: Qin et al. (2011); Tian et al. (2009).

For related literature, see: .

Experimental top

To a solution of thulium(III)nitrate hexahydrate (0.139 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. On cooling the solution, single crystals (ca 70% yield) were obtained which were suitable for single crystal X-ray differaction studies.

Refinement top

The coordinated water H atoms were located in a different Fourier map and were refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms were placed at calculated positions and refined with a riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C). The final difference map was esseintially faetureless with residual electron denisty within 1.0 Å of the Th atom.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Drawing of the asymmetric unit of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the title structure along the b axis, showing the double chain.
[Figure 3] Fig. 3. A view of the unit cell along the a axis, showing the sheet structure of the title complex; H-atoms have been excluded for clarity.
Poly[[triaqua(µ3-4-oxidopyridine-2,6-dicarboxylato)thulium(III)] monohydrate] top
Crystal data top
[Tm(C7H2NO5)(H2O)3]·H2OF(000) = 800
Mr = 421.09Dx = 2.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3206 reflections
a = 9.829 (3) Åθ = 2.2–28.1°
b = 7.559 (2) ŵ = 8.12 mm1
c = 15.350 (5) ÅT = 296 K
β = 105.589 (3)°Block, colorless
V = 1098.6 (6) Å30.28 × 0.26 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2028 independent reflections
Radiation source: fine-focus sealed tube1721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.118, Tmax = 0.168k = 99
5810 measured reflectionsl = 1811
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.039P)2 + 1.1506P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2028 reflectionsΔρmax = 1.45 e Å3
176 parametersΔρmin = 1.83 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0158 (6)
Crystal data top
[Tm(C7H2NO5)(H2O)3]·H2OV = 1098.6 (6) Å3
Mr = 421.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.829 (3) ŵ = 8.12 mm1
b = 7.559 (2) ÅT = 296 K
c = 15.350 (5) Å0.28 × 0.26 × 0.22 mm
β = 105.589 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2028 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1721 reflections with I > 2σ(I)
Tmin = 0.118, Tmax = 0.168Rint = 0.038
5810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03112 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.45 e Å3
2028 reflectionsΔρmin = 1.83 e Å3
176 parameters
Special details top

Experimental. Anal. Calcd for C7H10TbNO9: C, 19.97; H, 2.39; N, 3.33. Found: C, 20.31; H, 2.47; N, 3.12.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tm10.498130 (19)0.67912 (3)0.252028 (12)0.00947 (16)
C10.2175 (5)0.9137 (7)0.1631 (3)0.0156 (11)
C20.2755 (5)0.8881 (6)0.0829 (3)0.0127 (10)
C30.2046 (5)0.9447 (6)0.0015 (3)0.0155 (11)
H30.12041.00720.01050.019*
C40.2614 (5)0.9069 (6)0.0753 (3)0.0121 (10)
C50.3907 (5)0.8160 (6)0.0544 (3)0.0132 (11)
H50.43360.78880.09990.016*
C60.4537 (5)0.7675 (6)0.0335 (3)0.0123 (10)
C70.5906 (5)0.6682 (6)0.0630 (4)0.0132 (11)
N10.3961 (5)0.8002 (5)0.1020 (3)0.0125 (9)
O10.2806 (4)0.8294 (5)0.2333 (3)0.0242 (10)
O20.1121 (4)1.0091 (5)0.1562 (2)0.0190 (8)
O30.1933 (4)0.9514 (5)0.1587 (2)0.0173 (8)
O40.6311 (4)0.6267 (5)0.1454 (2)0.0168 (8)
O50.6587 (4)0.6359 (5)0.0068 (2)0.0212 (9)
O60.6355 (4)0.9322 (5)0.2582 (3)0.0251 (9)
O70.3975 (5)0.4312 (5)0.1720 (3)0.0269 (10)
H4W0.39230.38230.11400.032*
O80.5064 (5)0.8348 (4)0.3875 (3)0.0232 (9)
H5W0.45930.80510.42790.028*
H6W0.52470.95650.40250.028*
O90.5599 (5)0.1768 (5)0.4284 (3)0.0386 (12)
H7W0.63060.16980.47280.046*
H8W0.56100.25420.38530.046*
H1W0.689 (5)0.940 (7)0.218 (3)0.018 (14)*
H2W0.689 (5)0.964 (7)0.307 (3)0.017 (16)*
H3W0.318 (5)0.393 (6)0.184 (3)0.012 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tm10.0065 (2)0.0139 (2)0.0060 (2)0.00015 (7)0.00175 (13)0.00069 (7)
C10.010 (3)0.020 (3)0.014 (3)0.002 (2)0.002 (2)0.001 (2)
C20.010 (3)0.018 (2)0.010 (3)0.001 (2)0.001 (2)0.001 (2)
C30.011 (3)0.018 (3)0.016 (3)0.004 (2)0.001 (2)0.003 (2)
C40.008 (3)0.016 (2)0.011 (3)0.0047 (19)0.001 (2)0.003 (2)
C50.010 (3)0.019 (3)0.010 (3)0.0025 (19)0.001 (2)0.0009 (19)
C60.014 (3)0.013 (2)0.010 (3)0.000 (2)0.003 (2)0.001 (2)
C70.007 (3)0.015 (2)0.016 (3)0.0042 (19)0.001 (2)0.004 (2)
N10.007 (2)0.019 (2)0.011 (2)0.0006 (17)0.0003 (19)0.0006 (16)
O10.019 (2)0.041 (2)0.012 (2)0.0165 (16)0.0038 (18)0.0091 (16)
O20.017 (2)0.0239 (19)0.015 (2)0.0084 (16)0.0027 (16)0.0000 (15)
O30.015 (2)0.025 (2)0.008 (2)0.0046 (15)0.0036 (16)0.0028 (14)
O40.013 (2)0.0250 (19)0.011 (2)0.0046 (16)0.0015 (15)0.0032 (15)
O50.017 (2)0.035 (2)0.011 (2)0.0074 (17)0.0034 (16)0.0002 (16)
O60.028 (3)0.032 (2)0.015 (2)0.0193 (18)0.006 (2)0.0063 (18)
O70.037 (3)0.030 (2)0.018 (2)0.0158 (19)0.013 (2)0.0105 (17)
O80.031 (3)0.022 (2)0.018 (2)0.0030 (16)0.008 (2)0.0017 (15)
O90.027 (3)0.027 (2)0.055 (3)0.0055 (17)0.001 (2)0.0030 (19)
Geometric parameters (Å, º) top
Tm1—O3i2.263 (3)C5—C61.374 (7)
Tm1—O72.312 (4)C5—H50.9300
Tm1—O62.329 (4)C6—N11.345 (6)
Tm1—O12.369 (4)C6—C71.501 (7)
Tm1—O82.372 (4)C7—O51.250 (6)
Tm1—O2ii2.372 (3)C7—O41.260 (6)
Tm1—O42.385 (3)O2—Tm1iii2.372 (3)
Tm1—N12.430 (4)O3—Tm1iv2.263 (3)
C1—O21.243 (6)O6—H1W0.91 (4)
C1—O11.262 (6)O6—H2W0.83 (4)
C1—C21.502 (7)O7—H4W0.9517
C2—N11.321 (6)O7—H3W0.90 (3)
C2—C31.364 (7)O8—H5W0.8963
C3—C41.421 (7)O8—H6W0.9533
C3—H30.9300O9—H7W0.8345
C4—O31.318 (6)O9—H8W0.8850
C4—C51.404 (7)
O3i—Tm1—O798.07 (13)C3—C2—C1121.9 (5)
O3i—Tm1—O686.88 (14)C2—C3—C4119.0 (5)
O7—Tm1—O6147.98 (14)C2—C3—H3120.5
O3i—Tm1—O1150.82 (12)C4—C3—H3120.5
O7—Tm1—O194.66 (15)O3—C4—C5122.6 (4)
O6—Tm1—O196.05 (14)O3—C4—C3121.2 (5)
O3i—Tm1—O882.05 (13)C5—C4—C3116.2 (4)
O7—Tm1—O8141.00 (13)C6—C5—C4119.8 (5)
O6—Tm1—O870.96 (13)C6—C5—H5120.1
O1—Tm1—O871.66 (14)C4—C5—H5120.1
O3i—Tm1—O2ii81.52 (13)N1—C6—C5123.1 (5)
O7—Tm1—O2ii71.23 (12)N1—C6—C7112.8 (4)
O6—Tm1—O2ii140.63 (13)C5—C6—C7124.1 (4)
O1—Tm1—O2ii77.90 (13)O5—C7—O4124.2 (5)
O8—Tm1—O2ii70.24 (12)O5—C7—C6119.5 (5)
O3i—Tm1—O479.12 (12)O4—C7—C6116.3 (4)
O7—Tm1—O474.67 (13)C2—N1—C6117.4 (4)
O6—Tm1—O475.29 (13)C2—N1—Tm1121.1 (3)
O1—Tm1—O4129.75 (12)C6—N1—Tm1121.3 (3)
O8—Tm1—O4141.98 (13)C1—O1—Tm1124.5 (3)
O2ii—Tm1—O4137.63 (11)C1—O2—Tm1iii140.1 (3)
O3i—Tm1—N1143.61 (13)C4—O3—Tm1iv127.1 (3)
O7—Tm1—N178.04 (14)C7—O4—Tm1124.4 (3)
O6—Tm1—N179.41 (14)Tm1—O6—H1W117 (3)
O1—Tm1—N164.89 (13)Tm1—O6—H2W120 (4)
O8—Tm1—N1123.52 (13)H1W—O6—H2W104 (4)
O2ii—Tm1—N1128.94 (14)Tm1—O7—H4W136.0
O4—Tm1—N164.86 (13)Tm1—O7—H3W115 (3)
O2—C1—O1124.9 (5)H4W—O7—H3W103.9
O2—C1—C2119.8 (4)Tm1—O8—H5W125.4
O1—C1—C2115.3 (4)Tm1—O8—H6W130.5
N1—C2—C3124.6 (5)H5W—O8—H6W100.0
N1—C2—C1113.5 (4)H7W—O9—H8W118.5
O2—C1—C2—N1172.9 (5)O4—Tm1—N1—C2180.0 (4)
O1—C1—C2—N18.8 (6)O3i—Tm1—N1—C614.6 (5)
O2—C1—C2—C39.9 (7)O7—Tm1—N1—C672.8 (4)
O1—C1—C2—C3168.4 (5)O6—Tm1—N1—C684.3 (4)
N1—C2—C3—C40.6 (7)O1—Tm1—N1—C6173.8 (4)
C1—C2—C3—C4176.2 (4)O8—Tm1—N1—C6142.8 (3)
C2—C3—C4—O3176.7 (4)O2ii—Tm1—N1—C6126.4 (4)
C2—C3—C4—C51.6 (7)O4—Tm1—N1—C65.7 (3)
O3—C4—C5—C6177.6 (4)O2—C1—O1—Tm1171.5 (4)
C3—C4—C5—C60.7 (7)C2—C1—O1—Tm110.3 (6)
C4—C5—C6—N11.2 (7)O3i—Tm1—O1—C1163.5 (4)
C4—C5—C6—C7179.2 (4)O7—Tm1—O1—C180.7 (4)
N1—C6—C7—O5176.9 (4)O6—Tm1—O1—C169.1 (4)
C5—C6—C7—O55.0 (7)O8—Tm1—O1—C1136.7 (4)
N1—C6—C7—O41.3 (6)O2ii—Tm1—O1—C1150.3 (4)
C5—C6—C7—O4176.9 (4)O4—Tm1—O1—C16.8 (5)
C3—C2—N1—C61.3 (7)N1—Tm1—O1—C16.2 (4)
C1—C2—N1—C6178.4 (4)O1—C1—O2—Tm1iii25.6 (9)
C3—C2—N1—Tm1173.2 (4)C2—C1—O2—Tm1iii156.3 (4)
C1—C2—N1—Tm13.9 (6)C5—C4—O3—Tm1iv104.5 (5)
C5—C6—N1—C22.2 (7)C3—C4—O3—Tm1iv73.7 (5)
C7—C6—N1—C2179.6 (4)O5—C7—O4—Tm1177.8 (3)
C5—C6—N1—Tm1172.3 (4)C6—C7—O4—Tm14.1 (6)
C7—C6—N1—Tm15.9 (5)O3i—Tm1—O4—C7179.8 (4)
O3i—Tm1—N1—C2171.1 (3)O7—Tm1—O4—C778.6 (4)
O7—Tm1—N1—C2101.5 (4)O6—Tm1—O4—C790.2 (4)
O6—Tm1—N1—C2101.4 (4)O1—Tm1—O4—C74.6 (4)
O1—Tm1—N1—C20.5 (4)O8—Tm1—O4—C7118.1 (4)
O8—Tm1—N1—C242.9 (4)O2ii—Tm1—O4—C7115.9 (4)
O2ii—Tm1—N1—C247.9 (4)N1—Tm1—O4—C75.1 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H8W···O2ii0.882.543.111 (6)123
O9—H7W···O5v0.832.032.694 (6)137
O8—H6W···O9vi0.951.732.679 (5)179
O8—H5W···O9vii0.902.273.068 (6)148
O7—H4W···O5viii0.951.792.697 (5)158
O7—H3W···O1ii0.90 (3)1.85 (3)2.672 (5)151 (5)
O6—H2W···O4ix0.83 (4)2.11 (5)2.791 (5)139 (5)
O6—H1W···O3x0.91 (4)1.84 (4)2.706 (5)156 (4)
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (v) x+3/2, y1/2, z+1/2; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x+1, y+1, z; (ix) x+3/2, y+1/2, z+1/2; (x) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Tm(C7H2NO5)(H2O)3]·H2O
Mr421.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.829 (3), 7.559 (2), 15.350 (5)
β (°) 105.589 (3)
V3)1098.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)8.12
Crystal size (mm)0.28 × 0.26 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.118, 0.168
No. of measured, independent and
observed [I > 2σ(I)] reflections
5810, 2028, 1721
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.08
No. of reflections2028
No. of parameters176
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.45, 1.83

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H8W···O2i0.882.543.111 (6)123
O9—H7W···O5ii0.832.032.694 (6)137
O8—H6W···O9iii0.951.732.679 (5)179
O8—H5W···O9iv0.902.273.068 (6)148
O7—H4W···O5v0.951.792.697 (5)158
O7—H3W···O1i0.90 (3)1.85 (3)2.672 (5)151 (5)
O6—H2W···O4vi0.83 (4)2.11 (5)2.791 (5)139 (5)
O6—H1W···O3vii0.91 (4)1.84 (4)2.706 (5)156 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1, y+1, z; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1, y+2, z.
 

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, J. S., Du, D. Y., Chen, L., Sun, X. Y., Lan, Y. Q. & Su, Z. M. (2011). J. Solid State Chem. 184, 373–378.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y. P., Li, L., Zhou, Y. H., Wang, P., Zhou, H. P., Wu, J. Y., Hu, Z. J., Yang, Y. X., Kong, L., Xu, G. B., Tao, X. T. & Jiang, M. H. (2009). Cryst. Growth Des. 9, 1499–1504.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds