organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o818-o819

Di­ethyl [(3-cyano-1-phenyl­sulfonyl-1H-indol-2-yl)meth­yl]phospho­nate

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 23 February 2011; accepted 3 March 2011; online 9 March 2011)

In the title compound, C20H21N2O5PS, the indole ring is essentially planar, with a maximum deviation of −0.0083 (18) Å. The methyl C atom of the methyl­phospho­nate group and the S atom lie 0.104 (2) and −0.2158 (6) Å, respectively, from the indole mean plane. The sulfonyl-bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 82.30 (8)°. The ethyl side chains are disordered over two sets of sites, with occupancy factors of 0.737 (5)/0.263 (5) and 0.529 (11)/0.471 (11). In the crystal, mol­ecules are linked into centrosymmetric dimers via C—H⋯O hydrogen bonds, resulting in an R22(18) graph-set motif. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For applications of indole derivatives, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For comparison of mol­ecular dimensions, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]); Sethu Sankar et al. (2002[Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C. & Moon, J.-K. (2002). Acta Cryst. C58, o450-o454.]); Allen (1981[Allen, F. H. (1981). Acta Cryst. B37, 900-906.]). For graph-set motif notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N2O5PS

  • Mr = 432.42

  • Triclinic, [P \overline 1]

  • a = 9.198 (5) Å

  • b = 11.229 (5) Å

  • c = 11.992 (5) Å

  • α = 65.569 (5)°

  • β = 72.950 (5)°

  • γ = 72.204 (5)°

  • V = 1053.7 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 19331 measured reflections

  • 5172 independent reflections

  • 4201 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.126

  • S = 1.02

  • 5172 reflections

  • 284 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C9/C10/C11/C12/C13/C14 ring and Cg2 is the centroid of the C1/C2/C3/C4/C5/C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O5i 0.93 2.35 3.229 (3) 157
C5—H5⋯Cg1ii 0.93 2.63 3.501 (3) 157
C18—H18ACg2iii 0.96 2.99 3.874 (8) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+2; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The indole ring system is present in many natural products. Indole derivaties are used as bioactive drugs (Stevenson, et al., 2000) and they exhibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ho, et al., 1986). Indoles also have been proved to display high aldose reductase inhibitory activity (Rajeswaran, et al., 1999).

In the title compound (Fig. 1), ethyl moieties of diethyl phosphonate are disordered over two sites with occupancy factors 0.737 (5), 0.263 (5) and 0.529 (11), 0.471 (11). The indole ring is essentially planar with a maximum deviation -0.0083 (18) Å for the atom C6. The deviation of atoms C15 and S1 from the indole mean plane is 0.1041 (22) and -0.2158 (6) Å, respectively. The sulfonyl bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 82.30 (8)°. The atom P1 has a distorted tetrahedral configuration. The widening of angle O3—P1—O5 [115.78 (10)°] and narrowing of angle O4—P1—C15 [104.97 (9)°] from the ideal tetrahedral value are attributed to the Thrope-Ingold effect (Bassindale, 1984).

In the benzene ring of the indole ring system, the endocyclic angles at C2 and C5 are contracted to 117.49 (17) and 118.56 (17)° respectively, while those at C1, C3 and C4 are expanded to 121.35 (15)°, 121.69 (18) and 120.69 (17)°, respectively. This would appear to be a real effect caused by the fusion of the smaller pyrrole ring to the six-membered benzene ring and the strain is taken up by the angular distortion rather than by bond-length distortions (Allen, 1981; Sethu Sankar et al., 2002).

In the crystal, molecules are linked into centrosymmetric dimers via C–H···O hydrogen bonds resulting in a R22(18) graphset motif (Bernstein et al., 1995). The crystal structure is further stabilized by C–H···π interactions, where Cg(1) is the centroid of C9/C10/C11/C12/13/C14 ring and Cg(2) is the centroid of C1/C2/C3/C4/C5/C6 ring.

Related literature top

For applications of indole derivatives, see: Stevenson et al. (2000); Ho et al. (1986); Rajeswaran et al. (1999). For comparison of molecular dimensions, see: Bassindale (1984); Sethu Sankar et al. (2002); Allen (1981). For graph-set motif notations, see: Bernstein et al. (1995).

Experimental top

To a solution of 2-(bromomethyl)-1-phenylsulfonyl-indole-3-carbonitrile (1 mmol) and triethylphosphite (1.2 mmol) in dry dichloromethane (10 ml) at room temperature, ZnBr2 (0.2 mmol) was added and allowed to stir for 2 h under N2. After consumption of the bromo compound (monitored by TLC) volatile components were removed under vacuo. The residual mass was poured over crushed ice (200 g) containing conc. HCl (5 ml). The precipitated solid was filtered, washed with water and dried to give crude phosphonate ester. The crude product was purified by flash column chromatography to provide the title compound which was recrystalized from a mixture of 50% ethylacetate in pure hexane.

Refinement top

All the hydrogen atoms weree fixed geometrically and allowed to ride on their parent atoms with C—H distance in the range 0.93Å to 0.97Å and with Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for all the other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids. Ethyl groups attached on O4 are disordered.
[Figure 2] Fig. 2. A unit cell packing of the crystal structure of the title compound, showing H-bonds.
Diethyl [(3-cyano-1-phenylsulfonyl-1H-indol-2-yl)methyl]phosphonate top
Crystal data top
C20H21N2O5PSZ = 2
Mr = 432.42F(000) = 452
Triclinic, P1Dx = 1.363 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.198 (5) ÅCell parameters from 5172 reflections
b = 11.229 (5) Åθ = 1.0–28.2°
c = 11.992 (5) ŵ = 0.26 mm1
α = 65.569 (5)°T = 293 K
β = 72.950 (5)°Block, colourless
γ = 72.204 (5)°0.23 × 0.20 × 0.20 mm
V = 1053.7 (9) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4201 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 28.2°, θmin = 1.9°
ω scansh = 1212
19331 measured reflectionsk = 1414
5172 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.2952P]
where P = (Fo2 + 2Fc2)/3
5172 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.28 e Å3
10 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H21N2O5PSγ = 72.204 (5)°
Mr = 432.42V = 1053.7 (9) Å3
Triclinic, P1Z = 2
a = 9.198 (5) ÅMo Kα radiation
b = 11.229 (5) ŵ = 0.26 mm1
c = 11.992 (5) ÅT = 293 K
α = 65.569 (5)°0.23 × 0.20 × 0.20 mm
β = 72.950 (5)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4201 reflections with I > 2σ(I)
19331 measured reflectionsRint = 0.025
5172 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04210 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
5172 reflectionsΔρmin = 0.33 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.29990 (18)0.07457 (15)0.89632 (14)0.0423 (3)
C20.1831 (2)0.03001 (18)0.99695 (17)0.0517 (4)
H20.08770.08691.01090.062*
C30.2138 (2)0.10164 (19)1.07533 (18)0.0581 (4)
H30.13790.13371.14380.070*
C40.3557 (2)0.18786 (19)1.05461 (19)0.0600 (5)
H40.37270.27631.10890.072*
C50.4706 (2)0.14371 (18)0.95485 (18)0.0556 (4)
H50.56510.20150.94060.067*
C60.44273 (18)0.01035 (16)0.87526 (15)0.0446 (3)
C70.53430 (19)0.06663 (18)0.76474 (16)0.0483 (4)
C80.45078 (19)0.19408 (17)0.72042 (15)0.0460 (3)
C90.19475 (17)0.38218 (15)0.91760 (14)0.0411 (3)
C100.29566 (19)0.46655 (16)0.88290 (16)0.0475 (4)
H100.34880.49740.80100.057*
C110.3155 (2)0.50389 (19)0.97293 (19)0.0570 (4)
H110.38170.56140.95120.068*
C120.2382 (2)0.4566 (2)1.09435 (19)0.0602 (5)
H120.25350.48161.15430.072*
C130.1383 (2)0.3728 (2)1.12775 (17)0.0588 (4)
H130.08680.34101.21010.071*
C140.11430 (19)0.33556 (17)1.03911 (16)0.0497 (4)
H140.04540.28031.06070.060*
C150.4982 (2)0.30307 (19)0.60283 (17)0.0569 (4)
H15A0.61020.29280.58680.068*
H15B0.45070.38850.61360.068*
C160.6889 (2)0.0160 (2)0.7105 (2)0.0619 (5)
N10.30429 (16)0.20145 (13)0.79986 (12)0.0447 (3)
N20.8120 (2)0.0289 (2)0.6719 (2)0.0908 (6)
O10.02186 (14)0.29595 (14)0.84344 (14)0.0623 (3)
O20.19567 (18)0.44146 (13)0.68448 (12)0.0643 (4)
O30.5622 (2)0.17770 (18)0.44876 (15)0.0926 (6)
O40.2857 (2)0.26002 (16)0.52126 (14)0.0762 (4)
O50.4461 (2)0.42928 (16)0.36258 (14)0.0822 (5)
P10.44364 (7)0.30451 (5)0.46950 (4)0.06049 (16)
S10.16477 (5)0.33911 (4)0.80224 (4)0.04691 (13)
C170.5975 (4)0.1469 (4)0.3410 (3)0.0885 (12)0.737 (5)
H17A0.53800.21760.28090.106*0.737 (5)
H17B0.56460.06480.36180.106*0.737 (5)
C180.7638 (6)0.1305 (6)0.2820 (5)0.1064 (15)0.737 (5)
H18A0.77890.10970.20890.160*0.737 (5)
H18B0.82370.05910.33980.160*0.737 (5)
H18C0.79710.21220.25880.160*0.737 (5)
C17'0.7241 (10)0.1678 (10)0.3780 (9)0.086 (3)0.263 (5)
H17C0.79810.13000.43340.103*0.263 (5)
H17D0.74220.25460.31860.103*0.263 (5)
C18'0.734 (2)0.0762 (17)0.3133 (16)0.1064 (15)0.263 (5)
H18D0.83650.06290.26350.160*0.263 (5)
H18E0.65850.11520.26050.160*0.263 (5)
H18F0.71450.00830.37410.160*0.263 (5)
C200.010 (2)0.284 (3)0.543 (3)0.097 (3)0.471 (11)
H20A0.07050.30640.49690.146*0.471 (11)
H20B0.01260.34500.58550.146*0.471 (11)
H20C0.01350.19420.60300.146*0.471 (11)
C190.1657 (12)0.2917 (14)0.4538 (10)0.0901 (19)0.471 (11)
H19A0.18870.22940.41090.108*0.471 (11)
H19B0.16120.38120.39160.108*0.471 (11)
C19'0.1460 (10)0.3402 (10)0.4735 (9)0.0901 (19)0.529 (11)
H19C0.16810.37360.38300.108*0.529 (11)
H19D0.10460.41600.50130.108*0.529 (11)
C20'0.031 (2)0.250 (2)0.524 (3)0.097 (3)0.529 (11)
H20D0.06400.29920.49320.146*0.529 (11)
H20E0.00860.21880.61340.146*0.529 (11)
H20F0.07370.17480.49680.146*0.529 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0458 (8)0.0407 (7)0.0454 (8)0.0100 (6)0.0116 (6)0.0177 (6)
C20.0478 (9)0.0529 (9)0.0565 (10)0.0140 (7)0.0071 (7)0.0213 (8)
C30.0648 (11)0.0585 (10)0.0547 (10)0.0280 (9)0.0091 (8)0.0148 (8)
C40.0738 (12)0.0454 (9)0.0643 (11)0.0148 (8)0.0257 (9)0.0130 (8)
C50.0589 (10)0.0480 (9)0.0654 (11)0.0010 (8)0.0247 (8)0.0242 (8)
C60.0459 (8)0.0472 (8)0.0501 (8)0.0088 (6)0.0133 (6)0.0241 (7)
C70.0452 (8)0.0564 (9)0.0525 (9)0.0110 (7)0.0076 (7)0.0293 (8)
C80.0500 (8)0.0523 (9)0.0453 (8)0.0169 (7)0.0039 (6)0.0258 (7)
C90.0399 (7)0.0385 (7)0.0432 (8)0.0019 (6)0.0098 (6)0.0163 (6)
C100.0467 (8)0.0443 (8)0.0478 (8)0.0078 (6)0.0086 (7)0.0144 (7)
C110.0567 (10)0.0517 (9)0.0700 (12)0.0097 (8)0.0208 (9)0.0244 (9)
C120.0672 (11)0.0608 (11)0.0595 (11)0.0017 (9)0.0225 (9)0.0319 (9)
C130.0642 (11)0.0598 (10)0.0447 (9)0.0009 (8)0.0066 (8)0.0223 (8)
C140.0470 (8)0.0458 (8)0.0501 (9)0.0070 (7)0.0026 (7)0.0177 (7)
C150.0676 (11)0.0574 (10)0.0538 (10)0.0297 (9)0.0026 (8)0.0256 (8)
C160.0532 (10)0.0684 (12)0.0672 (12)0.0110 (9)0.0046 (8)0.0332 (10)
N10.0486 (7)0.0414 (7)0.0446 (7)0.0091 (5)0.0059 (5)0.0181 (6)
N20.0581 (11)0.1031 (16)0.1028 (16)0.0033 (10)0.0044 (10)0.0518 (13)
O10.0479 (7)0.0622 (8)0.0876 (10)0.0041 (6)0.0241 (6)0.0349 (7)
O20.0906 (10)0.0512 (7)0.0476 (7)0.0059 (7)0.0263 (6)0.0120 (6)
O30.1255 (15)0.0875 (12)0.0632 (9)0.0091 (10)0.0062 (9)0.0427 (9)
O40.0941 (11)0.0808 (10)0.0583 (8)0.0476 (9)0.0170 (7)0.0070 (7)
O50.1092 (13)0.0757 (10)0.0518 (8)0.0455 (9)0.0009 (8)0.0060 (7)
P10.0823 (4)0.0591 (3)0.0423 (2)0.0321 (3)0.0031 (2)0.0183 (2)
S10.0508 (2)0.0430 (2)0.0495 (2)0.00350 (16)0.01729 (17)0.01830 (17)
C170.103 (3)0.107 (3)0.077 (2)0.028 (2)0.0013 (18)0.062 (2)
C180.099 (3)0.115 (5)0.101 (3)0.021 (3)0.007 (2)0.053 (4)
C17'0.110 (8)0.073 (6)0.079 (6)0.026 (5)0.010 (5)0.034 (5)
C18'0.099 (3)0.115 (5)0.101 (3)0.021 (3)0.007 (2)0.053 (4)
C200.088 (5)0.105 (10)0.103 (8)0.031 (7)0.025 (3)0.029 (5)
C190.113 (3)0.114 (6)0.056 (3)0.046 (4)0.028 (3)0.018 (3)
C19'0.113 (3)0.114 (6)0.056 (3)0.046 (4)0.028 (3)0.018 (3)
C20'0.088 (5)0.105 (10)0.103 (8)0.031 (7)0.025 (3)0.029 (5)
Geometric parameters (Å, º) top
C1—C21.389 (2)O1—S11.4203 (15)
C1—C61.392 (2)O2—S11.4204 (14)
C1—N11.419 (2)O3—C171.396 (3)
C2—C31.378 (3)O3—C17'1.478 (8)
C2—H20.9300O3—P11.5696 (19)
C3—C41.392 (3)O4—C191.430 (7)
C3—H30.9300O4—C19'1.444 (7)
C4—C51.372 (3)O4—P11.5506 (17)
C4—H40.9300O5—P11.4573 (16)
C5—C61.395 (2)C17—C181.475 (6)
C5—H50.9300C17—H17A0.9700
C6—C71.434 (2)C17—H17B0.9700
C7—C81.363 (3)C18—H18A0.9600
C7—C161.428 (3)C18—H18B0.9600
C8—N11.405 (2)C18—H18C0.9600
C8—C151.488 (2)C17'—C18'1.492 (9)
C9—C101.385 (2)C17'—H17C0.9700
C9—C141.385 (2)C17'—H17D0.9700
C9—S11.7556 (17)C18'—H18D0.9600
C10—C111.383 (3)C18'—H18E0.9600
C10—H100.9300C18'—H18F0.9600
C11—C121.376 (3)C20—C191.521 (9)
C11—H110.9300C20—H20A0.9600
C12—C131.375 (3)C20—H20B0.9600
C12—H120.9300C20—H20C0.9600
C13—C141.384 (3)C19—H19A0.9700
C13—H130.9300C19—H19B0.9700
C14—H140.9300C19'—C20'1.515 (9)
C15—P11.804 (2)C19'—H19C0.9700
C15—H15A0.9700C19'—H19D0.9700
C15—H15B0.9700C20'—H20D0.9600
C16—N21.134 (3)C20'—H20E0.9600
N1—S11.6851 (15)C20'—H20F0.9600
C2—C1—C6121.35 (15)O5—P1—O3115.78 (10)
C2—C1—N1131.13 (15)O4—P1—O3103.59 (11)
C6—C1—N1107.51 (14)O5—P1—C15114.48 (10)
C3—C2—C1117.49 (17)O4—P1—C15104.97 (9)
C3—C2—H2121.3O3—P1—C15100.51 (10)
C1—C2—H2121.3O1—S1—O2120.66 (9)
C2—C3—C4121.69 (18)O1—S1—N1105.36 (8)
C2—C3—H3119.2O2—S1—N1106.99 (8)
C4—C3—H3119.2O1—S1—C9109.21 (8)
C5—C4—C3120.69 (17)O2—S1—C9108.82 (8)
C5—C4—H4119.7N1—S1—C9104.60 (7)
C3—C4—H4119.7O3—C17—C18114.3 (3)
C4—C5—C6118.56 (17)O3—C17—H17A108.7
C4—C5—H5120.7C18—C17—H17A108.7
C6—C5—H5120.7O3—C17—H17B108.7
C1—C6—C5120.20 (16)C18—C17—H17B108.7
C1—C6—C7106.83 (15)H17A—C17—H17B107.6
C5—C6—C7132.95 (16)C17—C18—H18A109.5
C8—C7—C16125.87 (17)C17—C18—H18B109.5
C8—C7—C6109.50 (15)H18A—C18—H18B109.5
C16—C7—C6124.63 (17)C17—C18—H18C109.5
C7—C8—N1107.61 (15)H18A—C18—H18C109.5
C7—C8—C15126.79 (16)H18B—C18—H18C109.5
N1—C8—C15125.36 (16)O3—C17'—C18'102.5 (9)
C10—C9—C14121.57 (15)O3—C17'—H17C111.3
C10—C9—S1118.43 (12)C18'—C17'—H17C111.3
C14—C9—S1119.97 (13)O3—C17'—H17D111.3
C11—C10—C9118.44 (16)C18'—C17'—H17D111.3
C11—C10—H10120.8H17C—C17'—H17D109.2
C9—C10—H10120.8C17'—C18'—H18D109.5
C12—C11—C10120.57 (18)C17'—C18'—H18E109.5
C12—C11—H11119.7H18D—C18'—H18E109.5
C10—C11—H11119.7C17'—C18'—H18F109.5
C13—C12—C11120.47 (17)H18D—C18'—H18F109.5
C13—C12—H12119.8H18E—C18'—H18F109.5
C11—C12—H12119.8C19—C20—H20A109.5
C12—C13—C14120.18 (17)C19—C20—H20B109.5
C12—C13—H13119.9H20A—C20—H20B109.5
C14—C13—H13119.9C19—C20—H20C109.5
C13—C14—C9118.76 (17)H20A—C20—H20C109.5
C13—C14—H14120.6H20B—C20—H20C109.5
C9—C14—H14120.6O4—C19—C20110.0 (15)
C8—C15—P1113.12 (12)O4—C19—H19A109.7
C8—C15—H15A109.0C20—C19—H19A109.7
P1—C15—H15A109.0O4—C19—H19B109.7
C8—C15—H15B109.0C20—C19—H19B109.7
P1—C15—H15B109.0H19A—C19—H19B108.2
H15A—C15—H15B107.8O4—C19'—C20'106.7 (13)
N2—C16—C7177.1 (3)O4—C19'—H19C110.4
C8—N1—C1108.54 (13)C20'—C19'—H19C110.4
C8—N1—S1127.93 (12)O4—C19'—H19D110.4
C1—N1—S1122.66 (11)C20'—C19'—H19D110.4
C17—O3—C17'61.5 (4)H19C—C19'—H19D108.6
C17—O3—P1125.4 (2)C19'—C20'—H20D109.5
C17'—O3—P1128.4 (4)C19'—C20'—H20E109.5
C19—O4—C19'25.7 (4)H20D—C20'—H20E109.5
C19—O4—P1127.1 (5)C19'—C20'—H20F109.5
C19'—O4—P1122.9 (4)H20D—C20'—H20F109.5
O5—P1—O4115.69 (10)H20E—C20'—H20F109.5
C6—C1—C2—C30.0 (2)C2—C1—N1—S19.9 (2)
N1—C1—C2—C3179.38 (16)C6—C1—N1—S1170.65 (11)
C1—C2—C3—C40.6 (3)C19—O4—P1—O526.8 (7)
C2—C3—C4—C50.3 (3)C19'—O4—P1—O54.2 (5)
C3—C4—C5—C60.5 (3)C19—O4—P1—O3100.9 (7)
C2—C1—C6—C50.8 (2)C19'—O4—P1—O3132.0 (5)
N1—C1—C6—C5178.67 (14)C19—O4—P1—C15154.1 (7)
C2—C1—C6—C7179.62 (15)C19'—O4—P1—C15123.0 (5)
N1—C1—C6—C70.10 (17)C17—O3—P1—O540.6 (3)
C4—C5—C6—C11.1 (2)C17'—O3—P1—O538.8 (6)
C4—C5—C6—C7179.47 (17)C17—O3—P1—O487.1 (3)
C1—C6—C7—C80.37 (18)C17'—O3—P1—O4166.5 (5)
C5—C6—C7—C8178.91 (17)C17—O3—P1—C15164.5 (2)
C1—C6—C7—C16179.50 (16)C17'—O3—P1—C1585.1 (6)
C5—C6—C7—C161.0 (3)C8—C15—P1—O5162.95 (14)
C16—C7—C8—N1179.19 (16)C8—C15—P1—O435.01 (16)
C6—C7—C8—N10.68 (18)C8—C15—P1—O372.26 (16)
C16—C7—C8—C154.6 (3)C8—N1—S1—O1149.41 (14)
C6—C7—C8—C15175.22 (15)C1—N1—S1—O142.48 (14)
C14—C9—C10—C110.2 (2)C8—N1—S1—O219.85 (16)
S1—C9—C10—C11177.98 (12)C1—N1—S1—O2172.04 (12)
C9—C10—C11—C120.9 (3)C8—N1—S1—C995.50 (15)
C10—C11—C12—C130.8 (3)C1—N1—S1—C972.62 (14)
C11—C12—C13—C140.2 (3)C10—C9—S1—O1158.84 (12)
C12—C13—C14—C91.2 (3)C14—C9—S1—O119.01 (15)
C10—C9—C14—C131.2 (2)C10—C9—S1—O225.28 (15)
S1—C9—C14—C13178.99 (13)C14—C9—S1—O2152.57 (13)
C7—C8—C15—P188.3 (2)C10—C9—S1—N188.79 (14)
N1—C8—C15—P185.35 (18)C14—C9—S1—N193.36 (14)
C8—C7—C16—N2167 (5)C17'—O3—C17—C183.9 (6)
C6—C7—C16—N213 (5)P1—O3—C17—C18122.6 (4)
C7—C8—N1—C10.74 (17)C17—O3—C17'—C18'25.5 (9)
C15—C8—N1—C1175.38 (14)P1—O3—C17'—C18'139.8 (9)
C7—C8—N1—S1170.20 (12)C19'—O4—C19—C2065 (2)
C15—C8—N1—S115.2 (2)P1—O4—C19—C20155.4 (10)
C2—C1—N1—C8179.97 (17)C19—O4—C19'—C20'58 (2)
C6—C1—N1—C80.51 (17)P1—O4—C19'—C20'166.2 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9/C10/C11/C12/C13/C14 ring and Cg2 is the centroid of the C1/C2/C3/C4/C5/C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.229 (3)157
C5—H5···Cg1ii0.932.633.501 (3)157
C18—H18A···Cg2iii0.962.993.874 (8)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H21N2O5PS
Mr432.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.198 (5), 11.229 (5), 11.992 (5)
α, β, γ (°)65.569 (5), 72.950 (5), 72.204 (5)
V3)1053.7 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19331, 5172, 4201
Rint0.025
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.126, 1.02
No. of reflections5172
No. of parameters284
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C9/C10/C11/C12/C13/C14 ring and Cg2 is the centroid of the C1/C2/C3/C4/C5/C6 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···O5i0.932.353.229 (3)157
C5—H5···Cg1ii0.932.633.501 (3)157
C18—H18A···Cg2iii0.962.993.874 (8)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2; (iii) x+1, y, z+1.
 

Acknowledgements

SK and KS thank the Technology Business Incubator (TBI), CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, and the Department of Science and Technology (DST) for data collection.

References

First citationAllen, F. H. (1981). Acta Cryst. B37, 900–906.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C. & Moon, J.-K. (2002). Acta Cryst. C58, o450–o454.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Nedevelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 4| April 2011| Pages o818-o819
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds