metal-organic compounds
Poly[[triaqua(μ3-4-oxidopyridine-2,6-dicarboxylato)thulium(III)] monohydrate]
aSchool of Chemistry and Biology Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com
In the title coordination polymer, {[Tm(C7H2NO5)(H2O)3]·H2O}n, the TmIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxylate trianion, two monodentate anions and three water molecules, forming a distorted bicapped trigonal–prismatic TmNO7 coordination geometry. The anions bridge adjacent TmIII ions into double chains. Adjacent chains are further connected into sheets. O—H⋯O hydrogen bonds involving both coordinated and uncoordinated water molecules generate a three-dimensional supramolecular framework.
Related literature
For the structures and properties of lanthanide coordination compounds including the isotypic Dy and Eu analogues, see: Qin et al. (2011); Lv et al. (2010); Gao et al. (2006). For structures of complexes containing eight-coordinate TmIII, see: Qin et al. (2011); Tian et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811007628/pv2392sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811007628/pv2392Isup2.hkl
To a solution of thulium(III)nitrate hexahydrate (0.139 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. On cooling the solution, single crystals (ca 70% yield) were obtained which were suitable for single crystal X-ray differaction studies.
The coordinated water H atoms were located in a different Fourier map and were refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms were placed at calculated positions and refined with a riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C). The final difference map was esseintially faetureless with residual electron denisty within 1.0 Å of the Th atom.
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Drawing of the asymmetric unit of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. | |
Fig. 2. A view of the title structure along the b axis, showing the double chain. | |
Fig. 3. A view of the unit cell along the a axis, showing the sheet structure of the title complex; H-atoms have been excluded for clarity. |
[Tm(C7H2NO5)(H2O)3]·H2O | F(000) = 800 |
Mr = 421.09 | Dx = 2.546 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3206 reflections |
a = 9.829 (3) Å | θ = 2.2–28.1° |
b = 7.559 (2) Å | µ = 8.12 mm−1 |
c = 15.350 (5) Å | T = 296 K |
β = 105.589 (3)° | Block, colorless |
V = 1098.6 (6) Å3 | 0.28 × 0.26 × 0.22 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 2028 independent reflections |
Radiation source: fine-focus sealed tube | 1721 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −11→11 |
Tmin = 0.118, Tmax = 0.168 | k = −9→9 |
5810 measured reflections | l = −18→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.082 | w = 1/[σ2(Fo2) + (0.039P)2 + 1.1506P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
2028 reflections | Δρmax = 1.45 e Å−3 |
176 parameters | Δρmin = −1.83 e Å−3 |
12 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0158 (6) |
[Tm(C7H2NO5)(H2O)3]·H2O | V = 1098.6 (6) Å3 |
Mr = 421.09 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.829 (3) Å | µ = 8.12 mm−1 |
b = 7.559 (2) Å | T = 296 K |
c = 15.350 (5) Å | 0.28 × 0.26 × 0.22 mm |
β = 105.589 (3)° |
Bruker APEXII CCD diffractometer | 2028 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1721 reflections with I > 2σ(I) |
Tmin = 0.118, Tmax = 0.168 | Rint = 0.038 |
5810 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 12 restraints |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 1.45 e Å−3 |
2028 reflections | Δρmin = −1.83 e Å−3 |
176 parameters |
Experimental. Anal. Calcd for C7H10TbNO9: C, 19.97; H, 2.39; N, 3.33. Found: C, 20.31; H, 2.47; N, 3.12. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Tm1 | 0.498130 (19) | 0.67912 (3) | 0.252028 (12) | 0.00947 (16) | |
C1 | 0.2175 (5) | 0.9137 (7) | 0.1631 (3) | 0.0156 (11) | |
C2 | 0.2755 (5) | 0.8881 (6) | 0.0829 (3) | 0.0127 (10) | |
C3 | 0.2046 (5) | 0.9447 (6) | −0.0015 (3) | 0.0155 (11) | |
H3 | 0.1204 | 1.0072 | −0.0105 | 0.019* | |
C4 | 0.2614 (5) | 0.9069 (6) | −0.0753 (3) | 0.0121 (10) | |
C5 | 0.3907 (5) | 0.8160 (6) | −0.0544 (3) | 0.0132 (11) | |
H5 | 0.4336 | 0.7888 | −0.0999 | 0.016* | |
C6 | 0.4537 (5) | 0.7675 (6) | 0.0335 (3) | 0.0123 (10) | |
C7 | 0.5906 (5) | 0.6682 (6) | 0.0630 (4) | 0.0132 (11) | |
N1 | 0.3961 (5) | 0.8002 (5) | 0.1020 (3) | 0.0125 (9) | |
O1 | 0.2806 (4) | 0.8294 (5) | 0.2333 (3) | 0.0242 (10) | |
O2 | 0.1121 (4) | 1.0091 (5) | 0.1562 (2) | 0.0190 (8) | |
O3 | 0.1933 (4) | 0.9514 (5) | −0.1587 (2) | 0.0173 (8) | |
O4 | 0.6311 (4) | 0.6267 (5) | 0.1454 (2) | 0.0168 (8) | |
O5 | 0.6587 (4) | 0.6359 (5) | 0.0068 (2) | 0.0212 (9) | |
O6 | 0.6355 (4) | 0.9322 (5) | 0.2582 (3) | 0.0251 (9) | |
O7 | 0.3975 (5) | 0.4312 (5) | 0.1720 (3) | 0.0269 (10) | |
H4W | 0.3923 | 0.3823 | 0.1140 | 0.032* | |
O8 | 0.5064 (5) | 0.8348 (4) | 0.3875 (3) | 0.0232 (9) | |
H5W | 0.4593 | 0.8051 | 0.4279 | 0.028* | |
H6W | 0.5247 | 0.9565 | 0.4025 | 0.028* | |
O9 | 0.5599 (5) | 0.1768 (5) | 0.4284 (3) | 0.0386 (12) | |
H7W | 0.6306 | 0.1698 | 0.4728 | 0.046* | |
H8W | 0.5610 | 0.2542 | 0.3853 | 0.046* | |
H1W | 0.689 (5) | 0.940 (7) | 0.218 (3) | 0.018 (14)* | |
H2W | 0.689 (5) | 0.964 (7) | 0.307 (3) | 0.017 (16)* | |
H3W | 0.318 (5) | 0.393 (6) | 0.184 (3) | 0.012 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tm1 | 0.0065 (2) | 0.0139 (2) | 0.0060 (2) | 0.00015 (7) | −0.00175 (13) | 0.00069 (7) |
C1 | 0.010 (3) | 0.020 (3) | 0.014 (3) | 0.002 (2) | −0.002 (2) | −0.001 (2) |
C2 | 0.010 (3) | 0.018 (2) | 0.010 (3) | 0.001 (2) | 0.001 (2) | −0.001 (2) |
C3 | 0.011 (3) | 0.018 (3) | 0.016 (3) | 0.004 (2) | 0.001 (2) | 0.003 (2) |
C4 | 0.008 (3) | 0.016 (2) | 0.011 (3) | −0.0047 (19) | −0.001 (2) | 0.003 (2) |
C5 | 0.010 (3) | 0.019 (3) | 0.010 (3) | −0.0025 (19) | 0.001 (2) | −0.0009 (19) |
C6 | 0.014 (3) | 0.013 (2) | 0.010 (3) | 0.000 (2) | 0.003 (2) | −0.001 (2) |
C7 | 0.007 (3) | 0.015 (2) | 0.016 (3) | −0.0042 (19) | 0.001 (2) | −0.004 (2) |
N1 | 0.007 (2) | 0.019 (2) | 0.011 (2) | 0.0006 (17) | 0.0003 (19) | 0.0006 (16) |
O1 | 0.019 (2) | 0.041 (2) | 0.012 (2) | 0.0165 (16) | 0.0038 (18) | 0.0091 (16) |
O2 | 0.017 (2) | 0.0239 (19) | 0.015 (2) | 0.0084 (16) | 0.0027 (16) | 0.0000 (15) |
O3 | 0.015 (2) | 0.025 (2) | 0.008 (2) | −0.0046 (15) | −0.0036 (16) | 0.0028 (14) |
O4 | 0.013 (2) | 0.0250 (19) | 0.011 (2) | 0.0046 (16) | 0.0015 (15) | 0.0032 (15) |
O5 | 0.017 (2) | 0.035 (2) | 0.011 (2) | 0.0074 (17) | 0.0034 (16) | 0.0002 (16) |
O6 | 0.028 (3) | 0.032 (2) | 0.015 (2) | −0.0193 (18) | 0.006 (2) | −0.0063 (18) |
O7 | 0.037 (3) | 0.030 (2) | 0.018 (2) | −0.0158 (19) | 0.013 (2) | −0.0105 (17) |
O8 | 0.031 (3) | 0.022 (2) | 0.018 (2) | −0.0030 (16) | 0.008 (2) | −0.0017 (15) |
O9 | 0.027 (3) | 0.027 (2) | 0.055 (3) | −0.0055 (17) | −0.001 (2) | −0.0030 (19) |
Tm1—O3i | 2.263 (3) | C5—C6 | 1.374 (7) |
Tm1—O7 | 2.312 (4) | C5—H5 | 0.9300 |
Tm1—O6 | 2.329 (4) | C6—N1 | 1.345 (6) |
Tm1—O1 | 2.369 (4) | C6—C7 | 1.501 (7) |
Tm1—O8 | 2.372 (4) | C7—O5 | 1.250 (6) |
Tm1—O2ii | 2.372 (3) | C7—O4 | 1.260 (6) |
Tm1—O4 | 2.385 (3) | O2—Tm1iii | 2.372 (3) |
Tm1—N1 | 2.430 (4) | O3—Tm1iv | 2.263 (3) |
C1—O2 | 1.243 (6) | O6—H1W | 0.91 (4) |
C1—O1 | 1.262 (6) | O6—H2W | 0.83 (4) |
C1—C2 | 1.502 (7) | O7—H4W | 0.9517 |
C2—N1 | 1.321 (6) | O7—H3W | 0.90 (3) |
C2—C3 | 1.364 (7) | O8—H5W | 0.8963 |
C3—C4 | 1.421 (7) | O8—H6W | 0.9533 |
C3—H3 | 0.9300 | O9—H7W | 0.8345 |
C4—O3 | 1.318 (6) | O9—H8W | 0.8850 |
C4—C5 | 1.404 (7) | ||
O3i—Tm1—O7 | 98.07 (13) | C3—C2—C1 | 121.9 (5) |
O3i—Tm1—O6 | 86.88 (14) | C2—C3—C4 | 119.0 (5) |
O7—Tm1—O6 | 147.98 (14) | C2—C3—H3 | 120.5 |
O3i—Tm1—O1 | 150.82 (12) | C4—C3—H3 | 120.5 |
O7—Tm1—O1 | 94.66 (15) | O3—C4—C5 | 122.6 (4) |
O6—Tm1—O1 | 96.05 (14) | O3—C4—C3 | 121.2 (5) |
O3i—Tm1—O8 | 82.05 (13) | C5—C4—C3 | 116.2 (4) |
O7—Tm1—O8 | 141.00 (13) | C6—C5—C4 | 119.8 (5) |
O6—Tm1—O8 | 70.96 (13) | C6—C5—H5 | 120.1 |
O1—Tm1—O8 | 71.66 (14) | C4—C5—H5 | 120.1 |
O3i—Tm1—O2ii | 81.52 (13) | N1—C6—C5 | 123.1 (5) |
O7—Tm1—O2ii | 71.23 (12) | N1—C6—C7 | 112.8 (4) |
O6—Tm1—O2ii | 140.63 (13) | C5—C6—C7 | 124.1 (4) |
O1—Tm1—O2ii | 77.90 (13) | O5—C7—O4 | 124.2 (5) |
O8—Tm1—O2ii | 70.24 (12) | O5—C7—C6 | 119.5 (5) |
O3i—Tm1—O4 | 79.12 (12) | O4—C7—C6 | 116.3 (4) |
O7—Tm1—O4 | 74.67 (13) | C2—N1—C6 | 117.4 (4) |
O6—Tm1—O4 | 75.29 (13) | C2—N1—Tm1 | 121.1 (3) |
O1—Tm1—O4 | 129.75 (12) | C6—N1—Tm1 | 121.3 (3) |
O8—Tm1—O4 | 141.98 (13) | C1—O1—Tm1 | 124.5 (3) |
O2ii—Tm1—O4 | 137.63 (11) | C1—O2—Tm1iii | 140.1 (3) |
O3i—Tm1—N1 | 143.61 (13) | C4—O3—Tm1iv | 127.1 (3) |
O7—Tm1—N1 | 78.04 (14) | C7—O4—Tm1 | 124.4 (3) |
O6—Tm1—N1 | 79.41 (14) | Tm1—O6—H1W | 117 (3) |
O1—Tm1—N1 | 64.89 (13) | Tm1—O6—H2W | 120 (4) |
O8—Tm1—N1 | 123.52 (13) | H1W—O6—H2W | 104 (4) |
O2ii—Tm1—N1 | 128.94 (14) | Tm1—O7—H4W | 136.0 |
O4—Tm1—N1 | 64.86 (13) | Tm1—O7—H3W | 115 (3) |
O2—C1—O1 | 124.9 (5) | H4W—O7—H3W | 103.9 |
O2—C1—C2 | 119.8 (4) | Tm1—O8—H5W | 125.4 |
O1—C1—C2 | 115.3 (4) | Tm1—O8—H6W | 130.5 |
N1—C2—C3 | 124.6 (5) | H5W—O8—H6W | 100.0 |
N1—C2—C1 | 113.5 (4) | H7W—O9—H8W | 118.5 |
O2—C1—C2—N1 | 172.9 (5) | O4—Tm1—N1—C2 | 180.0 (4) |
O1—C1—C2—N1 | −8.8 (6) | O3i—Tm1—N1—C6 | 14.6 (5) |
O2—C1—C2—C3 | −9.9 (7) | O7—Tm1—N1—C6 | −72.8 (4) |
O1—C1—C2—C3 | 168.4 (5) | O6—Tm1—N1—C6 | 84.3 (4) |
N1—C2—C3—C4 | 0.6 (7) | O1—Tm1—N1—C6 | −173.8 (4) |
C1—C2—C3—C4 | −176.2 (4) | O8—Tm1—N1—C6 | 142.8 (3) |
C2—C3—C4—O3 | 176.7 (4) | O2ii—Tm1—N1—C6 | −126.4 (4) |
C2—C3—C4—C5 | −1.6 (7) | O4—Tm1—N1—C6 | 5.7 (3) |
O3—C4—C5—C6 | −177.6 (4) | O2—C1—O1—Tm1 | −171.5 (4) |
C3—C4—C5—C6 | 0.7 (7) | C2—C1—O1—Tm1 | 10.3 (6) |
C4—C5—C6—N1 | 1.2 (7) | O3i—Tm1—O1—C1 | 163.5 (4) |
C4—C5—C6—C7 | 179.2 (4) | O7—Tm1—O1—C1 | −80.7 (4) |
N1—C6—C7—O5 | −176.9 (4) | O6—Tm1—O1—C1 | 69.1 (4) |
C5—C6—C7—O5 | 5.0 (7) | O8—Tm1—O1—C1 | 136.7 (4) |
N1—C6—C7—O4 | 1.3 (6) | O2ii—Tm1—O1—C1 | −150.3 (4) |
C5—C6—C7—O4 | −176.9 (4) | O4—Tm1—O1—C1 | −6.8 (5) |
C3—C2—N1—C6 | 1.3 (7) | N1—Tm1—O1—C1 | −6.2 (4) |
C1—C2—N1—C6 | 178.4 (4) | O1—C1—O2—Tm1iii | 25.6 (9) |
C3—C2—N1—Tm1 | −173.2 (4) | C2—C1—O2—Tm1iii | −156.3 (4) |
C1—C2—N1—Tm1 | 3.9 (6) | C5—C4—O3—Tm1iv | 104.5 (5) |
C5—C6—N1—C2 | −2.2 (7) | C3—C4—O3—Tm1iv | −73.7 (5) |
C7—C6—N1—C2 | 179.6 (4) | O5—C7—O4—Tm1 | −177.8 (3) |
C5—C6—N1—Tm1 | 172.3 (4) | C6—C7—O4—Tm1 | 4.1 (6) |
C7—C6—N1—Tm1 | −5.9 (5) | O3i—Tm1—O4—C7 | −179.8 (4) |
O3i—Tm1—N1—C2 | −171.1 (3) | O7—Tm1—O4—C7 | 78.6 (4) |
O7—Tm1—N1—C2 | 101.5 (4) | O6—Tm1—O4—C7 | −90.2 (4) |
O6—Tm1—N1—C2 | −101.4 (4) | O1—Tm1—O4—C7 | −4.6 (4) |
O1—Tm1—N1—C2 | 0.5 (4) | O8—Tm1—O4—C7 | −118.1 (4) |
O8—Tm1—N1—C2 | −42.9 (4) | O2ii—Tm1—O4—C7 | 115.9 (4) |
O2ii—Tm1—N1—C2 | 47.9 (4) | N1—Tm1—O4—C7 | −5.1 (3) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x−1/2, −y+3/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H8W···O2ii | 0.88 | 2.54 | 3.111 (6) | 123 |
O9—H7W···O5v | 0.83 | 2.03 | 2.694 (6) | 137 |
O8—H6W···O9vi | 0.95 | 1.73 | 2.679 (5) | 179 |
O8—H5W···O9vii | 0.90 | 2.27 | 3.068 (6) | 148 |
O7—H4W···O5viii | 0.95 | 1.79 | 2.697 (5) | 158 |
O7—H3W···O1ii | 0.90 (3) | 1.85 (3) | 2.672 (5) | 151 (5) |
O6—H2W···O4ix | 0.83 (4) | 2.11 (5) | 2.791 (5) | 139 (5) |
O6—H1W···O3x | 0.91 (4) | 1.84 (4) | 2.706 (5) | 156 (4) |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) x, y+1, z; (vii) −x+1, −y+1, −z+1; (viii) −x+1, −y+1, −z; (ix) −x+3/2, y+1/2, −z+1/2; (x) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Tm(C7H2NO5)(H2O)3]·H2O |
Mr | 421.09 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 9.829 (3), 7.559 (2), 15.350 (5) |
β (°) | 105.589 (3) |
V (Å3) | 1098.6 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 8.12 |
Crystal size (mm) | 0.28 × 0.26 × 0.22 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.118, 0.168 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5810, 2028, 1721 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.082, 1.08 |
No. of reflections | 2028 |
No. of parameters | 176 |
No. of restraints | 12 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.45, −1.83 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H8W···O2i | 0.88 | 2.54 | 3.111 (6) | 123 |
O9—H7W···O5ii | 0.83 | 2.03 | 2.694 (6) | 137 |
O8—H6W···O9iii | 0.95 | 1.73 | 2.679 (5) | 179 |
O8—H5W···O9iv | 0.90 | 2.27 | 3.068 (6) | 148 |
O7—H4W···O5v | 0.95 | 1.79 | 2.697 (5) | 158 |
O7—H3W···O1i | 0.90 (3) | 1.85 (3) | 2.672 (5) | 151 (5) |
O6—H2W···O4vi | 0.83 (4) | 2.11 (5) | 2.791 (5) | 139 (5) |
O6—H1W···O3vii | 0.91 (4) | 1.84 (4) | 2.706 (5) | 156 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y+1, −z; (vi) −x+3/2, y+1/2, −z+1/2; (vii) −x+1, −y+2, −z. |
References
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Qin, J. S., Du, D. Y., Chen, L., Sun, X. Y., Lan, Y. Q. & Su, Z. M. (2011). J. Solid State Chem. 184, 373–378. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, Y. P., Li, L., Zhou, Y. H., Wang, P., Zhou, H. P., Wu, J. Y., Hu, Z. J., Yang, Y. X., Kong, L., Xu, G. B., Tao, X. T. & Jiang, M. H. (2009). Cryst. Growth Des. 9, 1499–1504. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The lanthanide coordination polymers have shown not only versatile architectures but also desirable properties, e.g., luminescent, magnetic, catalytic, and gas absorption and separation properties (Qin et al., 2011; Lv et al., 2010). In order to extend our investigations in this field, we have designed and synthesized a novel lanthanide coordination polymer, {[Tm(C7H2NO5)(H2O)3].H2O}n, by choosing 4-oxidopyridine-2,6-dicarboxylicacid as a functional ligand, and report its crystal structure in this paper.
The title compound is isotypic with its Dy (Gao et al., 2006) and Eu (Lv et al., 2010) analogues. The asymmetrical unit of the the title complex contains a Tm(III) ion, a 4-oxidopyridine-2,6-dicarboxylate anion, three coordinated water molecules, and a molecule of water of crystallization (Fig. 1). The Tm atom is eight-coordinated by seven oxygen atoms from three anions and three coordinated water molecules and by a nitrogen atom from a tridentate anion (the other two anions are monodentate), forming a distorted bicapped trigonal-prismatic coordination environment. The Tm–O bond lengths [2.263 (3) - 2.385 (3) Å] are shorter than the Tm–N bond length [2.430 (4) Å], which is in agreement with the bond lengths observed in other Tm(III) complexes (Qin et al., 2011; Tian et al., 2009). The anion adopts a µ3-pentadentate coordination mode. The anions bridge the adjacent TmIII ions to form infinite double chains (Fig. 2). Adjacent chains are further connected by the coordination of the anions and Tm(III) ions into two-dimensional sheets (Fig. 3), which are further extended into a three-dimensional supramolecular framework through O–H···O hydrogen-bonding interactions including both coordinated and uncoordinated water molecules (Table 1).